
Abstract Conclusions

Acknowledgements

The field of reverse engineering has seen many different

applications such as analysis of computer viruses and malware

such as trojans, worms, viruses, ransomware, and so on. Other uses

involve analyzing legacy code to possibly recreate the code in a

more modern program and can even be used to test the quality of

software. These are just some of the uses of reverse engineering,

which should be discussed and be more well known throughout

people who practice coding. There are many different approaches

to reverse engineering since one can use tools such as IDA, CFF

Explorer, Ghidra, Hopper, GDB, and many others in order to

examine the programs. Being able to properly understand how to

use these tools will help in the proper understanding of what the

code is doing and how it’s behaving which will be better

demonstrated by solving reverse engineering challenges and

explaining the methodology behind how they were solved.

References

Methodology

Results and Discussion
The challenges that were chosen were all able to be solved by

using GDB and interpreting the assembly which was

disassembled. There are tools that make this process easier but

having a core understanding of the assembly and using GDB set

up good fundamentals. A step-by-step documentation on how to

solve the challenges was also created hopefully motivating

computer science and cybersecurity students gain some basic

knowledge of reverse engineering concepts.

Reverse engineering is an area that has seen many different

implementations and approaches which has helped tackle different

problems such as working with legacy code, analyzing malware,

and has also been used to improve existing software. Despite the

wide range of implementations that reverse engineering offers it is

seldom taught as a core class in many programs which is why

bringing more awareness to it and being able to demonstrate to

other computer scientist or individuals the possibilities and uses it

brings is what this project hopes to demonstrate.

GDB will be the tool used to solve six challenges from the

crackmes.one website.

• GDB which is also known as the GNU debugger, can be used in

programming languages such as C, C++, Go, among others. With

GDB you can disassemble specific parts of code one wants to

analyze into assembly language, and this can be used to interpret

the code and reverse engineer it.

• Assembly language is a low-level programming language which

was created with the purpose to be able to directly communicate

with a computer’s hardware and is also readable by humans. It is

used to translate high-level programming languages, such as

python, to machine language, in other words to 1’s and 0’s which

represent on or off electrical states to the machine.

• The crackmes.one page is a website that allows for any reverse

engineer to upload their challenges in order to help others

practice and learn reverse engineering skills, techniques and to

improve what they know. The website also allows you to submit

your solution and offers a variety of challenges which have

varying difficulty and ways to be solved.

Hopefully, this will be able to help demonstrate the importance of

reverse engineering and the different applications it can be used for.

Which is the reason why it should be better known by the computer

science students in order for them to be able to capitalize on the

benefits of knowing reverse engineering concepts and being able to

apply them for their use. Students especially interested in

cybersecurity may want to practice their reverse engineering skills.

Introduction

This project aimed to solve six challenges from the

crackmes.one page which are all referenced. All of the

challenges are unique and are a good starting place for

those who have limited to no experience in reverse

engineering since they help the user start getting used to

using GDB and to the assembly language. These

problems have a writeups that were made as part of the

Design Project as well. Each write up explains each

challenge and the assembly language generated by these

in more depth and in a step-by-step manner in order to

allow people who are interested in learning to have a

guide

Problem

Reverse Engineering Challenges solved step-by-step to demonstrate the many uses of

reverse engineering
Joel Maldonado Rivera

Advisor: Jeffrey Duffany

Computer Science Department

There are many different proposals that can be considered for

future works such as using specific tools such as IDA or Ghirdra

to highlight the capabilities of said tool and how they are able to

fend off some of the techniques that exists to try to stop the

reverse engineering process from being achieved. Reverse

engineering can also be utilized for malware analysis, which is

more pertinent to cybersecurity, to understand how the malware

work and what vulnerabilities are being exploited to be able to

patch and counter the use of these. A future project where some

diverse types of malwares are analyzed, handled and properly

reverse engineered would be ideal, especially to highlight why it's

important for cybersecurity.

Future Work

[1]“Assembly - introduction,” Tutorials Point. [Online]. Available:

https://www.tutorialspoint.com/assembly_programming/assembly_introductio

n.htm

[2]bueb810, “gugus the first,” Crackmes. [Online]. Available:

https://crackmes.one/crackme/61e9983133c5d413767ca5ac.

[3] “Ethics in computing,” Reverse engineering. [Online]. Available:

https://ethics.csc.ncsu.edu/intellectual/reverse/study.php

[4]eventhorizon02, “super_easy,” Crackmes. [Online]. Available:

https://crackmes.one/crackme/611e9bfb33c5d45db85dc2d7.

[5]ezman, “easy keyg3nme,” Crackmes. [Online]. Available:

https://crackmes.one/crackme/5da31ebc33c5d46f00e2c661.

[6]GDB: The GNU project debugger. [Online]. Available:

https://www.sourceware.org/gdb/ .

[7]J. Fernando, “Assembly language definition,” Investopedia, 21-Sep-2021.

[Online]. Available: https://www.investopedia.com/terms/a/assembly-

language.asp.

[8]MKesenheimer, “Forest,” Crackmes. [Online]. Available:

https://crackmes.one/crackme/60f31f1d33c5d42814fb3381.

[9]NomanProdhan, “License Checker 0x02,” Crackmes. [Online]. Available:

https://crackmes.one/crackme/61c62bde33c5d413767ca0a0 .

[10] Oracle VM VirtualBox. [Online]. Available: https://www.virtualbox.org/.

[11] R. Singh , “A Review of Reverse Engineering Theories and Tools.”

[Online]. Available: https://idc-

online.com/technical_references/pdfs/mechanical_engineering/A%20Review

%20of.pdf.

[12] S. Megira and F. W. Wibowo, “Malware analysis and detection using

reverse engineering technique,” Journal of Physics: Conference Series, 12-

Mar-2019. [Online]. Available:

https://www.academia.edu/38540935/Malware_Analysis_and_Detection_Usi

ng_Reverse_Engineering_Technique.

[13] SilentWraith, “lockcode,” Crackmes.[Online]. Available:

https://crackmes.one/crackme/5fda4fa43c5d41f64dee37b

[14] “What is Kali Linux?: Kali linux documentation,” Kali Linux. [Online].

Available: https://www.kali.org/docs/introduction/what-is-kali-linux/.

In order to solve problems that were chosen from the

crackmes.one site, they were first analyzed by using commands

such as the file command in order to get more details about what

type of executable file was being worked on and then proceeding

to use GDB in order to take a much more in-depth analysis of the

executable file. GDB has many different commands that have

different uses in helping better understand the code such as:

• disassemble(disas) which allows the user to disassemble a

specific function or a function fragment thus allowing a closer

look at the assembly code to that specific area.

• breakpoint which allows the user to specify a breakpoint

which will make the execution of the program halt once

reached.

• next instruction(ni) which allows the user to go to the

following instruction in the assembly code therefore giving the

user a chance to verify changes that occurred.

• the examine(x/..) instruction which allows the examination of

the provided memory but also allows one to place a flag in

order to indicate how the values should be represented before it

is displayed.

• info functions in order to see debugging symbols that can be

accessed in order to help with the analysis of the program.

These challenges are not stripped executables, which allows for

the use of info functions command to find debugging symbols and

functions to set the breakpoints. For every challenge, these

commands can be used in order to view functions of interest and

set breakpoints for them to then go and disassemble them in order

to analyze what the code is doing. By understanding the assembly

and verifying areas in memory with the examine command the

solutions of the challenges were determined.

Figure1: Part of the disassembly for the main function for the ,

MKesenheimer’s Forest challenge

Using the methodology that was described all the challenges

that were chosen were solved by using GDB and a guide was

made in order to show the solutions and how each challenge’s

solution was reached. Reverse engineering has various

applications which not many computer scientists are aware of

such as using it to test the quality of software, verifying legacy

code in order to create a newer version of said code, malware

analysis, and so on. The step-by-step guide will hopefully help

those who are interested understand the basics of assembly and

reverse engineering concepts which in turn may provide them

with better insight on the topic of reverse engineering and the

various uses it has.

Challenge Solution

MKesenheimer’s Forest ‘redridinghood’

Bueb810’sgugus the first

challenge

‘gu!gu?s’

NomanProdhan’s license checker

0x02

“NomanProdhan” "KS-

LICENSE-KEY-2021-REV-2"

eventhorizon02’s Super Easy be any number that is at least

3 digits long and is a prime

number

SilentWRaith's lockcode sum of the characters of the

strings must be equal to 2977

for the password to be

accepted.

Example:‘HelloThereGeneralK

enobiSkywaHH’.

ezman’s easy keyg3nme 1223

Table1: Shows the name of each of the crackmes

challenges along with solutions to for each.

I would like to acknowledge and thank Dr. Jeffrey Duffany for

his recommendation and guidance during the process of the

Design Project. I’m also thankful for the master’s program

overall I’m also thankful to the Computer Science Department

for the growth they have let me develop.

Figure2: Showing how the Forest challenge was run with an

incorrect answer and with two different correct answers.

https://www.tutorialspoint.com/assembly_programming/assembly_introduction.htm

