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ABSTRACT

Spaced-based observations of atmospheric
energetics, such as those provided by NASA’s
Clouds and the Earth’s Radiant Energy System
(CERES), produce data products intended to be
shared with the larger scientific community and
merged with other complemental)’ data sets.
Meaningful fusion of complementary data requires
a well-founded common statistical basis for cited
precision and accuracy. A high—level numerical
model is available capable of predicting the
dynamic opto-electrothermal behavior of CERES
like radiometric channels. The paper repoi-ts use of
this model to explore the sensitivity of data
products to variations in individual optical, thermal
and electronic parameters. The optical/thermal
radiative part of the model is based on the Monte—
&irio Ray—Trace (MCRT~ method in which millions
of rays are traced. Several hours of execution time
on a large computer are required to simulate a
single scan across the Earth’s su,face, thus making
it impractical to run the simulation for eve?-)’
possible variation of each parameter. A key element
of the research involves an effort to determine the
minimum number of simulations required to
producc statistically meaningful rest? its.

SINOPSIS

Las observaciones provistas par ci Sistema de
Nube y Energia Radiante (IC Ia Tierra (Clouds and
the Earth’s Radiant Energy System, CERES) de Ia
AdministraciOn Nacional de Aerondutica y del
Espacio (National Aeronautics and Space
Administration, NASA) proporciona datos que
tienen que ser completados y compartidos par Ia
comnunidad cient (flea. Para obtener Ia precisiOn y

exactitud requerida en Ia fusion de los datos, es
necesario contar con ima base estadistica bien
fundamentada. Existe un modelo numérico de alto
nivel para predecir ci comportamiento opto
electrotermico dind,nico de los canales
radiométricos de C’ERES. Este trabajo utiliza
dicho modelo pal-a investigar la variaciOn en Ia
sensibilidad de los parthnetros Opticos, electrOn icos

)‘ térnucos. La patie de ,-adiaciOn Optica-térmica
del ,nodelo es hasada en el método de rastreo de
fl~y()5 de Monte Carlo (Monte Carlo Ray Trace,
MC’RTI, en el cual millones de rayos son rasti-eados
por supemficie. La simulaciOn de una simple
observaciOn sabre Ia supeificie terrestre tomaria
varias ho,as de ejecuciOn del programa en una
computadora de gran capacidad de procesamiento
de datos, lo que hace imprdctico Ia simulaciOn pal-a
todas las posibles variaciones de carla parthnetro.
El objetivo principal de esta investigaciOn es el
determinar el neumnero minuno de sinnilaciones
-eqeeeridas porn producir resultadas estadistica

mente sign~flcativos.

I- INTRODUCTION

This paper describes an effort to combine
standard statistical methods with simulation using a
high-level numerical model to predict uncertainty
intervals in the data product of space-based
observations of atmospheric energetics. The
method proposed is initially applied to the
numerical model for a thermopile linear-array
thermal radiation detector intended for
geostationary earth radiation budget applications.
Since the optical/thermal radiative part of the model
is based on the Monte-Carlo Ray-Trace (MCRT)
method, the first part of the paper is focused on a
probabilistic analysis of the MCRT method and the
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underlying random number generator. Next, a study
is described to determine the minimum number of
simulations required to obtain results to a stated
confidence interval. Finally, a study of auto
regression methods to perform level-nne data
retrieval from instruments such as those carried on
NASA’s Clouds and the Earth’s Radiant Energy
System (CERES) are reported. Auto-correlation or
auto-regression coefficients may be retrieved
during dynamic on-board calibration of spaceborne
radiometers and then used to invert instrument
count time series to obtain the corresponding
radiance time series. This would allow radiances to
be down-linked directly, thereby greatly reducing
data management costs.

Ii- THERMOP1LE LINEAR-ARRAY THERMAL
RADIA HON DETECTOR

A new detector concept, originally conceived
for use on the Geostationary Earth Radiation
Budget (GERB) experiment, has been proposed for
earth radiation budget radiometry applications [1, 2,
3]. The detector consists of a linear array of single
junction-pair thermocouples mounted in one wall of
a mirrored, wedge-shaped cavity, as shown in
Figure 1. Each of the 256 pixels of the linear-array
detector consists of the darkened active junction of

a two-junction thermopile. The incident collimated
radiation enters the cavity through the 60-jim wide
slit at the top and strikes the blackened active
junction of the thermopile.

III- PROBABILISTIC CHARACTERIZATION
OF THE MONTE-CARLO RAY TRACE

METHOD

The Monte-Carlo ray-ti-ace (MCRT) method
has been used for decades in the development of
thermal radiative models to predict the opto
electrothermal behavior of radiometric channels [4].
In this approach the radiation energy emitted from a
given surface i is divided into a large number N~ of
discrete and uniform energy bundles. The MCRT
technique consists of tracing the history of these
bundles from their emission to their absorption.
Using the properties of the enclosure and the laws
of probability, it is possible to determine the
number of energy bundles N1~ emitted by surface i
and absorbed by surface j. Then the distribution
factors may be estimated as

N
D•- ~—~-

N1

11111111

15.4mm

Entrance Aperture

Cavity

(1)

Figure 1: The rinopile linear-array thermal radiation cielector
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and the contribution of radiation heat transfer to
surface element j due to emission from surface
element i at temperature T~ is

Q,1 =s,A1aT,4D,~

In Equation 2, Ej is the emissivity of surface
element i and A~ is its surface area.

As an illustrative example the MCRT method
is used here to compose an optical model of the
detector and the cavity of an instrument originally
conceived for geostationary earth radiation budget
applications [1, 2, 3]. The cavity consists of nine
plane surfaces, as shown in Figure 2. The numerical
model has been implemented as a FORTRAN
program that permits calculations of optical cross
talk among pixels as well as all the radiation
distribution factors among surfaces [3]. The model
simulates a collimated beam that enters through the
aperture. The beam’s energy is traced throughout
the cavity until it is completely absorbed by the
surfaces or escapes through the aperture.

The accuracy of any MCRT simulation
depends on the quality of the random number
generator used. Typically a pseudorandom number
generator is used in which deterministic formulas
produce sequences of numbers whose statistical
properties approach those of true random number
sequences. In the case at hand a double-precision
FORTRAN version of a multiplicative linear
congruent generator algorithm, RANMAR [5], has
been adapted for use in the mathematical model of
the linear-array detector shown in Figures 1 and 2.
Although this random number generator has been
used in other applications for many years, its

l8O.5~m

statistical properties have not been reported in the
open literature.

This model is presented here as an illustrative
example. The principles developed would be

(2) applicable to a wide range of MCRT-based
radiometric channel models.

A- QUALITY OF RANMA 1?

1- Uniformity of distribution

The sequence of numbers generated should be
uniformly distributed. Uniformity of distribution of
a sequence of pseudorandom numbers was tested
using the standard goodness-of-fit x2-test from
statistics. This test compares the observed and the
expected frequencies of the pseudorandom numbers
in the sequence. If the observed frequencies agree
with corresponding expected frequencies, the value
of x2 will be small, indicating a good fit. However,
if the observed frequencies differ considerably from
the expected frequencies, the value will be large,
indicating a poor fit. In the current study a sequence
of pseudorandom numbers of length of 1000 was
sorted according to the range into which its
individual members fell. The 1000 numbers were
sorted into 20 bins and the count of numbers in
each bin was obtained. Of course, the expected
count for each bin is 1000/20 = 50. The x2 statistic
was computed using

~2 (3)

Entrance
Aperture

Detector
Array

x/tan (j3) ~.tm

15400 jim

Figure 2: Division of the detector cavity in sinfaces
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where 0 is observed count in bin i and E is
expected count in bin i.

Because a highly uniform distribution was
expected, the value of x2 should correspond to the
“very good fit” range when interpreting the value of
x obtained. In the case at hand, with a degree of
freedom of 19 (degree of freedom = number of
observations number of conditions imposed to the
distribution), at a significance level of 0.05 a value
of x2 less than 31.144 is expected. The value
computed in the test is 13.04. Therefore it may be
concluded that the distribution is uniform to a 5-
percent significance level.

RANMAR was also compared with three other
pseudorandom number generators available in the
literature [6]: RANO, RANI, and RAN2. These
produce x2 values of. respectively, 29.92, 28.48,
and 18.08. While all three produce uniformly
distributed random number sequences with a 5-
percent significance level, RANMAR produces the
most uniform sequences.

2- Randomness

The second property of interest is randomness
of the sequence of random numbers. By
randomness it is meant that a procedure cannot be
devised to predict the next number in the sequence
based on knowledge of the preceding numbers. In

other words, the correlation between each number
in the sequence and the numbers that precede it
should be low. Arguably the most general
prediction of future values of an equally spaced
time series based on past values is obtained using
an auto-regression model [7]. For any uniformly
spaced sequence x1, x~, x3 it is possible to find
an auto-regression model of order n such that

= b1x1 +b2x1 2 +h3x1 + ... +h~x1 ,, +8,, (4)

where c~ is the unknown error in the model. If a
given member of the sequence is correlated with
immediately anterior members, i.e. if a
deterministic relationship exists among members of
the sequence, the error can usually be minimized to
an acceptable value, on the order of a few percent,
with judicious choice of order n and the length of
the sequence used to define the nth~order model. In
the current study, a sequence of IS random
numbers was used to define a fifth-order auto
regression formula to predict the next (sixteenth)
number in the sequence. Equation 4 with n = 5 was
used to compute a “predicted” sequence of random
numbers, and this sequence was then compared
with the actual sequence of random numbers. The
x2 statistic was then used to test the deviation of the
predicted sequence of random numbers (observed,
0~) from the actual sequence (expected, E,) using

Observation number

Figure 3: Actual random numbers generated by RANMAR and corresponding values
predicted using an auto-regression model

——--‘ Actual Results

— _~—. Predicted ResulLs

S

S

-C
‘I

-C

S
C

-C
S

.2

1.0

0.8

0.6

0.4

0.2

0,0

-0.2

II I

6 ~ec~c~a de Ia ?óccW’gua4zd Po4thstca & Pcn4 Vwemd~c 1999



Equation 3. A very large value of x2 (=494,243)
was obtained, indicating a random relationship
between the predicted and actual random number
sequence. This may be taken as strong evidence
that the original sequence is random.

In addition to the z2 test described above,
deviation of the predicted sequence from the actual
sequence was tested for normality using the Ryan-
Joiner test [8]. In this test a very high correlation
(R-value) is consistent with normality. Usually, for
a confidence interval of 95 percent, the hypothesis
of normality is accepted if the R-value exceeds than
0.9835. Figure 3 shows values of the actual random
numbers obtained using RANMAR and the
corresponding values predicted using the auto
regression model. If the pseudorandom number
sequence is truly random, then the auto-regression
model should fail to predict the next member of the
sequence. Further, this failure should itself be
random.

Figure 4 is a plot of the logarithm of the
cumulative distribution function of the difference
between actual and predicted members of the
pseudorandom number sequence. If this difference
is random, then the logarithm of the cumulative
distribution function should be a linear function of
the difference. Figure 4 demonstrates that, in the
case at hand, a linear regression fits the data with an
R-value of 0.9988. We conclude that the difference
between the actual (pseudo) random number
sequence and the corresponding sequence predicted
using the auto-regression model is random. In
summary, we have shown that the ~2 statistic is
very large, indicating very low correlation between
the actual and predicted random number sequences,

0.999

0.9cr

c~ 0.95
‘C
~ 0.80

0.50

0.20
0.05
0.01
0.001

—1

and that the differences themselves are randomly
distributed. These are the necessary and sufficient
conditions to conclude that the original (pseudo)
random number sequence is indeed random.

3- Number of rays necessary for statistically
meaningful results

Several simulations of the behavior of the
cavity were run in which the number of rays traced
was studied as a parameter. In these experiments
the radiative properties of the walls of the cavity are
maintained at a constant value (a = = 0.5,
pS/p = 0.9). The entrance aperture (surface 6 in

Figure 2) is modeled as a membrane that emits
collimated radiation into the cavity toward the
sloped wall where the detector is mounted. For each
experiment the distribution factor D5, between the
aperture and surface 2 is computed each time
changing the seeds used to initiate of the random
number sequence. An experiment consists of one
run of the program for a given set of instrument
parameters and specified seeds to initiate the
random number sequence. For every combination
of number of rays and number of experiments, the
results were tested for normality using the Ryan-
Joiner test in which a very high correlation (R
value) is consistent with normality. For a 95-
percent confidence interval the hypothesis of
normality is accepted if the R-value exceeds
0.9835. Table 1 gives the values of R for different
combinations of number of rays traced and ntimber
of experiments. Table I shows that for a given
number of rays traced (10,000), the distribution of
the values of D6, obtained becomes more normal as

0

Difference

Figure 4: Test for normality of the difference between the actual and predicted sequences of
random numbers

N=985
a=0.412
R=0.9988
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the number of experiments run increases. This is
the expected result. We note further that even for
this relatively low number of rays traced, the
distribution of values of D62 is acceptably normal
(R > 0.9835) even when only ten experiments are
run. On the other hand the degree of normality is
insensitive to the number of rays traced for a given
number of experiments (100). Table I seems to
suggest that it is more effective to repeat a
simulation n times with a relatively low number of
rays traced in each simulation, and then to use the
mean value of the result obtained for the n
simulations, than to run a single simulation with a
large number of rays traced.

Table 2 gives several statistics pertaining to the
estimation of D62. The first three columns contain,
respectively, the number of rays traced per
experiment, the number of experiments run, and the
product of these two quantities (i.e. the total
number of rays traced in all of the experiments).

Column four contains the mean value of the
distribution factor, <D62>, obtained for the number
of experiments given in the first column, and
column five contains the corresponding standard
deviations. Finally, column six contains the range
of values of D6, into which the actual value would
be expected to fall with 95-percent confidence.

The 95-percent confidence interval was
computed in three steps. First, the value of D62 was
computed for a single experiment using the MCRT
method with the indicated number of rays traced.
Then the mean value of D , < D >. and its
standard deviation a62 were computed for the
indicated number of MCRT experiments. Finally,
the 95-percent confidence interval was computed as

Is
<D6~>— D62

where t = 1.960 is the value of the Student’s
statistic corresponding to a large number of degrees
of freedom for a 95-percent confidence interval. s is

Table I: Values of R in tile Ryan-Joiner test for D6,

Number of Number of Rays
Experiments 10.000 I 100,000 I 1,000,000

C,
III, ~ •WDE{I•0

1000

0.9664
0.9908 0.9962 I 0.9969
0.9995

Table 2: Standard dewanon and confidence inten’atcjbr D~,2

CERES
Instrument

a
,• • •

+

Figure 5: CERES ins! ruinent operation (actual instrument and model)

(5)

Number Number of Rays per a6’ 95-% Confidence interval
of Rays Experiments Experiment - -

10 100 1000 0.242 0.131947 0.242±0.051723(±21.37%)
100 100 10000 0.2558 0.042928 0.2558 ± 0.016828 (± 6.58%)
1000 100 100000 0.26508 0.013106 0.26508 + 0.005138 (± I .938%)

10000 10 100000 0.26476 0.002505 0.26476±0.003105 (± 1.172%)
10000 100 1000000 0.26391 0.004552 0.26391 ± 0.001784 (± 0.676%)

100000 100 10000000 0.26397 0.001553 0.26397 ± 0.000609 (± 0.23%)
10000 1000 10000000 0.26411 0.004547 0.26411 ± 0.000564 (± 0.213%)

1000000 100 100000000 0.26407 0.000429 0.26407 ÷ 0.000168 (± 0.036%)
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the estimate of the standard deviation (~ in this
case), and n is the number of experiments.

The results in Table 2 show that the 95-percent
confidence interval narrows as the total number of
rays traced (column 3) increases,. When the product
of number of rays traced and number of
experiments run reaches one million, the
uncertainty in the result obtained for the radiation
distribution factor is less than one percent. It is also
noted that, for sufficiently large numbers of total
rays traced, slightly better performance is obtained
when the number of experiments is increased while
holding the total number of rays traced constant
(second and third tows from the bottom). The
opposite seems to be true for smaller numbers of
total rays traced (fourth and fifth rows of the table).

Finally, it should be pointed out that when only
one experiment is run with m rays ti’aced, the 95
percent confidence interval is computed treating the
radiation distribution factor as a proportion rather
than as a mean. In this case,

— = ± w~~{D~Xl_~o2B

where (D62) is the estimate of the actual value of
the radiation distribution factor D62 and We plays
the same role as the Student t statistic in Equation 5
and also has a value of 1.960. If only one
experiment is run with a given number of rays
traced, the 95-percent confidence interval obtained
using Equation 6 is roughly the same as the 95-

5000

-0.026000
0

~ -0.026500
0
E

-0.027000

-0.027500

-0.026000

broken 0
scale

percent confidence interval obtained using Equation
5 when multiple experiments are nm with the same
total number of rays traced (number of rays per
experiment times number of experiments).

We conclude from Table 2 that no significant
statistical advantage is obtained by running a large
number of experiments with the same total number
of rays traced as in ‘a single experiment. However,
other advantages may be obtained using a relatively
large number of experiments with a relatively small
number of rays traced per experiment. For example.
the experiments could be distributed over a number
of processors, thereby saving wall-clock time for
the overall simulation. Other ideas are currently
under study.

IV- MODEL-BASED USE OF
AUTOCORRELATION ALGORITHMS FOR
DYNAMIC RETRIEVAL OF SPACEBORNE

RADIOMETRIC DATA

A- CERES INSTRUMENT

(6) The CERES instrument consists of three
scanning thermistor bolometer radiometers, an
elevation axis drive system, an azimuth axis drive
system and associated electronics. The shortwave
channel measures the earth-reflected solar radiance
in the 0.3-to-S pm spectral region. The longwave
channel measures the earth-emitted solar radiance
in the 8 to-12 pm spectral region. The total
channel is unfiltered and thus responds to both
earth-reflected solar and earth-emitted radiance in

‘.5

trequency(Hz)

Figure 6: Mode/-pi’edieted CERES total channel time delay i’ers’usfi’equency
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600 100

the O.3-to-I0O jim spectral region. Each
radiometric channel consists of a baffle, Cassegrain
optics, and a thermistor bolometer detector module
consisting of active and references sensors.

The CERES instrument scans the earth using
biaxial and cross-track scan modes. For the cross-
track mode, the azimuth axis is fixed and the sensor
scans about the elevation plane perpendicular to the
orbital direction. The biaxial scan mode is an
operational mode in which the azimuth axis rotates
at a constant rate of 6 degfs in one direction for 30 s
and then rotates in the opposite direction at 6 deWs
for 30 s. All zenith scan cycles last 6.6 s and
includes an internal calibration and spaces views.
The data sample rate is 100 Hz.

Conditioning of the electronic signals is a
requirement of typical remote sensing instruments
because of the need to amplify, filter and sample
the signal. A low noise pre-amplifier is used to

D
4)a

80 ~
C,

:: ~

amplify the signa . A Bessel low pass filter
downstream of the pre-amplifier avoids aliasing
error and assures a relatively constant time shift
between the input and output for all frequency
components of interest.

B- HIGH-LEVEL DYNAMIC OPTo
ELECTROTHERMAL RADIOMETRIC MODEL

Haefflin et al. [3] and Priestley et al. 19, 10]
completed the high-level dynamic opto
electrothermal model for the CERES radiometer in
1997. This radiometric model is used to study data
retrieval methods. It was developed based on a
combination of the Monte-Carlo ray-trace method
(MCRT) and finite-difference and finite-element
methods. The model is capable of simulating the
end-to-end response of the CERES instrument to
simulated earth scenes. On the basis of simulated

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0,4 0.45

Time (s)

Figure 8: Input radiance recovered using Equation
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Figure 7: Input radiance and output count time series
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input radiance 10), the model produces a sampled
output discrete time series in proportional counts
m(i) at 0.01-s time intervals. The relationships
among the input radiance signal, the instrument
(both actual and simulated), and the output count
time series are indicated schematically in Figure 5.

Priestley et al. [9, 10] combined the optical,
thermal and electrical models developed by
previous investigators to create a Practical
Numerical Model (PNM) of the CERES protoflight
total channel. Validation and certification of the
model was accomplished by simulating the ground
calibration process of the actual instrument. High-
confidence prediction ability was demonstrated.

A simulated output count time series can be
obtained based on a simulated radiance input time
series 1’(t) incident to the Practical Numerical
Model. The counts are proportional to the output
voltage of the instrument. It is important that the
simulated data obtained by the PNM represent
accurately that of the real instrument. This was
established by Priestley [9, 10].

A Bessel low-pass filter is used after the pre
amplifier to maintain time-delay independence of
frequency. A random noise input was used to
obtain the spectral response of the instrument
model (and thus of the instrument itself) for all
frequencies. The resulting data set consists of 25
blocks of 51,200 points, each sampled at I-ms
intervals. This corresponds to a resolution for 0.02
Hz. A Fourier transform and frequency response
function approach was used to obtained the time
delay as a function of frequency. Results are
shown Figure 6. Based on this test, it may be
concluded that the Bessel filter maintains the time
delay essentially constant in narrow range between
25.5 and 27.5 ms.

6,
4-
C

0
C-)

9100

9000

8900

8800

8700

8600

8500

C- PROPOSED METHOD TO PERFORM LEVEL-ONE
DATA ANALYSiS

The first step in data analysis involves
converting the instrument counts to radiance at the
instrument entrance aperture (before filtering). This
is currently done using a count-conversion scheme
based on time shifting and multiplying the result by
a calibration constant. An alternative approach is
considered here.

The simulated output data obtained from the
PNM depends on time; therefore, it is hypothesized
that an auto-regression model can be used to predict
the next value of this time series based on previous
values in the sequence. An auto-regression model
of order n has been described in Section 3.1
(Equation 4). The coefficients b~, i = I, 2 n, are
calculated based on N observations. The Aikaike
information Criterion (AIC) [Ill criterion is used to
estimate the order n of the auto-regression..

The auto-regression model is studied using the
order as a parameter to determine the most accurate
model. Generally the matrix of coefficients of the
system produced by auto-regression is not square.
In this case the transpose and the inverse matrices
are employed to solve the system [II]. Auto
regression representations of the input radiance and
the output counts are given by

I, =c111_1 +c21, 2+c31, 3+...+c 1 +8 (7)

and

= d1nz, +d2rn, 2 +d3ni~ ~ +...+d~,n1 +ç,~ (8)

Villeneuve [12] has created a realistic cloudy
earth scene simulation that was used as the input

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (s)

Figure 9: Output count recovered using Equation 9
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radiance time series in the PNM to produce the
simulated count time series data shown Figure 7.

Auto-regression models were created using the
ten previous values in the time series, that is
N = 10. The five coefficients b~, i = 1, 2 5, that
result are then used to predict the next value based
on the five previous observations. Results for the
input radiance and corresponding output count time
series are shown in Figures 8 and 9. From these
results it is evident that the auto-regression mode] is
capable of accurately predicting the evolution of
these time series based on previous observations.

The next logical step would be to find the
relationship between the coefficients c1 and d~ that
permit the count time series to be used to predict
the corresponding radiance time series. The result
sought would he an auto-regression model of the
form:

I, = aoii~ + a1n~_1 + a2;i~_2 + a3n4_3 + .. . + a,,ii;~ + ç (9)

where the coefficients a~ account for both the
dynamic response of the instrument and the
dynamic nature of the rndiance field. Work in
progress involves using the CERES Practical
Numerical Model to determine the relationships
among the various auto-regression coefficients that
would allow the instrument dynamics to be
separated from those of the radiance field.

V- CONCLUSIONS

An essential step in the process of predicting
uncertainty and confidence intervals in radiometric
models is establishment of the quality of the
random number generator used in the underlying
Monte-Carlo ray-trace method. This paper
establishes that the random number generator used
in the current model of the CERES Practical
Numerical Model meets very high standards of
randomness and uniformity of distribution. It is also
established through study of another radiometric
model that, to a 95-percent level of confidence,
such MCRT-based models are capable of providing
better than one-percent simulation accuracy when at
least one million rays are traced per surface.
Finally, model-based studies using the auto
regression method show promise of providing an
alternative approach to level-one radiometric data
analysis.
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