
Validation of NMAP’s Network Behavior using Wireshark

Daniel Cruz Ramírez

Master of Engineering in Computer Engineering

Dr. Jeffrey Duffany

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  NMAP is used to actively scan

networks using different ping techniques. There is

not much information available on how NMAP

works besides its website. Although the program

states how it works, there is little validation of its

functionality. Wireshark, a network protocol

analyzer, was used to validate these features in a

test system environment: ping scans, OS detection,

including port scanning and version detection.

Among NMAP’s weaknesses, we find it relies on an

OS Database that should be updated regularly to be

able to detect new operating systems and that its

scans produce a large number of packets, which

might cause detection of the scan in a properly

protected network environment. NMAP’s OS

Database can also be used to simulate operating

systems for network scans, such as in a honeypot,

using a program called honeyd. Any scan in a

foreign network environment should be

corroborated with other tools, passively if possible.

Key Terms  NMAP, Ping Scan, Remote OS

Detection, Wireshark.

NMAP

NMAP ("Network Mapper") is a free and open

source (license) utility for network discovery and

security auditing. Many systems and network

administrators also find it useful for tasks such as

network inventory, managing service upgrade

schedules, and monitoring host or service uptime.

NMAP uses raw IP packets in novel ways to

determine what hosts are available on the network,

what services (application name and version) those

hosts are offering, what operating systems (and OS

versions) they are running, what type of packet

filters/firewalls are in use, and dozens of other

characteristics. It was designed to rapidly scan large

networks, but works fine against single hosts.

NMAP runs on all major computer operating

systems, and official binary packages are available

for Linux, Windows, and Mac OS X. In addition to

the classic command-line NMAP executable, the

NMAP suite includes an advanced GUI and results

viewer (ZeNMAP), a flexible data transfer,

redirection, and debugging tool (Ncat), a utility for

comparing scan results (Ndiff), and a packet

generation and response analysis tool (Nping) [1].

NMAP possesses the following ping scanning

techniques:

 TCP SYN

 TCP ACK

 UDP

 ICMP

 Ping sweep

 ARP

 Broadcast

WIRESHARK

Wireshark is the world’s foremost and widely-

used network protocol analyzer. It lets you see

what’s happening on your network at a microscopic

level and is the de facto (and often de jure) standard

across many commercial and non-profit enterprises,

government agencies, and educational institutions.

Wireshark development thrives thanks to the

volunteer contributions of networking experts

around the globe and is the continuation of a project

started by Gerald Combs in 1998 [2].

Test Setup for Ping Scanning Techniques

There is little information regarding how

NMAP works besides the documentation on

NMAP’s website. Although the program is open

source, no invasive study exists about how the

program performs and what information is sends

with each scan attempt.

For this purpose, we setup a test network for

this project which includes a router, a Dell Inspiron

5720 laptop running Ubuntu Mate 16.10 x64 with

Linux kernel 4.8.0.30-generic, an Internet Router,

and a Raspberry Pi 3 Model B, running Raspbian

Jessie Lite and Linux kernel 4.4.34-v7+. Both

operating systems updated as of December 12,

2016. There are no other network objects.

A Raspberry Pi is a credit card-sized computer

originally designed for education, inspired by the

1981 BBC Micro. The Raspberry Pi 3 is the third

generation Raspberry Pi. It has:

 A 1.2GHz 64-bit quad-core ARMv8 CPU

 802.11n Wireless LAN (not used in the project)

 Bluetooth 4.1

 Bluetooth Low Energy (BLE)

 1GB RAM

 4 USB ports

 40 GPIO pins

 Full HDMI port

 Ethernet port

o MAC Address - B8:27:EB:CF:6C:77

o IP Address – 10.0.0.100

 Combined 3.5mm audio jack and composite

video

 Camera interface (CSI)

 Display interface (DSI)

 Micro SD card slot

 VideoCore IV 3D graphics core [3]

The Dell Laptop’s specifications are:

 CPU: Intel Core i7-3632QM

 Graphics:

o Intel 3rd Gen Core Processor Graphics

Controller

o NVIDIA GF117M [GeForce

610M/710M/810M/820M / GT

620M/625M/630M/720M]

 Audio: Intel 7 Series/C210 Series Family High

Definition Audio Controller

 Network:

o Intel Centrino Wireless-N 2230 (disabled)

o Realtek RTL8101/2/6E PCI Express

Fast/Gigabit Ethernet controller

 MAC Address – 5C:F9:DD:4F:0C:56

 IP Address – 10.0.0.11

 RAM: 12GB DDR3 10600

All ping scanning techniques are done from the

Dell Laptop to the Raspberry Pi 3 Model B. To

minimize communication, the Dell Laptop has no

gateway or DNS information and, whenever

possible, there are no other programs running.

Both NMAP and Wireshark are run from the Dell

laptop. Although NMAP has a GUI (ZENMAP),

we have used the command line version only.

Wireshark is used to analyze NMAP’s output.

Figure 1

Test Network Setup

This project was started with NMAP version

6.40 and Wireshark version 2.2.3, distributed with

Ubuntu Mate 16.10. As it progressed, newer

NMAP versions came out and were tested. Finally,

we settled on NMAP version 7.31, compiled from

source.

For the OS detection scans, although we have

primarily used the TEST SETUP, we have also

tested several other systems, without any

modification to their LAN structure, to determine

NMAP’s efficiency.

TCP SYN Ping Scan: map -sP -PS <target>

For this type of ping scan, NMAP sends a TCP

SYN packet to port 80. If the port is closed, the host

responds with an RST packet. If the port is open,

the host responds with a TCP SYN/ACK packet

indicating that a connection can be established.

Afterwards, an RST packet is sent to reset this

connection [1].

For this scan, we expect to find a SYN/ACK

packet from the source ip to the destination ip.

TCP ACK Ping Scan: NMAP -sP -PA <target>

This type of scan can be used to detect hosts

that block SYN packets or ICMP echo requests, but

it will most likely be blocked by modern firewalls

that track connection states. NMAP sends an empty

TCP packet with the ACK flag set to port 80, if the

host is offline, it should not respond to this request,

if the host is online, it returns an RST packet, since

the connection does not exist. TCP ACK ping

scans need to run as a privileged user, otherwise a

system call connect() is used to send an empty TCP

SYN packet [1].

For this scan, we expect to find an ACK packet

to port 80 from the source IP to the destination IP.

UDP Ping Scans: NMAP -sP -PU <target>

UDP is a minimal message-oriented transport

layer protocol that is documented in RFC 768.

UDP provides no guarantees to the upper layer

protocol for message delivery and the UDP layer

retains no state of UDP messages once sent [4].

UDP ping scans have the advantage of being

capable of detecting systems behind firewalls with

strict TCP filtering leaving the UDP traffic

forgotten. NMAP is one of a handful of programs

capable of doing a UDP ping scan. NMAP sends

an empty UDP packet to ports 31 and 338. If the

host is responding, it should return an ICMP port

unreachable error. If the host is offline, various

ICMP error messages could be returned [1].

For this type of scan, we expect to find a UDP

broadcast packet from the source machine,

expecting a response from the target machine.

ICMP Ping Scans: NMAP -sP -PE <target>

ICMP messages are typically used for

diagnostic or control purposes or generated in

response to errors in IP operations (as specified in

RFC 1122). ICMP errors are directed to the source

IP address of the originating packet. ICMP ping

scans use these types of packets to determine if a

host is active or not [1].

For this type of scan, we expect to find ICMP

ping responses from the target to the source of the

scan, along with the time for the ping to return.

Ping Sweeps: NMAP -sP -PO <target>

This technique tries sending different packets

using different IP protocols, hoping to get a

response indicating that a host is online. By

default, this ping scan will use the protocols IGMP,

IP-in-IP, and ICMP to try to obtain a response that

will indicate that the host is online. Using --packet-

trace will show more details of what happened

behind the curtains [1].

For this type of scan, we expect to find a ping

responses from the target to the source of the scan,

along with the time for the ping to return.

ARP Ping Scans: NMAP -sP -PR <target>

IPv4 devices must respond to ARP packets

even if the targeted device uses firewalls or other

stealthy methods to hide from ICMP or UDP packet

based ping tools. ARP, a non-routable protocol,

operates at OSI Layer 2. The IPv4 address of the

device must be known. In this scan, ARP requests

are sent to the target, if the host responds with an

ARP reply, it’s online [1].

For this type of scan, we expect to find an arp

responses from the target to the source of the scan.

Broadcast Pings: NMAP -script broadcast-ping

<target>

Broadcast pings send ICMP echo requests to

the local broadcast address, and then waiting for

hosts to reply with an ICMP echo reply. This a nice

way of discovering hosts in a network without

sending probes to the other hosts [1].

For this type of scan, we expect to find ICMP

echo requests throughout the local broadcast

address, along with ICMP echo replies.

Figure 2

Wireshark TCP SYN Ping Scan Results

Figure 3

Wireshark TCP ACK Ping Scan Results

Figure 4

Wireshark UDP Ping Scan Results

Figure 5

Wireshark ICMP Ping Scan Results

Figure 6

Wireshark Ping Sweep Scan Results

Figure 7

Wireshark ARP Ping Scan Results

Figure 8

Broadcast Ping Scan Results

OS Detection using NMAP: NMAP -O -v

<target>

NMAP OS fingerprinting works by sending up

to 16 TCP, UDP, and ICMP probes to known open

and closed ports of the target machine. These

probes are specially designed to exploit various

ambiguities in the standard protocol RFCs. Then

NMAP listens for responses. Dozens of attributes in

those responses are analyzed and combined to

generate a fingerprint. Every probe packet is

tracked and resent at least once if there is no

response. All of the packets are IPv4 with a random

IP ID value. Probes to an open TCP port are

skipped if no such port has been found. For closed

TCP or UDP ports, NMAP will first check if such a

port has been found. If not, NMAP will just pick a

port at random and hope for the best [5].

NMAP then compares the results to its OS

database and prints out the OS details if there is a

match. Each fingerprint includes a freeform textual

description of the OS, and a classification which

provides the vendor name, underlying OS, OS

generation, and device type [6].

OS detection enables some other tests which

make use of information that is gathered anyway

during the process:

 Device type – if several device types are

shown, they will be separated with the pipe

symbol.

 Running - shows the OS Family and OS

generation if available.

 OS CPE - shows a Common Platform

Enumeration (CPE) representation of the

operating system when available.

 OS details - gives the detailed description for

each fingerprint that matches.

Uptime guess.

 Network Distance – how many routers are

between it and a target host? The distance is

zero when you are scanning localhost, and one

for a machine on the same network segment.

Each additional router on the path adds one to

the hop count.

 TCP Sequence Prediction - Systems with poor

TCP initial sequence number generation are

vulnerable to blind TCP spoofing attacks. In

other words, you can make a full connection to

those systems and send (but not receive) data

while spoofing a different IP address.

 IP ID sequence generation - This field

describes the ID generation algorithm that

NMAP was able to discern [6].

Interrogating open ports for clues is another

effective approach for OS fingerprinting. Some

applications, such as Microsoft IIS, only run on a

single platform, while many other apps divulge

their platform in overly verbose banner messages.

Adding the -sV option enables NMAP version

detection, which is trained to look for these clues,

among others [6].

TCP/IP fingerprinting will identify the proxy,

while version scanning will generally detect the

server running the proxied application. Even when

no proxying or port forwarding is involved, using

both techniques is beneficial. If they come out the

same, that makes the results more credible. If they

come out wildly different, further investigation

must determine what is going on before relying on

either. Since OS and version detection go together

so well, the -A option enables them both [6].

When NMAP performs OS detection against a

target and fails to find a perfect match, it usually

repeats the attempt: by default, it tries five times if

conditions are favorable for OS fingerprint

submission, and twice when conditions aren't so

good [6].

Besides the OS Database, NMAP also has a

MAC Address database which maps MAC address

prefixes to vendor names. Ethernet devices are each

programmed with a unique 48-bit identifier known

as a MAC address. This address is placed in

Ethernet headers to identify which machine on a

local network sent a packet, and which machine the

packet is destined for. To assure that MAC

addresses are unique in a world with thousands of

vendors, the IEEE assigns an Organizationally

Unique Identifier (OUI) to each company

manufacturing Ethernet devices. The company must

use its own OUI for the first three bytes of MAC

addresses for equipment it produces. It can choose

the remaining three bytes however it wishes, as

long as they are unique. NMAP can determine the

MAC address of hosts on a local Ethernet LAN by

reading the headers off the wire. It uses this

database to look up and report the manufacturer

name based on the OUI. This can be useful for

roughly identifying the type of machine being dealt

with [1].

Version Detection using NMAP: NMAP -O -sV

<target>

Version detection is one of the most popular

features of NMAP. Knowing the exact version of a

service is highly valuable for penetration testers

who use this service to look for security

vulnerabilities, and for system administrators who

wish to monitor their networks for any

unauthorized changes. Fingerprinting a service may

also reveal additional information about a target,

such as available modules and specific protocol

information [1].

NMAP has a special flag to activate aggressive

detection, -A. Aggressive mode enables OS

detection (-O), version detection (-sV), script

scanning (-sC), and traceroute (--traceroute). This

mode sends a lot more probes and it is more likely

to be detected, but provides a lot of valuable host

information [1].

Results ultimately come from the target

machine itself. Numerous reconnaissance methods

to explore a network should be used to confirm the

information needed, you should not trust only one

of them [1].

OS Detection using a Simple Ping

Below are some typical initial TTL values and

window sizes of common operating systems:

Table 1
 TTL and TCP Window Size for Different Operating Systems

[7]

Operating System (OS) IP Initial

TTL
TCP window

size

Linux (kernel 2.4 and

2.6)
64 5840

Google's Android and

Chrome OS
64 5720

FreeBSD 64 65535

Windows XP 128 65535

Windows 7, Vista and

Server 2008
128 8192

Cisco Router (IOS 12.4) 255 4128

MacOS/MacTCP X

(10.5.6)
64

In Windows Vista and 2008 server, Microsoft

introduced a new TCP/IP stack with a number of

improvements. It also includes a concept called

TCP Window "Auto-Tuning" that's been used in

Linux for years [8].

One reason for why the TTL and window size

values varies between different OS's is because the

RFC's for TCP and IP do not require

implementations to use any particular default value

for these fields. There is, however, a

recommendation in RFC 1700 saying: “The current

recommended default time to live (TTL) for the

Internet Protocol (IP) is 64.” This recommendation

is obviously not followed in many IP

implementations [7].

Basically, from a simple ping, if ttl=64, the

system pinged is Linux/Unix-based; else if ttl=128,

the system pinged is Microsoft based; else if

ttl=255, the system pinged is CISCO based.

Current Apple Operating Systems are based on

Unix. [9]

OS Detection on Project System

OS Detection of the Raspberry Pi 3 failed with

NMAP version 6.40. I believe this to be because

the shipping version of NMAP in Ubuntu Mate

16.10 was released on July 30, 2013 [1], before the

introduction of the Raspberry Pi 3 (February 29,

2016) [3].

With version 7.30 (released on September 29,

2016) [1], however, OS Detection of the Raspberry

Pi 3 takes about 15 seconds. It correctly identifies

the operating system as a Linux 3.2 – 4.4. It does

this with a combination of several methods: port

scanning, arp ping response time, and MAC

Address identification. In this case, since

Raspberry Pis only run either Linux or Windows 10

IoT Core [3], the program uses the open ports and

the ping response to correctly identify the operating

system.

NMAP Output:

Starting NMAP 7.31 (https://NMAP.org) at

2017-01-16 13:43 AST

NMAP scan report for 10.0.0.100

Host is up (0.0044s latency).

Not shown: 998 closed ports

PORT STATE SERVICE VERSION

53/tcp open domain

MAC Address: B8:27:EB:CF:6C:77

(Raspberry Pi Foundation)

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3

cpe:/o:linux:linux_kernel:4

OS details: Linux 3.2 - 4.4

Network Distance: 1 hop

OS Detection on Other Systems

NMAP version 7.31 was tested on several

systems, identifying them correctly: Windows

2003 R2, Windows 2008 R2, Windows 10

Professional, Windows 7 Professional, Linux kernel

XXX, among others. The only time NMAP failed

was against a Windows 2016 Data Center Edition

Virtual Machine, in which it guesses as being:

Microsoft Windows Server 2012 or Windows

Server 2012 R2 (93%), Microsoft Windows Server

2012 R2 (88%), Microsoft Windows 10 build

10586 - 14393 (87%), Microsoft Windows 7

Professional (87%), Microsoft Windows Phone 7.5

or 8.0 (86%), Microsoft Windows 10 build 10586

(86%), Microsoft Windows Server 2008 R2 or

Windows 8.1 (86%), Microsoft Windows 7

Professional or Windows 8 (86%), Microsoft

Windows Vista SP0 or SP1, Windows Server 2008

SP1, or Windows 7 (86%), Microsoft Windows

Vista SP2, Windows 7 SP1, or Windows Server

2008 (86%). Since it detects it as both Windows 10

and Windows Server 2012, you could extrapolate

that the system is the Server version of Windows

10. Windows Server 2016 was released on

September 26, 2016.

If the conditions are not ideal, NMAP will not

detect correctly the operating system. We added a

Windows 10 system into out test setup. If we setup

the LAN connection as private, NMAP version 7.31

detected the correct operating system. If the LAN

connection was setup as Public (affecting the

firewall), NMAP version 7.31 was unable to detect

the operating system correctly and gave us the

following message and the end of the scan:

“Warning: OSScan results may be unreliable

because we could not find at least 1 open and 1

closed port.

Aggressive OS guesses: Microsoft Windows

8.1 R1 (92%), Microsoft Windows Phone 7.5 or 8.0

(92%), Microsoft Windows Server 2008 or 2008

Beta 3 (92%), Microsoft Windows Server 2008 R2

or Windows 8.1 (92%), Microsoft Windows 7

Professional or Windows 8 (92%), Microsoft

Windows Vista SP0 or SP1, Windows Server 2008

SP1, or Windows 7 (92%), Microsoft Windows

Vista SP2, Windows 7 SP1, or Windows Server

2008 (92%), Microsoft Windows Embedded

Standard 7 (92%), Microsoft Windows 7 (90%),

Microsoft Windows Server 2008 SP1 (89%)

No exact OS matches for host (test conditions

non-ideal).”

NMAP’s OS Database must be continually

updated to be able to detect new systems released.

This can be done by downloading the database

directly or recompiling from the sources from the

project’s Github Page [10].

 Honeyd & Honeypots

NMAP’s OS database can be used with other

purposes, such as creating virtual hosts on a

network with other programs (a honeypot), such as

HONEYD.

Honeyd is a small daemon that creates virtual

hosts on a network. The hosts can be configured to

run arbitrary services, and their personality can be

adapted so that they appear to be running certain

operating systems. Honeyd enables a single host to

claim multiple addresses. Honeyd improves cyber

security by providing mechanisms for threat

detection and assessment. It also deters adversaries

by hiding real systems in the middle of virtual

systems. Honeyd can mimic several operating

systems within a LAN from reading a NMAP

fingerprint file. The configured personality is the

operating system that NMAP will return.

Personalities can be annotated to determine if they

allow FIN-scans for open ports or to select the

preference in which they reassemble fragmented IP

packets [11].

Figure 9

Test System Detection Start

Figure 10

Test System Detection Stop

A honeypot is a closely monitored computing

resource intended to be probed, attacked, or

compromised. The value of a honeypot is

determined by the information that we can obtain

from it. Monitoring the data that enters and leaves a

honeypot allows us to gather information that is not

available to Network Intrusion Detection Systems

[11].

We downloaded the honeyd version 1.6d

source from its github repository [12] and compiled

it in the Raspberry Pi 3 of our test system setup.

We were able to successfully create virtual hosts

with services on our test network as follows:

 An HP Microsoft Windows 10 with IP address

10.0.0.14 and ports 139, 445 (File sharing),

137 (netbios), and 112 open

 An Intel Apple macOS 10.12 (Sierra) (Darwin

16.0.0) with IP address 10.0.0.15 and ports 21

(FTP) and 23 (TELNET) open

 A Dell Linux Computer with IP address

10.0.0.16 and ports 22 (SSH), 23 (TELNET),

56 (DNS), and 80 (HTTP) open

 A CISCO OpenWRT Router with IP address

10.0.0.1 and ports 22 (SSH) and 23 (TELNET)

open.

These hosts were created by adding the

corresponding signatures from the NMAP database

into the database used by HONEYD. We were able

to fool NMAP into identifying these virtual hosts

systems as real systems on a network, since it’s

using the same information that NMAP uses to

identify them.

CONCLUSIONS

NMAP does its job as stated. It produces a lot

of packets on some scans, so it may be detectable in

a network setting if the looking for it. Some of its

scan methods are unique and, if it is not being run

by an authorized party, may be attributed to a

hacking attempt. Its various ping methods go

beyond the standard ping in an attempt to get a

response from the target independent of network

conditions.

Its OS detection database is extremely useful

for scans and also for other applications such as

honeyd, which might be used to confuse would-be

infiltrators by using it to create the illusion of other

computer systems in an internal LAN. However,

newer systems are not identified until NMAP

updates its database. You might be able to

extrapolate the result from a new system if you

have some knowledge it is being used and from

discrepancies in the NMAP results.

Also, conditions must be ideal for OS detection

to work correctly, or else the program might guess

with whatever information it received from the

target.

Either way, if running NMAP within an

unknown environment, it is always good practice to

run similar tools to corroborate the information

NMAP presented.

NMAP has to send packets at the potential

target to get a read on their attributes, risking

detection. Whenever packets are sent to a target,

your IP address is attached (unless you spoof your

IP address, but then you wouldn't get a response

from the target). In the interest of remaining as

stealthy as possible, you want to be able to

determine the operating system of a potential target

without touching it. This can be accomplished with

other programs like p0f, which uses attributes of the

packets on the wire to determine the operating

system that sent the packet. Packets are captured

with a tool like Wireshark and then analyzed with a

passive tool, such as P0F. P0F passively listens to

the network traffic without creating any extra

packets. It determines the operating system of the

remote host by analyzing certain fields in the

captured packets [13]. Due to this passive analysis,

the remote system will not be able to detect the

packet capture, such as p0f for example [14].

However, the reliability of passive recon is lower

than active recon [15].

Passive fingerprinting could also be used to

sniff TCP/IP ports, rather than generating network

traffic by sending packets to them. Hence, it’s a

more effective way of avoiding detection or being

stopped by a firewall [16].

REFERENCES

[1] NMAP Website [Online]. Available: http://www.nmap.org.

[Accessed: Feb. 1, 2017].

[2] Wireshark Website. Available: http://www.wireshark.org.

[Online, accessed: Feb. 1, 2017].

[3] Raspberry Pi Website. [Online]. Available:

https://www.raspberrypi.org. [Accessed: Feb. 1, 2016].

[4] Wikipedia. 2017, January 13, User Datagram Protocol.

[Online]. Available: https://en.wikipedia.org/wiki/User_

Datagram_Protocol. [Accessed: Feb. 1, 2016].

[5] Gordon “Fyodor” Lyon. (2011). “NMAP OS

Fingerprinting” in The Official Nmap Project Guide to

Network Discovery and Security Scanning, Free Edition

[Online]. Available: https://nmap.org/book/osdetect-

methods.html. [Accessed: Feb. 1, 2016].

[6] Gordon “Fyodor” Lyon. (2011). “NMAP OS Detect” in

The Official Nmap Project Guide to Network Discovery

and Security Scanning, Free Edition [Online]. Available:

https://nmap.org/book/osdetect.html. [Accessed: Feb. 1,

2016].

[7] Erick Hjelmvik. (2011, November 5). Passive OS

Fingerprinting. [Online]. Available:

http://www.netresec.com/?page=Blog&month=2011-

11&post=Passive-OS-Fingerprinting. [Accessed: Feb. 1,

2016].

[8] Philip. (2009, December 13). The TCP Windows, Latency,

and the Bandwidth Delay product. [Online]. Available:

http://www.speedguide.net/articles/the-tcp-window-

latency-and-the-bandwidth-delay-2678. [Accessed: Feb. 1,

2016].

[9] Wikipedia. (2017, February 1). Macinstosh Operating

Systems. [Online]. Available: https://en.wikipedia.org/

wiki/Macintosh_operating_systems. [Accessed: Feb. 1,

2016].

[10] NMAP Github Repository. [Online]. Available:

https://github.com/nmap/nmap. [Accessed: Feb. 1, 2016].

[11] Honeyd.org Webpage. [Online]. Available:

http://www.honeyd.org. [Accessed: Feb. 1, 2016].

[12] Honeyd Github Page. [Online]. Available:

https://github.com/DataSoft/Honeyd/. [Accessed: Feb. 1,

2016].

[13] M. Zalewski. (2012-2014). Pof Website, V3 [Online].

Available: http://lcamtuf.coredump.cx/p0f3/. [Accessed:

Feb. 1, 2016].

[14] S. Pillai. (2012, December 29). Fingerprinting-Detect

Remote Operating Systems [Online]. Available:

http://www.slashroot.in/fingerprinting-detect-remote-

operating-system. [Accessed: Feb. 1, 2016].

[15] OccupytheWeb. (2014, February 27). How to conduct

Passive OS Fingerprinting with Pof [Online]. Available:

http://null-byte.wonderhowto.com/how-to/hack-like-pro-

conduct-passive-os-fingerprinting-with-p0f-0151191/.

[Accessed: Feb. 1, 2016].

[16] The InfoSec Institute. (2014, June 19). What You Must

Know About OS Fingerptinting [Online]. Available:

http://resources.infosecinstitute.com/must-know-os-

fingerprinting/. [Accessed: Feb. 1, 2016].

