
Event Notification System

Reynaldo Burgos Torres

Master of Engineering in Computer Engineering

Prof. Othoniel Rodríguez, Ph.D.

Electrical and Computer Engineering & Computer Science Department

Polytechnic University of Puerto Rico

Abstract  Today’s enterprises have a huge

amount of automatic processes and systems

performing a huge amount of tasks, which are very

important to the business success and to support

normal operations. Having an Event Notification

System (ENS) where these events become available

for other systems consumption, end-users as email

notifications, and persisted for later analysis or

system audit, could improve the business and make

the business more productive. ENS is a middleware

system that enables other systems to post

notification messages for the user community or

other interested services regarding vApp

deployments, site outages, network connectivity

issues, test content management, and any other

later identified event of interest for the optimal

function of the team or operation. Also improves

business with providing notification faster so that

long time tasks can notify other processes or people

interested of whether the operation has been

completed or an intervention needs to be done. This

article covers the design and implementation of the

ENS.

Key Terms  Message Broker, Micro

Services, Publish-Subscribe.

INTRODUCTION

Event Notification System (ENS) is as

middleware system that enables other services to

post events for the user community or other

interested services regarding vApp deployments,

site outages, network connectivity issues, test

content management, and any other later identified

event of interest for the optimal function of the

team or operation that we need to notify. These

messages are persisted for later analysis or system

audit. The system also includes a message broker so

we can add consumers to react to the event

notifications. Some consumer’s examples could be

Graphical User Interface that want to show live

events to users, and or disconnected services

performing tasks based on these events.

The ENS is based on four main components

Event Notification Publisher (ENP), Message

Broker (MB), Event Notification Mailer (ENM),

and the Event Notification Logger (ENL). The ENP

component provides a REST API interface so that

any service or software component can publish

events. That way we provide a simple interface that

can be consumed by almost any language (e.g.

C++, Java, C#, Python) as all of these languages

provide support for REST API consumption.

The ENP is responsible for receiving the event

message, persisting it and deliver it to the MB. MB

component is responsible for receiving ENP

messages and provides interfaces for consumers to

receive the messages. ENM is a consumer to the

MB and is mainly responsible for sending an email

for those consumed message to the subscribed

users. ENL logs information about consumed and

acknowledged events. This component persist this

data so it can be later used for audit and event

traceability.

REQUIREMENTS SPECIFICATION

Based on the business needs, and stakeholders

discussion we have outline functional and

nonfunctional requirements to make sure we meet

all business needs.

Functional Requirements

 The service or software component shall be

able to publish an event notification using the

REST API.

 The event notification shall be persisted.

 The event notification shall be sent by email to

subscribed users.

 The event notification shall provide a

timestamp so we can know when the event

occurred.

 The event notification shall provide a specific

message of the event.

 The event notification shall provide

information regarding who initiated the event.

 The event notification shall provide

information regarding where the event

occurred.

 The event notification shall be routed into its

own topic or class so that message broker’s

consumers can listen to particular classes of

events they are interested in.

 The event email notification message should be

translated to four languages: English, Spanish,

Chinese Simplified, and Japanese.

Nonfunctional Requirements

 The system must be available 24/7.

 The system REST API must be accessed using

HTTPS.

 The MB must provide multiple protocols for

consumer such as OpenWire and STOMP.

 The system must process a high volume of

messages.

 The system must recover from failures.

 The system must retry to send email

notification if failures occurs when sending

email.

Use Cases

This section describes how the ENS should

work and describes the most important system’s

features. It also describes interaction between

system components: ENP, ENM, ENL, and the

MB. Each use case focuses on a specific scenario,

and describes the steps that are necessary to bring it

to successful completion [1]. We have used a

tabular approach to easily provide sufficient details

about these interactions and also provide

consistency between use cases. Here is an

explanation of the template used:

 Use Case Id (required) - each use case have a

use case id defined by UC-{number}

 Use Case Name (required) - each use case have

a name to easily identify it. Basically is the

operation’s name.

 Description (optional) – column is used to

describe the use case with more detailed

explanation.

 Preconditions (optional) – required state or

operations to be performed before use case.

 Actors (required) – entities involved in use

case.

 Normal Sequence (required) – list of ordered

steps to complete operation.

 Postconditions (optional) – required operations

to be performed after use case. Could be some

reset of state, etc.

 Exceptions (optional) – used for exceptions or

errors when executing normal sequence.

 Comments (optional) – used for general or

useful information.

Here are the most important use cases in the

ENS:

Table 1

UC-01 Publish an Event Notification

Description Service wants to publish an event.

Preconditions Service has connection to server

hosting REST API.

Actors Service, ENP, MB, Data Store

Normal

Sequence

1. Service prepare event with

required information.

2. Publish the message using REST

API.

3. Event notification is persisted.

4. Event notification is forwarded to

MB.

5. Service receives HTTP OK

response.

Postconditions N/A

Exceptions If Event Notification validation fails,

or cannot be persisted, ENP response

with a 4xx HTTP Status. Response of

5xx for any other server failure.

Comments N/A

Table 2

UC-02 Receive Email Notification

Description Subscribed end user to a particular

event receives an email event

notification.

Preconditions Event has reach MB. Users

previously subscribed to email

notifications.

Actors MB, ENM, ENL, End User,

Corporate SMTP.

Normal

Sequence

1. ENM consumes event notification

from MB.

2. ENL logs consumed message.

3. ENM prepares email message.

4. ENM sends email to users

interested on event using corporate

SMTP.

5. ENM acknowledge message to

MB.

6. ENL updates log entry as

acknowledged.

7. End user receives the email

message.

Postconditions N/A

Exceptions 1. ENM fails to send email. ENM

will retry to send email notification.

Comments Email event notification message

should be translated to: English,

Spanish, Chinese and Japanese.

Table 3

UC-03 Consume Event Notification from MB

Description Any Service can consume an event

directly from MB.

Preconditions Service is subscribed and listening to

an event.

Actors Service, MB, ENL

Normal

Sequence

1. Service Receive Event

Notification.

2. ENL logs consumed message.

3. Service Acknowledge Event

Notification.

4. ENL updates log entry as

acknowledged.

Postconditions N/A

Exceptions 1. Service does not receive Event

Notification due to a failure. Event

can be recover if using a durable

subscription.

Comments MB routes Event Notification so

consumers can subscribed to desired

topic.

Table 4

UC-04 Retrieve Historical Event Notifications

Description Persisted Event notification can be

retrieved for later analysis.

Preconditions REST API client has access to ENP.

Actors REST API client, ENP.

Normal

Sequence

1. REST API client execute HTTP

GET method to Event API.

2. ENP responds with JSON list

containing historical Event

Notifications.

Postconditions N/A

Exceptions N/A

Comments N/A

DESIGN SPECIFICATIONS

The ENS was implemented using the Micro

Services architecture and developed using the Java

Messaging Service (JMS). The JMS provides a

standard java API for creating, sending, receiving

and reading of messages [2]. In the modern cloud

architecture, applications are developed as smaller

independent blocks making it easier for developing,

debugging and or maintenance. Each service is

running on its own process and responsible for

running its own task. Each service communicates to

each other using the MB using Publish-Subscribe

pattern. This architectural pattern is widely used

today’s applications. Applications are loosely

coupled publisher or subscriber does not know

existence of the other. Publisher and Subscriber

only know how to either publish event messages to

MB or to consume. This pattern also enables event-

driven and asynchronous event notifications, while

improving performance, reliability and scalability.

ENM component – Linux service responsible

for consuming event messages and creating, and

sending notifications as emails. Ports and protocols

as follows:

 Ports – None

 Protocols – OpenWire, SMTP

ENP component – Linux service providing

REST API for event publishing and responsible for

routing and sending these event messages to the

Active MQ broker. ENP uses Tomcat embedded to

host REST API service. Port and protocols as

follows:

 Ports – 5003 (REST API)

 Protocols – OpenWire, HTTPS

ENL component – Active MQ plugin to log

consumed and acknowledged events. All events are

logged in the Data store for later audit.

MB component – ActiveMQ server instance

responsible for receiving messages from ENP and

provide these to the message consumers. The MB

instance uses ActiveMQ clustering feature so MB

clients can auto-reconnect to another broker in case

the MB goes down. The clients shall use the

failover: // protocol in order to handle MB cluster.

Ports and protocols as follows:

 Ports – 61616 (Listening Port), 8161 (Web

Console)

 Protocols – OpenWire, HTTPS

Figure 1

Overall System Architecture

DETAILED DESIGN SPECIFICATIONS

This section includes detailed design

specifications for the software components. We

have use a short descriptive paragraph and activity

diagrams to provide enough details for the software

component development.

ENM Design Specifications

ENM listens to the event notifications. Once

gets a new notification it prepares the email using

Message Type, and Message Sub-Type translates

the message to be sent to the user community. The

event is only sent to the users subscribe to the event

topic.

Figure 2

ENM Activity Diagram

ENP Design Specifications

ENP supports a REST API for other services to

post events for the user community or other

interested services regarding vApp deployment

events, site outages, network connectivity issues,

test content management. The events are stored in

the Data store API. ENP uses a dual index model to

store the events and then could be translated easily.

The first index defines the Message Type and the

second index defines the Message Sub-Type. Using

a dual index model allows us to dynamically add

new messages and co-locate them in the file w/o the

waste of having reserved blocks of pre-defined IDs

for specific purposes. The intent is to simplify

message management and reduce the chance of

accidental duplicate or have similar message

creation.

Figure 3

ENP Activity Diagram

ENL Design Specifications

The ENL intercepts all events being consumed

and logs it to the Data Store. Once event is

acknowledge it updates the event record in the Data

Store as acknowledged. This will enable us to do

audits and see what has been acknowledged and by

who.

Figure 4

ENL Activity Diagram

IMPLEMENTATION PLAN

This section outlines the plan for the software

implementation. ENM and ENP services were

developed using Spring Framework as the base

framework. Spring framework is one of the most

popular libraries today in the market for Web

Development, built under the Java language. We

also used other frameworks or libraries such as

Project Reactor that helped us managing an internal

queue for sending email notifications concurrently

without blocking the main thread responsible for

listening MB event messages. The ENL was

developed as an ActiveMQ plugin leveraging the

ActiveMQ plugin feature.

Also due to complexity and to improve

software maintainability we have used some object

oriented design patterns such as:

 Producer Consumer Pattern: used to manage

internal queue for sending email messages.

Message Listener acts as a producer. The

message listener puts received message into the

queue to be later processed. The mailer class

acts as a consumer. It dequeuers a message and

send it through email.

 Singleton Pattern: used for Email class and

Spring configuration classes.

 MVC Pattern: used for developing the REST

API.

TEST PLAN

 For ensuring the ENS works as designed and

meets customer’s requirements, we performed

verification and validation tests. For validating

system is working and built correctly we have

develop unit tests to perform automatic tests and

regression tests anytime we make changes to our

code. Unit tests were developed using JUnit, Spring

Boot Test and Mockito frameworks. For validating

the ENS we performed manual tests to ensure we

have built the right solution and validate we have

met the customer’s needs.

RESULTS

The ENS was successfully implemented and

deployed to the QA environment and it is planned

to be released in the incoming Program Increment.

All components have passed their Unit Tests and

their respective Acceptance Tests, after executing

these tests we have seen no issue within the tests

performed.

FUTURE WORK

Since the scope of this project was to develop

the base middleware infrastructure to be able to

send Event Notifications and notify end users with

emails and we also had a three month time

constraint, there are some future work identified

that will improve the system. Some of these

features are:

 Develop a system to create notification and

store them in the database. This will ensure that

there are no duplicates or similar Event

Notifications. Notifications should be first

proposed and then revised by a Subject Matter

Expert.

 Create a Dashboard User Interface to show

health of sites using HEALTH Event

Notifications.

 Create Reports engine to do extensive

audit/analysis of the Event Notifications.

Experts on statistics can look for trends on the

data and predict or improve business.

 System or GUI to audit and trace what

messages has been sent to consumers and

which ones has been acknowledge.

 Add other vehicles of notification instead of

just email notifications (e.g. WhatsApp,

Messenger, etc.). This will require to research

on business policies to make sure there is no

violation.

REFERENCES

[1] C. Horstman, “The Object-Oriented Design Process” in

Object-Oriented Design & Patterns, 2nd ed. NJ, USA:

B.S, 2006, ch. 2, pp. 48-49.

[2] Sun Microsystems, Inc. JavaTM Message Service

Specification, April 2002.

