
PLAGA: A Highly Parallelizable Genetic Algorithm for
Programmable Logic Arrays Test Pattern Generation

Alfredo Cruz, PhD
Adjunct Professor, Department of Electrical and Computer Engineering
Universidad Politecnica, Hato Rey, PR
E-mail: across@coqui.riet

Sumitra Mukherjee, PhD
School of Computer Information Science
Nova Southeastern University, Fort Lauderdale, FL
E-mail: sumitra@scis.nova.edu

ABSTRACT

An evolutionary algorithm (EA) approach is
used in the development of a test vector generation
application for single and multiple fault detection of
shrinkage faults in Programmable Logic Arrays
(PLA). Three basic steps are perfonned during the
generation of the test vectors: crossover, mutation
and selection. A new mutation operator is introduced
that helps increase the Hamming distance among the
candidate solutions. Once crossover and mutation
have occurred, the new candidate test vectors with
higher fitness function scores replace the old ones.
With this scheme, population members steadily
improve their fitness level with each new generation.
The resulting process yields improved solutions to the
problem of the PLA test vector generation for
shrinkage faults. PLA testing and fault simulation
computational time is prohibitive in uniprocessor
machines, however PLAGA is well suited for
poweifid parallel processing MIMD machines with
vectorization capability.

SINOPSIS

Este artfculo presenta un algoritmo genetico que
genera un vector de prueba para detectar failas de
encogimiento f"shrinkage faults") en Arreglos
Ldgicos Programables (ALP), Programmable Logic
Arrays (PLA).

Un operador mutante nuevo es introducido para
complementar los operadores geneticos tradicionales
de cruzamiento entre parejas ("crossover") y
mutacion. Este operador mutante ayuda a identificar
soluciones en relativamente pocas generaciones al
aumentar la distancia Hamming entre las posibles
candidatas. El nivel promedio de fortaleza de la
poblacion mejora con cada generacion cuando los
vectores de prueba nuevos, con mayor puntuacion en
la funcion de fortaleza, reemplazan los viejos. Se

identifican soluciones al problema de la generacion
de vectores de prueba de ALP para failas de
encogimiento.

El enfoque basado en algoritmos geneticos se
ajusta bien para su implementacion en mdquinas de
procesamiento en paralelo con capacidad de
vectorizacidn. Esto es significativo debido al hecho
de que las pruebas de ALP y simulacion de failas son
muy costosas computacionalmente en mdquinas de
un procesador.

I- INTRODUCTION

The key technological advantage of using PLA
in integrated circuit technology relies on the
straightforward mapping between the symbolic
representation and its physical implementation. At
the physical implementation level, it is easy to map
binary format into layout because it does not involve
any difficult steps such as placement and routing
which may be necessary for random logic
implementation. The number of different basic
building units for PLA is small (AND, OR and NOT)
whereas the number of different basic elements for
random logic could be much larger. However, this
simplified structure does not ease the difficulty for
test pattern generation and fault simulation in PLA.

PLA testing has attracted the attention of many
researchers in recent years [1, 2]. Genetic and
evolutionary algorithm-based solutions have been
proposed [3, 4, 5, 6].

Algorithms proposed in [7] formulate the PLA
test generation by using the sharp (T) operation. The
T operation is widely used for logic manipulation
algorithms (ESPRESSO II). Several other algorithms
have also been proposed for PLA testing using the
T operation, but they tend to be computationally
expensive. A major disadvantage of this operator is
that backtracking is necessary when a test cannot be
found. The computational overheads required by

Junto 1999 RxNista de la UniOersidad Politecnica de Puerto Rico 51

backtracking can be prohibitive. Bose [8] proposed
an algorithm using the T operation for extra devices
that utilizes the Quine-McCluskey method for testing
missing devices. The memory requirements for this
algorithm rise exponentially as PLA size increases.
An algorithm reported in [9] assigns a proper logic
value in the specified inputs of a potential vector.
The aim is to achieve path sensitization by
deselecting product lines connected to output
functions. This pruning method uses a modified
version of the T operation. Robinson [9] extended
the work of [8] by using a weighted pruning approach
that attempts to detect hard-to-detect faults more
easily. The latter, however, may fail to find a test
even if one exists.

Smith [10] suggests simplifying the algorithm by
generating a test for every fault. This results in
considerably larger test vectors. Hence, a minimal
test set is not guaranteed. One of the disadvantages
in this approach is the backtracking that could occur
when the test is chosen and fails to propagate.

Other approaches have been developed for
generating a PLA test set. For example, the Design-
for-testability (DFT) uses extra components to
facilitate the PLA test, making test generation
unnecessary in some instances. All these methods
employ additional hardware, which means greater
costs, and potential degradation of PLA performance.
Clearly, present DFT methods have not addressed the
problem adequately [11].

A. BASIC NOTATION AND DEFINITIONS

The PLA consists of input lines
(uncomplemented and complemented) and product
term lines. The intersections between product lines
and input bit lines or between output function lines
and product term lines are called crosspoints. Each
product line is used to realize an implicant (product
term) of the given function by placing appropriate
crosspoint devices into what is known as the AND
plane.

Figure 1 shows a simple schematic of a PLA,
implementing the two switching functions:

/] (*1,-K2,*3,*4) = (*1 ANDjc2)OR(X2 ANDX3)

/2(*I,-*2>*3»*4) = (*I' ANDX2)OR(X, ANDX2 AND*;)

This PLA has four inputs (x,, x2, x3, x4), four
product terms (m1? m2, m3, m*), and two output
functions (f(, f2).

The following definitions apply to the
discussions that follow.

XI X3 Xi f I fl

fe-f)

\
mi

ni2

my

nu

(s-f) (a-f)

Figure 1: A PLA Schematic

<d-f)

which two product terms hold non-don't care values
that are different is called the Hamming distance, dn-

For example, in Figure 1 the hamming distance
between m3 and m4 is one, i.e. these terms differ in
bit position x3 only.

Definition 2:
X-complementary: The set {A, B} of two terms,
where A = \alf,an}, ar e{0,l|, and

B = {b{,i ,hn}, b,G [0,1} will be called x-

complementary with respect to the product term
{xj,9 ,xnj, if the following conditions are
satisfied:

a , = b t = 1 if x

aj =bj = 0 if x

= b' if x

= 1

= 0

= x

For example, the product term 1X0X has two
pairs of minterms that are x-complementary. These
are: [(1000, HOI), (1001, U00)}.

Definition 3:
Number of minterms: The size Q is the number of
canonical minterms contained or represented in a
product term (m,), which is equal to 2k, where k is the
number of don't care inputs in the product term.

For example, in Figure 1 nq has 22= 4 number of
minterms.

II- FAULT MODELING

Definition 1:
Hamming distance: The number of bit positions in

In testing digital circuits, the most commonly
considered fault model is the stuck-at fault (i.e., s-a-0
or s-a-1). However, because of the PLA's'array

52 ReVisla dc la Universidad Politecnica de Puerlo Rico
Junio 1999

structure the stuck-at fault alone cannot adequately
model all physical defects in a PLA f 12]. Therefore,
a new fault class model, known as the crosspoint
model is used. The unintentional presence or absence
of a device in the PLA causes a crosspoint fault.

Different types of faults are shown in Figure 1.
The symbols (g-f), (s-f), (a-f), and (d-f) denote the
growth, shrinkage, appearance and disappearance
faults respectively.

The focus of this paper is on the use of genetic
algorithms for the generation of test vectors for
shrinkage faults.

Ill- THE SHRINKAGE FAULTS

To detect extra crosspoints in a PLA, it is
important to understand that shrinkage faults can
occur with the presence of an unintended device in an
unspecified input (don't care value). The presence
causes the ON-set (i.e., the minterms) to shrink, and
consequently the OFF-set (i.e. the maxterms) to
grow.

The fault sensitization of an extra device in a
faulty PLA produces a 0 at the output of the AND
gate, whereas for fault-free PLA produces a 1. To
test for shrinkage faults (an extra device) one or two
test vectors are often generated. However, in some
cases, more test patterns are needed.

The above discussion leads to the following rules
that must be established for the generation of test
vector, for shrinkage faults. It is assumed that the
PLA under test is irredundant. In other words, if an
implicant is eliminated then the function will change.

1- If a product term is isolated, i.e., the minterms
covered by the isolated product term are free, then
the shrinkage test vector is chosen as follows:

(a) When the size £2 is equal to 1, then this
minterm is chosen as a test vector. For
example a product term without don't care
inputs, i.e. 101011

(b) When the size Q is equal to 2, then both
elements (minterms) will constitute a
complete test vector.

(c) When size £2 is > 2 (i.e., all minterms are
free), then the minimum test vector is
obtained by choosing a pair of minterms with
dH = k, where k is the number of don't care
values.

2- If a product term is non-isolated, i.e. with
minterms covered by more than one product term,
then the shrinkage test vector is chosen in the
following way:

(a) If the size £2 is equal to 2, then one minterm
is free, since it is assumed that the PLA is
irredundant. In that case the free minterm
constitute a shrinkage test vector. Hence this
vector will detect a fault, either in the
complement line or uncomplement line.

(b) When the size £2 > 2 and some minterms are
free, the minimum test vector may result in
more than 2 test vectors.

Proposition 1. The upper bound for a complete test
vector set for a non-isolated product term is 2 if more
than half of the minterms are free.

Proof: For a product term with 2k minterms there are
•yk

x-complementary pairs. Furthermore, if there are

at least -V + l free minterms then there are at most
->
k
— 1 bounded minterms.

Since (^- + l)-(^L-l)=2, there exist at least 2

complementary minterms. Therefore, a complete test
exists.

Proposition 2. The upper bound for a complete test
vector set for non-isolated product term is & if a
bounded minterm has its k adjacency minterms free.

Figure 2 illustrates the four possible ways to
obtain complete test vectors of a product term in a k-
dimensional subspace. It also applies to product
terms in an rc-dimensional subspace with k
unspecified values.

• Figure 2 (a) shows a minimal test vector set of
size 2 when two minterms with a dH = k are both
free. The complete test vector can be any x-
complementary pair e.g., (V0, V|5).

• Figure 2 (b) shows a complete test vector set of
size 3 when one of the x-complementary pair
(VJS) is bounded (bounded minterms are marked
with a 'p')- In this case the two minterms
adjacent to the bounded minterms (Vn, Vi3) are
valid test vectors if they are free. Therefore, the
complete test vector is (Vo, V13, V,4).

• Figure 2 (c) shows a complete test vector set of
size 4 when two x-complementary minterms are
bounded, but they both have two adjacent
minterms which are unbounded. The complete
test vector is (Vi, V2, V7, Vn).

• Lastly, Figure 2 (d) shows a complete test vector
set of size k when neither of the cases are
possible, The complete test vector is (Vb V2, V4,
v8).

Junio 1999 RcNisfa de la UniVersicIad Politecnica de Puerto Rico 53

(a)

decimal 0 I 2 ! 4 S 6 : 8) 10 11 12 I.! 14 (5

Figure 2: Complete Test Vectors for Shrinkage
Faults: (a) Test Vector of Size 2, (b) Test Vector of
Size 3. (c) Test Vector of Size 4. (d) Test Vector of

Size k

Since the growth and shrinkage test vectors
account for the largest number of test vectors, the
upper bound for non-isolated product terms is given
in terms of these faults:

m m

X^ + X(""l0S2 Q)
1 1

where k is the number of don't care values, m is the
number of product terms, and n — log-, £2 is the
number of care values in each product term.

IV- THE PLA GENETIC ALGORITHM

Evolutionary Algorithms (EA) are search and
optimization procedures that find their origin in the
biological world. They mimic the processes of
biological evolution with its ideas of natural selection
and survival of the fittest to provide effective
solutions for optimization problems. A genetic
algorithm is an iterative procedure that consists of a
constant size population of individuals, each
individual represented by a finite string of symbols
known as genome, encoding a possible solution in a
given problem space. This space, referred to as the
search space, comprises all possible solutions to the
problem at hand. The symbols used most often are
binary because of the computational advantages. For
the test generation problem we will associate a
candidate test vector with a population genome and a
candidate vector set with a given population
generation.

The basic genetic algorithm, where P(r) is the
population of strings at generation t is given below:

procedure genetic algorithm
{
set time t := 0
select an initial population P(t)
while the termination condition is not met do-
{

evaluate fitness of each member of P(t);
select the fittest members from P(t);
generate offsprings of the fittest pairs

(using genetic operators);
replace the weakest members of P(t)

by these offsprings;
s e t t i m e t t + 1

}
}•

Selection alone cannot introduce any new
individuals into the population, i.e., it cannot find
new candidate test vectors in the search space.
Selection is done on the basis of relative fitness and it
probabilistically eliminates from the population those
candidate test vectors which have relatively low
fitness. Recombination, which consists of mutation
and crossover, imitates sexual reproduction.

Crossover is performed with crossover
probability Pcross between two selected strings, called
parents, by exchanging parts of their genomes (i.e.,
encoding) to form two new individuals, called
offsprings. It is implemented by choosing a random
point between 1 and the string length (5) minus one
[1, 5 - 1] in the selected pair of parents and

54 RjNista de la Vniwrsidad Potitecnica de Puerto RJco
Junio 1999

exchanging the substring defined by that point (i.e.,
swap the tail portion of the string) to produce new
offsprings. That is, all the information from one
parent is copied from the start up to the crossover
point, then all the information from the other parent
is copied from the crossover point to the end of the
offspring (chromosome). The new chromosome thus
gets the head of one parent's chromosome combined
with the tail of the other. Figure 3 illustrates
crossover with parents '10101011' and '11111001,'
and crossover occurring after the third bit.

The crossover operation, unlike previous
operators used in PLA test generation, does not use
lookups or backtracking. Crossover is both simple
and efficient. This operation enables the
evolutionary process to move towards optimal
solutions in the search space. The usefulness of
crossover is due to the combination of better than
average substrings comins from different individuals
[131.

Mutation probabilistically chooses a bit and flips
it. Mutation can be applied to population members
with a frequency Pn)Ut of around 0.01. The usual
interpretation of bit mutation rate is the following:

For each string (candidate test vector) in the population
{
for each bit within the string

{
generate a random number r between 0 and 1
if (t > Pmut)

toggle the bit
}

}

Mutation is needed because if selection and
crossover together search new solutions, they tend to
cause rapid convergence and there is a danger of
losing potentially useful genetic materials, such as 0s
and Is at particular location of the specified values of
the candidate test vector under evolution. Notice in
Figure 3 that for bit positions 1, 3, 5, 6, and 8 the
children retain the same value as their parents, even
though crossover occurred. An extreme instance
occurs when both parents are identical. In such
cases, crossover cannot introduce diversity in the
offspring. In order to introduce diversity and to
avoid search stagnation, bit mutations are allowed.
However, mutation frequencies have to be low;
otherwise the search tends to generate a random
walk.

A new mutation strategy using a template
operator is introduced in this work to help accelerate
the search of the minimal test vectors with a
Hamming distance dH = k, where k is the number of
don't care values. This operator helps increase the
Hamming distance between the parents and their
children. It also helps avoid the loss of genetic

crossover
point X

1 0 1 0 1 0 1 1 parents 11 1 1 1 0 0 1
H e a d 1 T a i l 1 H e a d 2 T a i l 2

1 0 1 1 1 0 0 1 1 1 1 0 10 11
H e a d i T a i l 2 H e a d 2 T a i l I

Figure 3: The effect of the crossover operation

material and hamming convergence. The template
has the value 1 in the position of the unspecified
values (don't cares), and 0 in the specified values of
the candidate test vector under consideration. The
1 's are used to toggle the alleles in their respective bit
position on the candidate test vector in evolution.
The 0's leave the alleles intact in their respective bit
position. The use of the template does not affect the
fitness value of the candidate test vector. On the
contrary, this strategy ensures that PLAGA evolves a
population dominated by individuals which are close
to the optimum in the phenotype space, but far apart
in terms of Hamming distance. For example, the
template for the product term 10X01X is 001001. If
a candidate test vector is 001010 after the crossover
operation, then it becomes OOOOU after mutation
using the template is applied. This operator is
applied to very few individuals in each generation
randomly. This ensures that every allele bit position
is defined and that the population spans the entire
code space of the problem.

In summary, the effect of this operator makes
PLAGA more resistant to deception, simplifies the
encoding of the genetic algorithm and increases the
step-size (Hamming distance) between a parent and
its offspring.

The fundamental steps to generate a minimal test
vector set for a PLA constitute a minimal covering
problem. This problem is known to be NP-complete.
Faster heuristic methods to find a near minimal test
set are more desirable than optimal methods from a
computational point of view. Figure 4 shows the
Personality Matrix (PM) (inputs = 4, product terms =
4, functions = 1)-PLA implementing a switching
function:

(*i AND.x3)OR

AND *3 AND ,V4)OR

(x, AND x'2 AND x3 AND x4)

Junto 1999 RrOista do la VnioersidacI Polifecnica do Puerto Rico 55

This simple example will be used to illustrate the
PLAGA algorithm for the generation of a test set for
shrinkage faults. The PM is the cubical
representation of the sample PLA.

PLAGA uses the GA to find the test vectors that
excites the fault effect to the primary output. Each
candidate test vector of the PM represents the values
applied to the primary inputs of the AND gate under
consideration.

The following GA parameters are used for
testing shrinkage faults of the sample PLA:

• Uniform Crossover Single Cut Point
• Number of generations : Until a minimal test

set is found
• Size of Population : 8
• Crossover Probability : 1.0
• Mutation Probability : 0.01
• Mutation Probability with Template : 0.25

To apply the GA more efficiently the order of the
product terms of the PM should be arranged in a
decreasing order of don't care values. The product
terms with more don't cares should be at the top of
the matrix. This configuration allows a multi-target
test vector detection for multiple product terms
simultaneously. Genetic algorithms are inherently
parallel since evolution takes place with individuals
acting simultaneously in spatially extended domains
[14, 15, 16].

PLAGA begins, at generation 0, with a
population of randomly created individuals
(candidate test vectors). For each generation, each
individual in the population is evaluated for fitness.

m, X X X 0

m2 0 X 1 X

m-i 0 X 0 1

m4 1 0 I 1

Figure 4: PLA ordered by the number
of don't care values

The fitness function is calculated as the number of
bits in the individual that matches the corresponding
bits in the product term. If a minterm of the
population makes the product term (with 4 bits)
under consideration true, then the minterm has a
fitness value of 4. For example, for the product term
nu (1011) of Figure 4, 0100 has fitness 0, 0101 has
fitness 1, 0111 has fitness 2, 0011 has fitness 3, and
1011 has fitness 4 and is a solution.

A maximum value of 4 in this example means
that the candidate test vector match each allele
(including both the care and don't care values) of the
product term under consideration (shown by ft in
Table I) and consequently it is a possible test vector.
These test vectors are compared for uniqueness. The
strings 1 (0100), 2 (1110), 3 (0100) and 6 (1100) are
free test vectors for product term m,. Notice that
strings 1 and 3 have the same value (0100). Free
minterms are represented with a kO' in Table 1.
These three vectors do not constitute a complete test
set for mi since a test for the uncomplemented bit line
b2 is not feasible. However, it is possible to derive a
minimal shrinkage test set for mt of size 2 if the x-
complementary minterm of any of the four test
vectors is found. The string 5 (0011) is a free

TABLE I: GENERATION 0

String Population Minterms Fitness # of copies Mate Pool Mate
reproduced (cross point #

site shown)

Crossover
Pcross= 10

x, X; X, X4 m? m4 m.
(1) 0 1 0 u © - - - 4 1 0 1 0 1 0
(2) 1 1 1 0 © - - - 4 1 11 1 1 0
(3) 0 1 0 0 © - - - 4 2 0 1 0 1 1 0
(4) 1 0 1 1 3 - - © 3 0 0 1 0 I 1 0
(5) 0 0 1 1 3 © - - 3 2 0 0 1 1 1 1
(6) 1 1 0 0 © - - - 4 2 0 0 1 1 1
(7) 0 0 0 1 3 - © - 3 0 1 1 1 0 0
(8) 1 0 1 1 3 - - © 3 0 11 1 0 0

II *

Mutation
w/template
(twice each

generation) &
P™,= 0.01

0 1 0 1
1 1 0 0
0 1 o 0
0 1 0 0
0 0 0 0
0 0 10
1 1 1 1
1 1 1 0

0 1 0 1
1 1 0 0
1 o I 0
0 1 0 0
0 0 0 0
1 1 0 0
1 1 1 1
1 1 1 0

Sum 28
Average 3.5
Max 4
Min 3

56 RriHsla de la VniVersidad Politecnka de Puerto Rico
Junto 1999

TABLE II: GENERATION I
String Population Minterms Fitness # of copies Mate Pool Mate Crossover

reproduced (cross point # Pcro<:s = 1.0
site shown)

Mutation
w/template
(twice each

X, x, X, x4 mi m-, m±
generation)

&Pm„r= 0.01
(1) 0 1 0 1 3 3 © - 3 2 0 1 0 1 1 1 3 0 1 0 0 0 I 0 0
(2) 1 1 0 0 © 2 - - 2 0 0 11 1 0 1 5 0 1 0 0 < - / • > - » 0 0 0 1
(3) 1 0 1 0 © 3 - - 3 1 1 0 11 0 1 1 0 1 1 1 0 1 1
(4) 0 1 0 0 © 3 - - 3 1 0 1 1 0 0 7 0 1 1 ! 0 1 1 1
(5) 0 0 0 0 © 3 - - 3 2 0 0 1 0 0 2 0 0 0 1 0 0 0 1
(6) 1 1 0 0 © 2 - - 2 0 0 0 0 1 0 8 0 0 0 0 <- h -> 0 1 0 1
(7) I 1 I 1 3 3 - - 3 1 1 1 1 1 1 4 1 1 @ 0 1 1 © 0
(8) 1 1 1 0 © 3 - - 3 1 1 1 11 0 6 1 1 1 0 1 1 1 0

ff *

Sum 29

Average 3.625

Max 4

Min 3

Sum 22

Average 2.75

Max 3

Min 2

minterm test vector for product term m2. This vector
yields a test for a fault in the b2. The strings 4 and S
have the same value (1011) in m4. This test vector is
a complete test vector for m4 since it is assumed that
the PLA is irredundant. Hence the implicant is
essential and part of the final set. Obviously, one
shrinkage test vector is sufficient for testing isolated
product term with one element. The product term m4

is marked with an in Table I to disable it from
further consideration. The string 7 (0001) can test for
a fault in the complement bit line b2 of 1113. The fittest
members can be selected more than once. Table I
shows how many times an individual is reproduced.

Next, the Crossover operator is applied to two
individuals chosen from the population using the
selection operator. A crossover site along the bit
strings is randomly chosen and the values of the two
strings are exchanged up to this point. Mating

between strings 1 (01010) and string 6 (00111) with a
crossover point 3 (see Table I) yields two new
offspring (0101) and (0010), which are placed into
the next generation of the population. By
recombining portions of good individuals, this
process is likely to create even better individuals.

Next, the mutation operators are applied. The
mutation with template (ti for m() is applied
randomly with probability of 0.25. This avoids
"Hamming cliffs". The regular mutation operator is
not applied until generation 1.

Tables II and III represent generations 1 and 2,
respectively. The test vectors found after generations
0, and 1, are shown in Tables IV and V, respectively.
The final Shrinkage Test Vectors for the PLA under
consideration are shown in Table VI.

Table III of generation 2 shows the test vector
generated for m2 (0111). The test vector {(0011),

TABLE III: GENERATION 2
X\ X2 X; X4 m, m2 m3 m4 m2

(1) 0 1 0 0 - 3 - - 3 1 0 1 1 1 0 0 8 0 1 1 0 0 1 1 0

(2) 0 0 0 1 - 3 - - 3 1 0 0 1 1 0 1 7 0 0 1 0 0 u 1 0

(3) 1 0 1 1 - 3 - - 3 1 1 1 0 1 1 4 1 1 1 1 1 1 1 1

(4) 0 1 1 1 - © - - 4 2 0 1 1 1 1 3 0 0 1 1 0 0 1 1

(5) 0 0 0 1 - 3 - - 3 0 0 1 1 1 1 1 6 0 I 1 i h ~> 0 y 1 0

(6) 0 1 0 1 - 3 - - 3 1 0 1 0 1 1 5 0 1 0 1 0 1 0 1

(7) 1 1 1 0 - 3 - - 3 1 1 1 1 1 0 2 1 1 0 i < - r 2 - » 1 0 u y

(8) 1 1 1 0 - 3 - - 3 1 1 11 1 0 1 1 1 0 0 1 1 0 u

* $ * *

Sum 25

Average 3.125

Max 4

Min 3

Junio 1999 Rrtisla ck la Univeniclac! Polilknka ck Puerto Rico 57

C0U1)} yields an incomplete test for m2 since the
minterms (0010) and (0110) are bounded. Therefore,
a test for the uncomplemented bit line b4 is not
possible.

V- CONCLUSIONS AND PARALLEL
IMPLEMENT A TION

This article describes the use of genetic
algorithms to generate patterns for testing
programmable logic arrays. Existing methods tend to
be computationally expensive. Our proposed
algorithm overcomes this problem to generate good
solutions efficiently. While the preliminary results
are encouraging, further testing with larger size PLA
is necessary to validate these results.

The algorithm described is well suited for
parallel processing. PLA fault simulation in parallel
using GA should help to overcome the well-known
bottleneck of serial simulation. Genetic algorithms
are inherently parallel algorithms. Hence PLAGA
should be easily scaleable to multiple processor
systems with shared memory.

VI- REFERENCES

1- P. Bose, "A Novel Technique for Efficient
Implementation of a Classical Logic/Fault
Simulation Problem," IEEE Trans. on
Computers, Vol. 37, pp.1569-1577, December
1984.

2- A. Cruz and R. Reilova, "A Hardware
Performance Analysis for a CAD Tool for PLA
Testing, " 39th Midwest Symposium on Circuits
and Systems, 1997.

3- M. S. Hsiao, E, M. Rudnik and Janak H. Patel,
"Automatic Test Generation Using Genetically
Engineering Distinguishing Sequences,"
Proceedings of the VLSI Test Symposium, pp.
216-223, April 1996.

4- E. M. Rudnik, J. G. Holm, D. G. Saab and
Janak Patel, "Application of Simple Genetic
Algorithms to Sequential Circuit Test
Generation," Design Automation Conference, pp.
717-721, June 1994.

5- Janak Patel et al., "Parallel Genetic Algorithms
for Simulation-based Sequential Circuit Test
Generation," Proceedings of the International
Conference on VLSI Design, pp. 475-481,
January 1997.

6- E. M. Rudnik and Janak Patel, "A Genetic
Approach to Test Application Time Reduction
for Full Scan and Partial Scan Circuits."
Proceedings of the Eight International
Conference on VLSI Design," pp. 288-293,
January 1995.

TABLE IV: TEST VECTORS FOUND AFTER GENERATION 0

Product Term Candidate Shrinkage Tests Final Shrinkage Test m, =
m2 =
m3 -
m4 -

X XX 0
0 X 1 X
0 X 0 I
10 11

{ (0100), (1100), (1110) 1°"
{ (0011) }G0

{(0001) }G0

1(1011)}G0
{ (1011) }

TABLE V: TEST VECTORS FOUND AFTER GENERATION 1

Product Term Candidate Shrinkage Tests
m, =
m2 =

m4 ~

X X X 0
0 X 1 X
0 X 0 1
10 11

{ (0000), (0100), (1010), (1100), (1110) }GOuGI

{ (0011) }G0

{ (0001), (0101) }G0UGI

{ (1011) }G0

{ (0000), (1110))

{ (0001), (0101) }
{ (1011) 1

Product Term

TABLE VI: FINAL SHRINKAGE TEST VECTORS

m\ —
m2 =
w3 =

m4 -

X X X 0
0 X 1 X
0 X 0 1
10 11

{ (0000), (0100), (1010), (1100), (1110) l00^01

{(ooii), (oni) }GVG2

{(0001), (0101)}°°^°'
{ (1011) }G0

Final Shrinkage Tests
{ (0000), (1110) }

{(0011), (0111)}

{ (0001), (0101) f
{ (1011))

Junto 1999

7- R. S. Wei and Sangiovanni-Vicentelli,
"PLAtypus: A PLA Test Generation Tool."
Trans, on Computer Aided Design, Vol. CAD-5,
October 1986.

8- P. Bose, "Generation of Minimal and Near-
Minimal Test Set for Programmable Logic
Arrays," International Conference on
Computers, December 1984.

9- M. Robinson and Rajski, "An Algorithm Branch
and Bound Method For PLA Test Pattern
Generation," International Test Conference, pp.
66-74, 1988.

10- J. E. Smith, "Detection of Faults in
Programmable Logic Arrays," IEEE
Transactions on Computers, Vol. C-28, No. 11,
November 1979.

11- Hua and et al., "Built-in Tests for VLSI Finite
State Machines," Dig. of Papers 14th Int'l Conf.
on Fault Tolerant Computing, June 1984.

12- M. Abramoci and et al., "Digital Systems
Testing and Testable Design," 41 Madison
Avenue, New York, NY 10010: Computer
Science Press, 1990.

13- G. Goldberg, "Genetic Algorithms in Search,
Optimization and Machine Learning," Addison
Wesley, Reading, MA, 1989.

14- R. Tanese, "Parallel Genetic Algorithms for a
Hypercube," in Proc. of the Second Int. Conf. on
Genetic Algorithms, ed. J. J. Grefenstette
(Lawrence Erlbaum Associates, 1987), p. 177.

15- B. Manderick and P. Spiessens, "Fine-grained
Parallel Genetic Algorithms," in Proc. of the
Third Int. Conf. on Genetic Algorithms, ed. J. D.
Schaffer (Morgan Kauffman, 1989), p. 428.

16- T. Starweather, D. Whitley and K. Mathias,
"Optimization Using Distributed Genetic
Algorithms," in Parallel Problem Solving from
Nature, Lectures Notes in Computer Science,
Vol. 496, eds. H. P. Schwefel and R. Manner
(Spring-Verlag, 1991), p. 476.

Junto 1999 JZcNista de la UniOersidad Politknica de Puerto Rico 59

