
Centralized Device Independent Software Architecture for the Internet of Things

Luis Ruiz Linares

Master of Engineering in Computer Engineering

Yahya M. Masalmah, PhD.

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  The Internet of Things (IoT) is growing

stronger every year, as developers we need to get

ready for the challenges ahead of us. It is getting

hard for software developers to have a starting point

for implementing new embedded systems and test

them on existing IoT platforms. A software platform

which is easy to understand, with scalability and

security in mind is needed. This paper provides a

centralized device independent software platform as

a possible solution for developers that need a

starting point that has a simple to understand

architecture. Since security is also a key factor in

IoT, this platform is secured by implementing public

key encryption using Secure Socket Layer (SSL).

This proposed software platform has very familiar

components to start developing and testing

communication with custom or vendor specific

embedded devices for the IoT.

Key Terms  Centralized Architecture, Device

Independent, IoT, SSL.

INTRODUCTION & MOTIVATION

The Internet of Things have been rapidly

advancing in the past few years, it can be defined as

a movement of global devices connected to a

network to exchange data, monitor and control

environment status. Cisco states that there will be

more than 50 Billion devices connected to the

internet by 2020 [1] shown in figure 1.

Figure 1

Cisco The Internet of Things was “Born” Between 2008 and

2009

A recent publication [2], states that IoT will

grow to 26 Billion devices installed by 2020 and that

will generate incremental revenues by $300 billion

mostly in services and sales. Many devices are being

developed either for future revenues or to solve a

specific problem in the world such as environment

changes monitoring, reducing traffic and CO2

emissions by finding the closest parking to a driver,

helping monitor patients pacemakers and send data

alerts to hospitals and reduce mortality incidents in

medical patients. As these, there are many other

motivations to be involved in developing software

applications and embedded hardware devices for the

IoT. But how can we contribute since the first

question is Where do I start? What can I use to

develop my application? How do I integrate a device

to a system platform?

Developers are in need of a framework which is

open source, with ease of scalability and highly

customizable. This IoT framework is built for

developers interested in learning ways to integrate a

variety of devices to the internet. It provides a secure

way to transmit data to their local servers without a

third party services. The developer can start

designing drivers for integrating new things without

investing time and money in backend components

such as database design, SSL server, message and

command processing. Nevertheless, the developer

should have basic knowledge of Java and Mobile

application development at least.

LITERATURE REVIEW

There are many areas that are currently in need

of connecting devices (figure 2) to the internet today

such as [3]:

 Wearable Electronics

 Connected Homes

 Connected Cars

 Connected Cities

 Industrial Internet

 Transportation

 Healthcare

 Oil & Gas Industry

These are few examples of areas where IoT can

be integrated using software frameworks today. This

paper examines also existing solutions that may be

applied to these areas to solve a problem.

Figure 2

Goldman Sachs The Internet of Things Landscape

IoT Software Frameworks

IoT frameworks provide tools for software and

hardware integration such as communication

standards, data security, data storage and

visualization. The framework should be scalable

and performance is a big concern because of

simultaneous device connections to the main

infrastructure. There are many software frameworks

being used for this purpose today such as:

 Thread Group [4] – provides a framework that

makes use of IETF and IEEE wireless standards.

 Eclipse IoT Project [5] – provides open source

implementations for IoT communication

protocols such as MQTT CoAP, OMA-DM and

OMA LWM2M.

 IoTivity [6] – an open source development

framework based on Linux. Has Bluetooth

integration, supports Belkin WeMo devices and

Philips Hue Bulb. Also provides android mobile

application support.

 Thingworx [7] – is a closed source IoT

framework for enterprises seeking to develope

scalable IoT infrastructures with secure

communication standards and dashboards to

analyze and display information.

IoT Hardware Components

Another important aspect for the internet of

things is hardware components. There are many

hardware solutions in the market that provide IoT

gateways, temperature sensors, power switches,

security cameras and RF sensors, smart watches,

washer/drier machines, etc. Developers of the IoT

that want to start developing using vendor specific

hardware can do it using an existing device. But for

those that are interested in creating IoT devices from

bottom up, there are many alternatives such as:

 Raspberry Pi [8] – Embedded development

credit card size hardware solution with a variety

of features that provide alternatives such as

GPIOs, camera ports usb ports, low power

consumption, dual or quad core ARM

processors. Many operating system supports

such as Raspian, Arch Linux, OpenElec, Pidora,

OpenWrt, Kali Linux and Windows 10

Embedded.

 Beaglebone [9] – Embedded development credit

card size hardware solution with variety of

features such as pin headers, dual core ARM

processor, ethernet, micro sd card storage

support and 1 x USB port.

 Arduino Yun [10] – a microcontroller credit

card size hardware solution powered by Linux

and Atheros based processor. It has Ethernet and

WiFi support as well as USB-A port micro sd

card slot and 20 digital input/output pins.

IoT Software Architectures

There are some proposed solutions to overcome

the interoperability between devices, software and

communication systems. Well-designed system

architecture is key for the success of these

interactions. A recent research proposed a

Distributed Internet-like Architecture (DIAT) [11].

It proposed a smart control and actuation of devices

that will overcome most obstacles in the process of

large expansion of the IoT. DIAT is a layered and

distributed architecture supporting Automation,

Intelligence, Dynamicity and zero configurations.

Bosch IoT Suite [12] provides a centralized

device independent closed source software platform

where the end user interacts with the platform by

means of mobile, web or desktop applications

(figure 3). Devices are controlled from the central

application services at the servers. Application

developers have different tools to interact with their

platform such as API’s to interact with the services

and end devices, built-in security and high degree of

modularization.

Figure 3

Bosch IoT Suite Software Platform

Bosch’s Monaco 3.0 is a “project where they

tackled challenges such as city dense population and

narrow road network, which led to traffic jams and

frustrating delays” as in [12]. Their main focus was

to minimize the traffic jams and reduce CO2

emissions by using the city’s parking garages as a

network and an App provides the driver the nearest

parking space.

Just as these software platforms there are many

others being currently in execution for year these are

a few examples of how developers can contribute to

the internet of things. But since most of these

software platforms are protected by proprietary

software structures and patents, developers won’t be

able to modify or tinker with the platform even if

they can afford purchasing their services. Therefore

the following paper sections describe our open

source centralized device independent software

architecture for developers in the internet of things.

METHODOLOGY

 The approach to a possible solution the system

architecture will be described for each of the main

architectural components. The main components are

the Mobile Application, the Message Processing

Servers and the Device Integration. Each section is

easy to customize and where implemented with

scalability in mind. Each system architecture

component is described in the following sections.

System Architecture

The main components of this proposed

architecture are the mobile application Layer, the

Message Processing servers Layer and the Device

integration layer. Figure 4 is a pictographic

description of the system architecture main

components. The end user will interact with the

mobile application. In this case we developed this

component using an Android smartphone. The user

will be able to select a device of choice to send

device specific commands already implemented into

the application. The command message is sent over

an encrypted channel to the main connection broker

server. The Message broker then processes the

request, in case of the message be a device command

it forwards the command for processing to the

command broker. At this point the command is

routed to the device and the command broker should

receive an acknowledgement from the device after a

successful command execution.

The command broker determines which

communication protocol to use and where and who

is the recipient device in the network to send the

command for execution. If no acknowledgement is

sent back from the device after a few seconds the

command broker then sends back a negative

command status. The raspberry pi plays the role of

providing device drivers for communication with the

vendor specific devices or to provide custom device

communication with GPIO headers, Bluetooth or

other communication technologies.

The raspberry pi runs a python UDP server

which provides the command/device execution

routing at the device integration layer. It is assumed

that the device will be in a secure network behind a

firewall or secure subnet. By means of an API called

Ouimeaux developed in python [13], we are able to

communicate command messages to be executed by

Belkin Wemo devices such as Light Switch and

Insight Switch [14]. The Wemo Server component

provides an interface with Wemo devices using an

Ouimeaux python class for command execution.

Figure 4

IOT Framework System Architecture

Mobile Application

The mobile application was developed using

android-studio installed in Ubuntu Linux 14.04.3

LTS and a Samsung Note Edge smartphone device

with Android Lollipop 5.0.1. The application has a

primary activity screen (figure 5) which provides the

device list using a ListView design. At startup the

device list is collected from a SQLite database. The

secondary activity screen is displayed after a device

from the primary screen is selected by the user

(figure 6). Then the user may be able to select the

desired command to send to the server for the

selected device (figure 7). The command message is

sent to the server by means of Java SSL client

developed for the android application. The SSL

client establishes a secure link between the

application and server by means of public key

cryptography. The SSL client uses java ssl socket

programming API integrated with java keystores

(JKS) for storing the server public key located at the

android device. The server public key was created

using OpenSSL, an Open Source toolkit for

implementing Transport Layer Security and Secure

Socket Layer (SSL) protocols. This toolkit has a

terminal command interface to create private and

public keys for public key cryptography.

Figure 5

IoT Framework Mobile Application Device Selection

Figure 6

IoT Framework Mobile Application Command Selection

Figure 7

IoT Framework Mobile Application Command Selection

Power On

Connection Broker

The Connection Broker was implemented using

Java Runnable Thread package. The Connection

Broker has the role of establishing a secure

communication channel between the mobile

application and the devices’ local network. This

feature is provided by means of a Secure Socket

Layer Java language server. The mobile application

must have a valid public key installed generated

from the servers private key. The server then extracts

the message from the communication channel and

creates a Message object. The message object is then

added to the Message Broker input Queue and passes

the client stream channel to the message broker. At

this point a secure communication channel is already

established and the server can receive commands

and send responses to the mobile application client.

A fragment of the SSL server socket developed in

android is shown in figure 8 below.

Figure 8

Connection Broker SSL Android Socket Code Fragment

Message Broker

The Message Broker server has the role of

identifying the message sent from the mobile

application. The main requests are defined as

follows:

1. Device List – sends back a string containing the

list devices to the mobile application.

2. Command List- sends back a string containing

the list commands to the mobile application.

3. Device Command Status List – sends a list of a

relation between the devices and commands

associated with the device and the status of that

command.

4. Device Status Command – processes and

execute a command to a device and sets the

required status.

This broker is constantly listening to the queue

for arrival of messages from the mobile application.

It filters the requests using the above specified

request commands, responses to the mobile

application are sent using the client ssl socket buffer

output stream. It may also query the Postgresql

database for the desired data requested by the mobile

application. If the message is in fact a device

command, a Command object is added to the

Command Broker Queue for processing.

Communication console output sample is shown

below on figure 9.

Figure 9

Message Broker Mobile Application Communication

WeMo Server

The Wemo Server is developed on python using

UDP server socket to listen to command messages.

A WeMo class was implemented using an API called

Ouimeaux [13]. Ouimeaux is a python API for

Belkin WeMo [14] devices that can be installed

easily on any Linux OS distribution. The WeMo

Server filters the message and sends the command to

the correct WeMo device. In this case the WeMo

devices used for this purpose have mostly two main

commands either On or Off shown in the python

class fragment code in figure 10. The server sends

back a confirmation message to the Command server

back to the mobile application. The mobile

application should be able to update the status of the

command for the respective device in the SQLite

database. The WeMo server and the WeMo device

class can be modified to integrate more WeMo

devices easily. The developer only needs to have a

python working knowledge and using the previous

command structures as example can easily add new

functionalities to this python class.

Figure 10

WeMo Server Python Class Code Fragment

Device Command Database

The Device Command Database component

was developed in Postgresql engine. This is one of

the best open source database engine with highest

performance and with most support freely available

for developers. The main role of the database is to

store information of all the devices. Since commands

may be the same across many devices, a command

table is independent of the device table. This table

contains unique device names, therefore naming

convention is key for the system to work properly.

The device/command table contains a relation

between the device and command, this table relates

the devices with their respective commands and their

status. Each time the mobile application sends a new

command the table is updated with the new status for

the specific device.

CONCLUSIONS & FUTURE WORK

The framework has been proven to work with a

single client application connected to the main

Connection broker server. The system is capable of

securely sending command messages to be executed

by the WeMo server in this case, which in turn

switches on or off an Insight switch of Light Switch

depending of which is selected. The platform is also

able to integrate new devices by adding more

communication protocols at the command server.

The developer may be able to code additional

independent servers to send messages to custom

embedded devices or vendor specific products.

This architecture outperforms the official

Belkin WeMo application but has less features that

the brand provided with the WeMo device and freely

available from the android store. There are many

IOT framework solutions already working as

enterprise solutions and could be a disadvantage

from the standpoint of cost, time and development

resources. This architecture could have the potential

of being a real product after more features are added

and more devices are integrated from other brands.

The architecture should be scaled to accept

more than one client, therefore it is needed a

modification to convert the connection broker,

message broker and command broker servers from

single tenant to a multitenant architecture.

Also development of more API’s or drivers is

needed to support more IoT devices. Depending of

the communication standards required for

communication with each new device, the command

broker will need a modification to include this client

protocols in order to be able to send command

messages to the end device.

REFERENCES

[1] D. Evans, “The Internet of Things How the Next Evolution

of the Internet Is Changing Everything”, CISCO, April

2011, pp.3.

[2] O. Vermesan, “Putting the Internet of Things Forward to the

Next Level” in Internet of Things- Converging

Technologies for Smart Environments and Integrated

Ecosystems, River Publishers, 2013, ch. 2, pp. 20

[3] S. Jankowski, “The Internet of Things: Making sense of the

next mega-trend”, Goldman Sachs Group INC, 2014.

[4] Powerful Technology Designed for the Home. (2015).

Thread Group [Online]. Available: www.threadgroup.org.

[Accessed: September 17, 2015].

[5] Eclipse IoT Project. (2013). IoT Eclipse Open Source for

IoT [Online]. Available: www.iot.eclipse.org. [Accessed:

October 5, 2015].

[6] IoTivity. (2015). Linux Foundation Collaborative Projects

[Online]. Available: www.iotivity.org. [Accessed: October

8, 2015].

[7] ThingWorx – Past and Present. (2015) About ThingWorx A

PTC Business [Online]. Available: www.thingworx.com.

[Accessed: October 8, 2015].

[8] Raspberry Pi. (2006). What is a Raspberry Pi? [Online].

Available: www.raspberrypi.org. [Accessed: October 9,

2015].

[9] Beaglebone. (2014). What is a Beaglebone? [Online].

Available: www.beaglebone.org. [Accessed: October 9,

2015].

[10] Arduino. (2015). Arduino Products Overview [Online]

Available: www.arduino.cc. [Accessed: October 10, 2015].

[11] C. Sarkar, et al., “DIAT: A Scalable Distributed

Architecture for IoT”, IEEE Internet of Things Journal, vol.

2, no. 3, 2015.

[12] Bosch Software Innovations Corp., Bosch IoT Suite,

unpublished.

[13] Ouimeaux. (2014). Ouimeaux: Open Source WeMo Control

[Online]. Available: ouimeaux.readthedocs.org/en/latest

/index.html.

[14] Belkin. (2015). WeMo Home Automation [Online].

Available: www.belkin.com/us/Products/home-automation/

c/wemo-home-automation.

