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Abstract ⎯ Data clustering refers to the automatic 
grouping of object based on their similarity, i.e., 
similar objects should be in the same group and 
dissimilar objects should be in different groups.  In 
particular, for hierarchical clustering algorithms 
there is also the notion of a hierarchy in which the 
objects and the cluster fit.  Clustering is a 
fundamental task in data mining, machine learning, 
information retrieval, bioinformatics, and image 
analysis, among others.  It is important to evaluate 
the result of clustering algorithms.  However most 
evaluations approaches are geared towards non-
hierarchical clustering approaches; this research 
explores how to use traditional validity measures to 
evaluate and assess hierarchical clustering results.  

Key Terms ⎯ Clustering, Data Clustering, 
Hierarchical Clustering, and Validity Measures. 

DEVELOPMENT OF THE PROBLEM 

Clustering is a fundamental task in data 
mining, machine learning, information retrieval, 
bioinformatics, and image analysis, among others.  
The challenge to evaluate the goodness of the 
clustering validity is equally important as the result 
obtained by the generated algorithm.  The most 
common approach to solve this challenge is using 
non-hierarchical evaluations.  This research 
explores a different approach; using traditional non-
hierarchical validity indexes to assess the 
hierarchical approach. 

Background 

Cluster is the organization of similar objects 
that are inter-similar to each other and intra-similar 
to different clusters.  

On other words, points within a cluster are 
more similar to each other than points belonging to 
other clusters.  An example of clustering is shown 
in next Figure 1.  Here, the points belonging to the 

same color are given the same label, meaning that 
they are in the same cluster.  

 

Figure 1 
K-means Clustering 

Since, there is a huge amount of clustering 
approaches to solve or model the same problem.  
Imagine that you are given a large data-set, a 
challenge that you may confront is to choose the 
perfect clustering model that could be more 
adequate to better describe the data-set.  Another 
important question that may arise is how to confirm 
the strong fit of the chosen clustering model.  They 
are known as cluster validity methods.  

Huge amounts of validity indexes have been 
proposed in literature to address the problem of 
validity fit.  For example, several of the approaches 
are based on counting pairs [1], [2], [3], [4], [5].  
The most important criterion dealing with counting 
pairs of points, when comparing the clustering, is 
determining if the points on which the two 
clustering’s agree or disagree [2].  Others examples 
are based on entropy and purity, calculating the 
quality of a set of clusters among many others [1]. 

Significance of the Study 

This research is to surveys the core concepts 
and techniques in the large variety of cluster 



validation for non-hierarchical to be applied into 
hierarchical evaluation.  

General speaking, there are three types of 
clustering validation techniques: external, internal 
and relative criteria [6], [7].  On this research the 
attention should be focused on the external criteria. 

REVIEW OF RELEVANT LITERATURE 

In this section, there is an overview of the 
clustering evaluation and validation indexes. 

Flat vs. Hierarchical Clustering 

The purpose of the flat clustering is to set 
clusters without any explicit structure between the 
labels of each cluster.  Again, a good example is the 
k-mean algorithm result from the Figure 1.  As is 
illustrated in the depicted figure: the data is cluster 
and labeled with a color to symbolize the cluster.  
From the exploration standpoint is easily clear how 
similar are the data between one to the other.  The 
algorithm is quite simple and effective, it minimize 
the sum of squares and the corresponding cluster 
centroid.  Perhaps, that is why the k-means is a 
well-known flat clustering algorithm between 
academics.  Also, the expectation maximation is 
one of the most popular ones.  

Between the flat clustering you can make a 
second distinction, described below. 
• Hard Clustering:  Based on each label belong 

to one cluster or they don’t. 
• Soft Clustering:  Based on each label is 

distributed over all clusters. 
The k-means [8] is a non-hierarchical 

clustering and the most important flat clustering 
algorithm.  According to [8], this application is not 
to find some unique, definitive grouping, but rather 
to simply aid the investigator in obtaining 
qualitative and quantitative understanding of large 
amounts of N-dimensional data by providing him 
good similarity groups. 

By looking a hierarchical clustering (see Figure 
2) output it is cleared that is more informative than 
the unstructured set of clusters reviewed in Flat 
Clustering. 

 
Figure 2 

Hierarchical Clustering 

Imagine that we have a dispersion of 10 points 
in 2-D and by applying the hierarchical algorithm 
obtained the output depicted on Figure 2.  By quick 
inspection it can be determined a quick similarity.  
That each level of the hierarchy has at least a 
couple of merging, forming a cluster.  Except the 
label number 6, identified as the color violet, that 
only has one merging.  Additionally, the cutting 
point will give the numbers of clusters in each level 
of the hierarchy and the vertical axis will provide 
the similarity measure between clusters.  In other 
words, the hierarchical method is more informative 
than the unstructured representation of the flat 
clustering.  Also, the hierarchical clustering is very 
suitable because it does not require the number of 
clusters, as expected in flat clustering. 

Hierarchical clustering can be general grouped 
in to two main categories, described below. 
• Agglomerative:  Based on the “bottom up” 

approach.  By looking Figure 2., the 
agglomerative approach starts in each number 
as a cluster (1, 3, 4, 9, 10, 13, 21, 23, 28, and 
29).  Then merges into a cluster, depending on 
the selected parameter, until one cluster is left. 

• Divisive:  Based on the “top down” approach.  
Using the same example, but this time starting 
with all the numbers in on cluster, and splits 
the cluster until a single number cluster are left. 
The depiction of a hierarchical clustering is 

called a dendogram.  The dendogram is the 
hierarchy tree representation that shows the 
structure of the clusters as depicted in Figure 2. 



Cluster Validity Methods 

Generally speaking, there are three types of 
clustering validation techniques external, internal, 
and relative criteria [6], [7]. 
• External Criteria:  Based on the priori 

knowledge about the data.  This means that we 
evaluate the data based on previous set of 
clusters or results of a clustering algorithm.  Is 
usually referred as “partition” (P). 

• Internal Criteria:  Based on the vectors of the 
data set alone.   This case is very different from 
the external criteria, because the clustering 
results are evaluated from the data clustering 
results themselves. 

• Relative Criteria:  Based on the evaluation of 
clustering structuring by comparing it to other 
clustering schemes, a comparison with the 
different algorithm but same data inputs. 
Therefore, if only the attention is given to the 

external validate-cluster data-sets, is important to 
keep in mind that the external criteria is required to 
possess a prior knowledge of the data-sets.  For 
example, lets imagine that you possess a supervised 
learning and unsupervised learning results.  In order 
to use the external indexes you need the prior 
knowledge of the data sets that is recognized as the 
supervised learning. This is the data that a human 
impose.  Therefore, the external criteria compares 
between prior information with the generated by the 
clustering results.  Also, important to keep in mind 
that in the real world usually there is no prior 
information of the data sets.   

On previous works there are various measures 
which are to measure the strong fit of the data set 
produced by clustering algorithm [1], [6], [7], [9].  
The first thing to start with is to review the well-
known external indexes: the Rand index [4], 
Adjusted Rand index [5], Jaccard index [1], and 
Folkes & Mallows index [3], which are based on 
counting the pair of points on which two points 
agree or disagree.  The Entropy index measures the 
quality of the cluster in each single class labels, 
which according to [1], entropy technique have also 
been defined as “variation of information” [2], 

among many others.  The Purity index measures the 
frequency of the most common labels into each 
cluster. 

VALIDATION INDEXES 

In this section, there is an overview of 
validation indexes for external criterion.  Refer to 
the Table 1 below; to see the notation meaning of 
each individual validity indices. 

Table 1 
Notation in Validity Indices 

Notation Meaning 
M Maximum Number of Pairs 
N Total Number of Points 
!!"  Number of elements in !!!  

partitions  !!!  clusters 
!!  Abstract and Key Terms 
!!  Body Text 
!!  Section Headings 
!!"  Section Sub-headings 
! Endnote 
!!  Equations 

Metric Based on Counting Pairs 

One of the approaches to evaluate metrics for 
clustering is considering statistics over pairs of 
items [2], [6], [7].  The most important concept 
criterion dealing with counting pairs of points, 
when comparing the clustering, is determining the 
points on which the two clustering agree or 
disagree. 

For example, imagine that a given set of n 
objects D = O!,… ,O! , suppose that  C =
C!,… , C!  (C is our clustering result) and 
P = P!,… , P!!  (P is our external criterion or 
partition).  Both represent two different partitions 
of the objects D (D is our data).  Having this in 
mind, we can create the contingency table or 
confusion matrix [10]; and [2] between our 
partition and the cluster (see Figure 3). 

Partition/Cluster !! !! … !! ′  Sums 

!! !!! !!" … !!!  !!. 
!! !!" !!! … !!!  !!. 
⋮ ⋮ ⋮  ⋮ ⋮ 
!!  !!! !!! … !!! ′  !!. 

Sums !.! !.! … !.!  !.. = ! 
Figure 3 

Confusion Matrix 

The counting pairs matrix is the overlapping 
between the pair of points that can only fall in less 



than one of four cases described below (see Figure 
4): SS is the number of pairs of items belonging to 
the same cluster and partition; SD is the number of 
pairs belonging to the same cluster and different 
partition; DS is the number of pairs belonging to 
different cluster and the same partition; DD is the 
number of pairs belonging to different cluster and 
partition. 

 P !′ 
C SS SD 
! ′ DS DD 

Figure 4 
Counting Pairs Matrix 

The four counts always satisfy M =   DD +
SD + DS + SS = n(n − 1)/2 (meaning M is the 
maximum number of all pairs and where n is the 
total number of points between C and P).  The 
quantities between SS & DD can be interpreted as 
agreement “good choices” and SD & DS as 
disagreements “bad choices”. 

Some of the measures to define similarity 
between counting pairs such as: 
• Rand Index:  The Rand index (see Equation 

(1)) or Rand measure (Equation (2)) [4] in 
statistics, and in particular in data clustering, is 
a measure of agreement between the partitions; 
which [11], recommended as “This measure 
appears to be one of the most popular 
alternatives for comparing partitions…”(p. 193 
– 194). 

!"#$  !"#$%   ! =    !!!!!
(!!!!"!!"!!!)

                      (1) 

! =    (!!!!!)
!

              (2) 

According to [4] the Rand index lies between 0 
and 1.  When the two partitions agree perfectly, the 
Rand index is 1.  The disadvantage of the Rand 
index is that the expected value of the Rand index 
of two random partitions does not take a constant 
value (say zero) [5]. 
• Adjusted Rand Index:  According to the Web 

page Wikipedia (2011), the Adjusted Rand 
index proposed by [11] is the corrected for 
chance version of the Rand index (see Equation 
(3)). 

!"# =   
!!"
! ! !!

!!
!!
!! / !

!!"

!
!

!!
!! ! !!

!! !
!!
!!

!!
!!

!
!

       (3) 

The Rand index is bounded by 1, and the value 
0 is taken when the index equals its expected value 
[5]. 
• Jaccard Index:  Another useful approach to 

measure the overlapping between partitions is 
the Jaccard index [1][5].  The Jaccard index 
may be expressed such as Equation (4): 

!"##"$%  !"#$%   ! =    !!
(!!!!"!!")

                       (4) 

Same as the Rand index, each given attribute of 
two objects, lies between 0 and 1. 
• Folkes and Mallows Index: [3] develop 

another method for comparing partitions.  On 
[11] they give a brief descriptions how this 
work.  Defined such as Equation (5). 

!" = !!
(!!!!")

∙ !!
(!!!!")

                        (5) 

Metrics Based on Entropy 

The Entropy index (Equation (6)) calculates 
the sum of the entropies of each cluster !!. 
Therefore, if the result consists of objects with only 
a single label, the entropy is 0.  This means that a 
perfect clustering solution is when the entropy is 0.  
However, if the clusters that contain documents 
from single class labels become more diverse, the 
entropy value will grow more redundancy.  The 
lower the entropy value, the better the clustering is. 

!"#$%&'  !"#$% =    !!
!
!!!

!!!                        (6) 

Evaluation by Set Matching 

The Purity index (Equation (7)) is very similar 
to the entropy index.  In order to calculate the 
purity of the cluster we have to calculate the purity 
!! in each cluster.  Then to calculate the overall 
purity index we use the weighted sum of the 
individual cluster purities. 

!"#$%&  !"#$% =   
!!
!
!!!

!!!           (7) 



RESULTS 

In this section it is shown an experimental 
testing using a flat clustering result example.  As 
shown in Table 2, computing validation indexes 
can take a long time to complete using only one 
computer to analyze millions of objects. Parallel or 
distributed computing takes advantage of these 
validation indexes, by arranging them to work 
together on the same problem, therefore reducing 
the time needed to obtain the evaluation solution.  

Almost all indexes that are based on the prior 
knowledge about the data (external criteria) can be 
described using the so-called confusion matrix, or 
association matrix or contingency table for the 
evaluation on counting pairs (see Table 2).  The 
confusion matrix [11] is a K×K! matrix, whose n!" 
elements is the number of points that overlaps the 
pairs of points in the given set of n objects 
D = O!,… ,O! .  Let n!. and n.! be the number of 
elements that are in whole data set using the next 
Equation (8) (see Figure 3). 

!!" = !! ∩ !!′                          (8) 

We used a data-set (see Figure 5).  This data-
set were first evaluated in sequential and then in 
parallel processing. 

 
Figure 5 
Data Set 

Sequential 

First, by using the given set of n objects 
D   O!,… ,O! , supposing that  C = C!,… , C!  and 
P = P!,… , P!′  represent the two partition from the 
objects in D, we can calculate the confusion matrix 
shown in Figure 3.  The confusion matrix will be 
5×5′, whose n!" elements are represented in Figure 
6. 

 
Partition/Cluster !! !! !! !! !! Sum 

!! 1 2 1 2 5 11 
!! 4 2 3 0 3 12 
!! 2 3 0 2 2 9 
!! 2 2 0 0 4 8 
!! 0 0 0 0 0 0 

Sum 9 9 4 4 14 n = 40 
Figure 6 

Confusion Matrix from the Data Set 

Then, thru computing the confusion matrix, 
now we can use the counting pairs matrix (see 
Figure 4).  As presented (Equation (9)) [5], [11] 
that SS + DD can be simplified to a linear 
transformation of: 

! !!"
!!,! =

!!.
!!

!.!
!!

!
!

=   
!!" !!"!!

!!,!        (9) 

With simple algebra, the counting pairs matrix 
can be calculated (see Figure 7): 

 P !! 
C !!"

!!,!  = 39   
!.!
2

!

−
!!"
2

!,!

= 136 

!! !!.
2

!

−
!!"
2

!,!
= 146 

!
2 = 459 

Figure 7 
Counting Pairs Matrix Results 

The maximum numbers of all pairs in our data 
set is M = 39 + 136 + 146 + 459 = 780  and the 
total number of points n = 40.  Now we can 
directly compute the external validity indexes 
defined in Table 1 to measure the degree of 
similarity between P and C.  Using the direct values 
from the counting pairs matrix we can calculate the 
Rand, Adjusted Rand, Jaccard, and Folekes & 
Mallows indexes (see Figure 8). 

Validation 
Indexes 

Results               
! 

Similarity 
0 ≤   ! ≤ 1 

Weak Strong 
1 R 0.6385  √ 
2 ARI 0.018098 √  
3 J 0.1215 √  
4 FM 0.2168 √  

Figure 8 
Validation Indexes Results Using the Figure 7 

 

 

 

 



Table 2 
External Indexes Constraints 

For the other two validity indexes presented in 
the Table 2, Entropy and Purity, we will use the 
confusion matrix (see Figure 9).  

Cluster !! !! !! !! !! Entropy Purity 
!! 1 2 1 2 5 2.04037 0.4545 
!! 4 2 3 0 3 1.95915 0.3333 
!! 2 3 0 2 2 1.97494 0.3333 
!! 2 2 0 0 4 1.5 0.5 
!! 0 0 0 0 0 0 0 

Total 1.95915 0.4 
Figure 9 

Entropy and Purity Calculation 

As we can see, with respect to the data set, the 
validity evaluation proves that we fail on having a 
strong fit in the data set.  In other words, the results 
show that our clustering ! posses a weak similarity 
with !. 

Parallel 

Task parallelism is a form of computation in 
which many task are divided to compute a 
calculation simultaneously distributed, operating 
with the principle that large scale of data-sets could 
be computed in small partitions, resulting with the 
same expected sequential result. 

The time complexity of large-scale data sets 
generally increases, and so with the cluster 
validation process that evaluates them.  The time 
complexity of sequential or parallel is not discussed 
in our research. 

First, let’s try to see if the counting pair’s 
matrix is possible in parallel, which is the key 
element of calculating most of the external indexes.  
Lets Imagine that we have the data-set of ! objects 
! = !!,… ,!!   that we discussed earlier, 
supposing that  ! = !!,… ,!!  and 
! = !!,… ,!!!  represent the two partition from 
the objects in !.  Then, imagine that the machine 
achieves to calculate the confusion matrix and then 
starts the partition of the matrix data set to the salve 
“tasks” (see Figure 10 and Equation (10)). 

 
Figure 10 

Parallelization of the Data Set 

!! =!
!!! !! + !! +⋯+ !!                     (10) 

Now, let’s expand the Equation (11) and we 
obtain: 

!!" !!"!!

!
=   

!!"! !!"!!!

!
+

!!"! !!"!!!

!
       (11) 

Thru the least simplification expression we can 
see that by the completing the square, a method 
derivate by the quadratic formula, is not currently 
possible the calculation of the counting pairs matrix 
in parallel (see Equation (12)). 

!!"! = !!"! + !!"!
!
         (12) 

Instead of using the counting pairs matrix, lets 
use the confusion matrix.  By inspection we can see 
that this method in parallel is easily done.  Since, 
the confusion matrix is a total summation of the 
clusters, satisfy the early equation discussed. 

First, the machine will create a partition of the 
data set. Then, is given to the slaves to calculate the 
small confusion matrix partition.  Finally, the slave 
return the results to the machine to create the total 
confusion matrix and continue with the sequential 
calculation earlier explain. 

Validation 
Indexes Notation Clustering 

Method O(*) 

1 Rand 
!! + !!

(!! + !" + !" + !!
 Flat ! !  

2 Adjusted 
Rand 

!!"
! − !!

!!
!!
!! / !

!!"

1
2

!!
!! + !!

!! −
!!
!!

!!
!!

!
!

 
Flat ! !  

3 Jaccard 
!!

(!! + !" + !")
 Flat ! !  

4 
Folkes    

and 
Mallows 

!!
(!! + !")

∙
!!

(!! + !")
 Flat ! !  

5 Entropy 

!!.
!
!!

!

!!!

;     !!

= !!"
!

!"#! !!"      
Flat ! !  

6 Purity 
!!.
!
!!

!

!!!

;     !! =
1
!!.
!"#! !!"  Flat ! !  



CONCLUSION 

The problem of determining the strong fit of 
large-scale data sets is an important issue for 
clustering processes and also challenging one.  In 
this work, a method to improve the complexity of 
the evaluation of large-scale data-sets have been 
presented, based on external criterion inspired in an 
information theoretic approach to assess the 
validity of the clustering solutions in parallel.   

The experiment carried out on a synthetic data 
set, using six external indexes; show that, when we 
create this method in parallel by theoretic the 
complexity drops, meaning that the validity 
evaluation will be faster. 

As it has also been defined, another issue 
beyond the scope of this work is the problem of 
evaluating large-scale hierarchical clustering 
results.  For future work, two possible approaches 
for validity methods were proposed to define a pair 
counting strategy that takes into account how close 
in the dendogram the points are, and to compute 
several measure for different flat results by 
‘cutting’ the dendogram at various levels, and 
report their average. 

Since, the hierarchical clustering is a structure 
exploration of the data that encompasses great 
further contributions to data-mining, information 
retrieval, among many others; still a need for 
developing quality measures that assess the quality 
of the hierarchical clustering. 
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