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ABSTRACT 

An evolutionary algorithm (EA) approach is 
used in the development of a test vector generation 
application for single and multiple fault detection of 
shrinkage faults in Programmable Logic Arrays 
(PLA). Three basic steps are perfonned during the 
generation of the test vectors: crossover, mutation 
and selection. A new mutation operator is introduced 
that helps increase the Hamming distance among the 
candidate solutions. Once crossover and mutation 
have occurred, the new candidate test vectors with 
higher fitness function scores replace the old ones. 
With this scheme, population members steadily 
improve their fitness level with each new generation. 
The resulting process yields improved solutions to the 
problem of the PLA test vector generation for 
shrinkage faults. PLA testing and fault simulation 
computational time is prohibitive in uniprocessor 
machines, however PLAGA is well suited for 
poweifid parallel processing MIMD machines with 
vectorization capability. 

SINOPSIS 

Este artfculo presenta un algoritmo genetico que 
genera un vector de prueba para detectar failas de 
encogimiento f"shrinkage faults") en Arreglos 
Ldgicos Programables (ALP), Programmable Logic 
Arrays (PLA). 

Un operador mutante nuevo es introducido para 
complementar los operadores geneticos tradicionales 
de cruzamiento entre parejas ("crossover") y 
mutacion. Este operador mutante ayuda a identificar 
soluciones en relativamente pocas generaciones al 
aumentar la distancia Hamming entre las posibles 
candidatas. El nivel promedio de fortaleza de la 
poblacion mejora con cada generacion cuando los 
vectores de prueba nuevos, con mayor puntuacion en 
la funcion de fortaleza, reemplazan los viejos. Se 

identifican soluciones al problema de la generacion 
de vectores de prueba de ALP para failas de 
encogimiento. 

El enfoque basado en algoritmos geneticos se 
ajusta bien para su implementacion en mdquinas de 
procesamiento en paralelo con capacidad de 
vectorizacidn. Esto es significativo debido al hecho 
de que las pruebas de ALP y simulacion de failas son 
muy costosas computacionalmente en mdquinas de 
un procesador. 

I- INTRODUCTION 

The key technological advantage of using PLA 
in integrated circuit technology relies on the 
straightforward mapping between the symbolic 
representation and its physical implementation. At 
the physical implementation level, it is easy to map 
binary format into layout because it does not involve 
any difficult steps such as placement and routing 
which may be necessary for random logic 
implementation. The number of different basic 
building units for PLA is small (AND, OR and NOT) 
whereas the number of different basic elements for 
random logic could be much larger. However, this 
simplified structure does not ease the difficulty for 
test pattern generation and fault simulation in PLA. 

PLA testing has attracted the attention of many 
researchers in recent years [1, 2]. Genetic and 
evolutionary algorithm-based solutions have been 
proposed [3, 4, 5, 6]. 

Algorithms proposed in [7] formulate the PLA 
test generation by using the sharp (T) operation. The 
T operation is widely used for logic manipulation 
algorithms (ESPRESSO II). Several other algorithms 
have also been proposed for PLA testing using the 
T operation, but they tend to be computationally 
expensive. A major disadvantage of this operator is 
that backtracking is necessary when a test cannot be 
found. The computational overheads required by 
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backtracking can be prohibitive. Bose [8] proposed 
an algorithm using the T operation for extra devices 
that utilizes the Quine-McCluskey method for testing 
missing devices. The memory requirements for this 
algorithm rise exponentially as PLA size increases. 
An algorithm reported in [9] assigns a proper logic 
value in the specified inputs of a potential vector. 
The aim is to achieve path sensitization by 
deselecting product lines connected to output 
functions. This pruning method uses a modified 
version of the T operation. Robinson [9] extended 
the work of [8] by using a weighted pruning approach 
that attempts to detect hard-to-detect faults more 
easily. The latter, however, may fail to find a test 
even if one exists. 

Smith [10] suggests simplifying the algorithm by 
generating a test for every fault. This results in 
considerably larger test vectors. Hence, a minimal 
test set is not guaranteed. One of the disadvantages 
in this approach is the backtracking that could occur 
when the test is chosen and fails to propagate. 

Other approaches have been developed for 
generating a PLA test set. For example, the Design-
for-testability (DFT) uses extra components to 
facilitate the PLA test, making test generation 
unnecessary in some instances. All these methods 
employ additional hardware, which means greater 
costs, and potential degradation of PLA performance. 
Clearly, present DFT methods have not addressed the 
problem adequately [11]. 

A. BASIC NOTATION AND DEFINITIONS 

The PLA consists of input lines 
(uncomplemented and complemented) and product 
term lines. The intersections between product lines 
and input bit lines or between output function lines 
and product term lines are called crosspoints. Each 
product line is used to realize an implicant (product 
term) of the given function by placing appropriate 
crosspoint devices into what is known as the AND 
plane. 

Figure 1 shows a simple schematic of a PLA, 
implementing the two switching functions: 

/] (*1,-K2,*3,*4) = (*1 ANDjc2)OR(X2 ANDX3) 

/2(*I,-*2>*3»*4) = (*I' ANDX2)OR(X, ANDX2 AND*;) 

This PLA has four inputs (x,, x2, x3, x4), four 
product terms (m1? m2, m3, m*), and two output 
functions (f(, f2). 

The following definitions apply to the 
discussions that follow. 

XI X3 Xi f I fl 

fe-f) 

\ 
mi 

ni2 

my 

nu 

(s-f) (a-f) 

Figure 1: A PLA Schematic 

<d-f) 

which two product terms hold non-don't care values 
that are different is called the Hamming distance, dn-

For example, in Figure 1 the hamming distance 
between m3 and m4 is one, i.e. these terms differ in 
bit position x3 only. 

Definition 2: 
X-complementary: The set {A, B} of two terms, 
where A = \alf,an}, ar e{0,l|, and 

B = {b{,i ,hn}, b,G [0,1} will be called x-

complementary with respect to the product term 
{xj,9 ,xnj, if the following conditions are 
satisfied: 

a ,  =  b t =  1 if x  

aj =bj = 0 if x 

= b' if x 

= 1 

= 0 

= x 

For example, the product term 1X0X has two 
pairs of minterms that are x-complementary. These 
are: [(1000, HOI), (1001, U00)}. 

Definition 3: 
Number of minterms: The size Q is the number of 
canonical minterms contained or represented in a 
product term (m,), which is equal to 2k, where k is the 
number of don't care inputs in the product term. 

For example, in Figure 1 nq has 22= 4 number of 
minterms. 

II- FAULT MODELING 

Definition 1: 
Hamming distance: The number of bit positions in 

In testing digital circuits, the most commonly 
considered fault model is the stuck-at fault (i.e., s-a-0 
or s-a-1). However, because of the PLA's'array 

52 ReVisla dc la Universidad Politecnica de Puerlo Rico 
Junio 1999 



structure the stuck-at fault alone cannot adequately 
model all physical defects in a PLA f 12]. Therefore, 
a new fault class model, known as the crosspoint 
model is used. The unintentional presence or absence 
of a device in the PLA causes a crosspoint fault. 

Different types of faults are shown in Figure 1. 
The symbols (g-f), (s-f), (a-f), and (d-f) denote the 
growth, shrinkage, appearance and disappearance 
faults respectively. 

The focus of this paper is on the use of genetic 
algorithms for the generation of test vectors for 
shrinkage faults. 

Ill- THE SHRINKAGE FAULTS 

To detect extra crosspoints in a PLA, it is 
important to understand that shrinkage faults can 
occur with the presence of an unintended device in an 
unspecified input (don't care value). The presence 
causes the ON-set (i.e., the minterms) to shrink, and 
consequently the OFF-set (i.e. the maxterms) to 
grow. 

The fault sensitization of an extra device in a 
faulty PLA produces a 0 at the output of the AND 
gate, whereas for fault-free PLA produces a 1. To 
test for shrinkage faults (an extra device) one or two 
test vectors are often generated. However, in some 
cases, more test patterns are needed. 

The above discussion leads to the following rules 
that must be established for the generation of test 
vector, for shrinkage faults. It is assumed that the 
PLA under test is irredundant. In other words, if an 
implicant is eliminated then the function will change. 

1- If a product term is isolated, i.e., the minterms 
covered by the isolated product term are free, then 
the shrinkage test vector is chosen as follows: 

(a) When the size £2 is equal to 1, then this 
minterm is chosen as a test vector. For 
example a product term without don't care 
inputs, i.e. 101011 

(b) When the size Q is equal to 2, then both 
elements (minterms) will constitute a 
complete test vector. 

(c) When size £2 is > 2 (i.e., all minterms are 
free), then the minimum test vector is 
obtained by choosing a pair of minterms with 
dH = k, where k is the number of don't care 
values. 

2- If a product term is non-isolated, i.e. with 
minterms covered by more than one product term, 
then the shrinkage test vector is chosen in the 
following way: 

(a) If the size £2 is equal to 2, then one minterm 
is free, since it is assumed that the PLA is 
irredundant. In that case the free minterm 
constitute a shrinkage test vector. Hence this 
vector will detect a fault, either in the 
complement line or uncomplement line. 

(b) When the size £2 > 2 and some minterms are 
free, the minimum test vector may result in 
more than 2 test vectors. 

Proposition 1. The upper bound for a complete test 
vector set for a non-isolated product term is 2 if more 
than half of the minterms are free. 

Proof: For a product term with 2k minterms there are 
•yk 

x-complementary pairs. Furthermore, if there are 

at least -V + l free minterms then there are at most 
->
k 
— 1 bounded minterms. 

Since (^- + l)-(^L-l)=2, there exist at least 2 

complementary minterms. Therefore, a complete test 
exists. 

Proposition 2. The upper bound for a complete test 
vector set for non-isolated product term is & if a 
bounded minterm has its k adjacency minterms free. 

Figure 2 illustrates the four possible ways to 
obtain complete test vectors of a product term in a k-
dimensional subspace. It also applies to product 
terms in an rc-dimensional subspace with k 
unspecified values. 

• Figure 2 (a) shows a minimal test vector set of 
size 2 when two minterms with a dH = k are both 
free. The complete test vector can be any x-
complementary pair e.g., (V0, V|5). 

• Figure 2 (b) shows a complete test vector set of 
size 3 when one of the x-complementary pair 
(VJS) is bounded (bounded minterms are marked 
with a 'p')- In this case the two minterms 
adjacent to the bounded minterms (Vn, Vi3) are 
valid test vectors if they are free. Therefore, the 
complete test vector is (Vo, V13, V,4). 

• Figure 2 (c) shows a complete test vector set of 
size 4 when two x-complementary minterms are 
bounded, but they both have two adjacent 
minterms which are unbounded. The complete 
test vector is (Vi, V2, V7, Vn). 

• Lastly, Figure 2 (d) shows a complete test vector 
set of size k when neither of the cases are 
possible, The complete test vector is (Vb V2, V4, 
v8). 
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Figure 2: Complete Test Vectors for Shrinkage 
Faults: (a) Test Vector of Size 2, (b) Test Vector of 
Size 3. (c) Test Vector of Size 4. (d) Test Vector of 

Size k 

Since the growth and shrinkage test vectors 
account for the largest number of test vectors, the 
upper bound for non-isolated product terms is given 
in terms of these faults: 

m m 

X^ + X(""l0S2 Q) 
1 1 

where k is the number of don't care values, m is the 
number of product terms, and n — log-, £2 is the 
number of care values in each product term. 

IV- THE PLA GENETIC ALGORITHM 

Evolutionary Algorithms (EA) are search and 
optimization procedures that find their origin in the 
biological world. They mimic the processes of 
biological evolution with its ideas of natural selection 
and survival of the fittest to provide effective 
solutions for optimization problems. A genetic 
algorithm is an iterative procedure that consists of a 
constant size population of individuals, each 
individual represented by a finite string of symbols 
known as genome, encoding a possible solution in a 
given problem space. This space, referred to as the 
search space, comprises all possible solutions to the 
problem at hand. The symbols used most often are 
binary because of the computational advantages. For 
the test generation problem we will associate a 
candidate test vector with a population genome and a 
candidate vector set with a given population 
generation. 

The basic genetic algorithm, where P(r) is the 
population of strings at generation t is given below: 

procedure genetic algorithm 
{ 
set time t := 0 
select an initial population P(t) 
while the termination condition is not met do-
{ 

evaluate fitness of each member of P(t); 
select the fittest members from P(t); 
generate offsprings of the fittest pairs 

(using genetic operators); 
replace the weakest members of P(t) 

by these offsprings; 
s e t  t i m e  t t + 1  

} 
}• 

Selection alone cannot introduce any new 
individuals into the population, i.e., it cannot find 
new candidate test vectors in the search space. 
Selection is done on the basis of relative fitness and it 
probabilistically eliminates from the population those 
candidate test vectors which have relatively low 
fitness. Recombination, which consists of mutation 
and crossover, imitates sexual reproduction. 

Crossover is performed with crossover 
probability Pcross between two selected strings, called 
parents, by exchanging parts of their genomes (i.e., 
encoding) to form two new individuals, called 
offsprings. It is implemented by choosing a random 
point between 1 and the string length (5) minus one 
[1, 5 - 1] in the selected pair of parents and 
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exchanging the substring defined by that point (i.e., 
swap the tail portion of the string) to produce new 
offsprings. That is, all the information from one 
parent is copied from the start up to the crossover 
point, then all the information from the other parent 
is copied from the crossover point to the end of the 
offspring (chromosome). The new chromosome thus 
gets the head of one parent's chromosome combined 
with the tail of the other. Figure 3 illustrates 
crossover with parents '10101011' and '11111001,' 
and crossover occurring after the third bit. 

The crossover operation, unlike previous 
operators used in PLA test generation, does not use 
lookups or backtracking. Crossover is both simple 
and efficient. This operation enables the 
evolutionary process to move towards optimal 
solutions in the search space. The usefulness of 
crossover is due to the combination of better than 
average substrings comins from different individuals 
[131. 

Mutation probabilistically chooses a bit and flips 
it. Mutation can be applied to population members 
with a frequency Pn)Ut of around 0.01. The usual 
interpretation of bit mutation rate is the following: 

For each string (candidate test vector) in the population 
{ 
for each bit within the string 

{ 
generate a random number r between 0 and 1 
if (t > Pmut) 

toggle the bit 
} 

} 

Mutation is needed because if selection and 
crossover together search new solutions, they tend to 
cause rapid convergence and there is a danger of 
losing potentially useful genetic materials, such as 0s 
and Is at particular location of the specified values of 
the candidate test vector under evolution. Notice in 
Figure 3 that for bit positions 1, 3, 5, 6, and 8 the 
children retain the same value as their parents, even 
though crossover occurred. An extreme instance 
occurs when both parents are identical. In such 
cases, crossover cannot introduce diversity in the 
offspring. In order to introduce diversity and to 
avoid search stagnation, bit mutations are allowed. 
However, mutation frequencies have to be low; 
otherwise the search tends to generate a random 
walk. 

A new mutation strategy using a template 
operator is introduced in this work to help accelerate 
the search of the minimal test vectors with a 
Hamming distance dH = k, where k is the number of 
don't care values. This operator helps increase the 
Hamming distance between the parents and their 
children. It also helps avoid the loss of genetic 

crossover 
point X 

1 0 1 0  1 0 1 1  parents 11 1 1 1 0 0 1  
H e a d  1  T a i l  1  H e a d  2  T a i l  2  

1 0 1 1 1 0  0  1  1 1 1 0 10 11 
H e a d  i  T a i l  2  H e a d  2  T a i l  I  

Figure 3: The effect of the crossover operation 

material and hamming convergence. The template 
has the value 1 in the position of the unspecified 
values (don't cares), and 0 in the specified values of 
the candidate test vector under consideration. The 
1 's are used to toggle the alleles in their respective bit 
position on the candidate test vector in evolution. 
The 0's leave the alleles intact in their respective bit 
position. The use of the template does not affect the 
fitness value of the candidate test vector. On the 
contrary, this strategy ensures that PLAGA evolves a 
population dominated by individuals which are close 
to the optimum in the phenotype space, but far apart 
in terms of Hamming distance. For example, the 
template for the product term 10X01X is 001001. If 
a candidate test vector is 001010 after the crossover 
operation, then it becomes OOOOU after mutation 
using the template is applied. This operator is 
applied to very few individuals in each generation 
randomly. This ensures that every allele bit position 
is defined and that the population spans the entire 
code space of the problem. 

In summary, the effect of this operator makes 
PLAGA more resistant to deception, simplifies the 
encoding of the genetic algorithm and increases the 
step-size (Hamming distance) between a parent and 
its offspring. 

The fundamental steps to generate a minimal test 
vector set for a PLA constitute a minimal covering 
problem. This problem is known to be NP-complete. 
Faster heuristic methods to find a near minimal test 
set are more desirable than optimal methods from a 
computational point of view. Figure 4 shows the 
Personality Matrix (PM) (inputs = 4, product terms = 
4, functions = 1)-PLA implementing a switching 
function: 

(*i AND.x3)OR 

AND *3 AND ,V4)OR 

(x, AND x'2 AND x3 AND x4 ) 
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This simple example will be used to illustrate the 
PLAGA algorithm for the generation of a test set for 
shrinkage faults. The PM is the cubical 
representation of the sample PLA. 

PLAGA uses the GA to find the test vectors that 
excites the fault effect to the primary output. Each 
candidate test vector of the PM represents the values 
applied to the primary inputs of the AND gate under 
consideration. 

The following GA parameters are used for 
testing shrinkage faults of the sample PLA: 

• Uniform Crossover Single Cut Point 
• Number of generations : Until a minimal test 

set is found 
• Size of Population : 8 
• Crossover Probability : 1.0 
• Mutation Probability : 0.01 
• Mutation Probability with Template : 0.25 

To apply the GA more efficiently the order of the 
product terms of the PM should be arranged in a 
decreasing order of don't care values. The product 
terms with more don't cares should be at the top of 
the matrix. This configuration allows a multi-target 
test vector detection for multiple product terms 
simultaneously. Genetic algorithms are inherently 
parallel since evolution takes place with individuals 
acting simultaneously in spatially extended domains 
[14, 15, 16]. 

PLAGA begins, at generation 0, with a 
population of randomly created individuals 
(candidate test vectors). For each generation, each 
individual in the population is evaluated for fitness. 

m, X X X 0 

m2 0 X 1 X 

m-i 0 X 0 1 

m4 1 0 I 1 

Figure 4: PLA ordered by the number 
of don't care values 

The fitness function is calculated as the number of 
bits in the individual that matches the corresponding 
bits in the product term. If a minterm of the 
population makes the product term (with 4 bits) 
under consideration true, then the minterm has a 
fitness value of 4. For example, for the product term 
nu (1011) of Figure 4, 0100 has fitness 0, 0101 has 
fitness 1, 0111 has fitness 2, 0011 has fitness 3, and 
1011 has fitness 4 and is a solution. 

A maximum value of 4 in this example means 
that the candidate test vector match each allele 
(including both the care and don't care values) of the 
product term under consideration (shown by ft in 
Table I) and consequently it is a possible test vector. 
These test vectors are compared for uniqueness. The 
strings 1 (0100), 2 (1110), 3 (0100) and 6 (1100) are 
free test vectors for product term m,. Notice that 
strings 1 and 3 have the same value (0100). Free 
minterms are represented with a kO' in Table 1. 
These three vectors do not constitute a complete test 
set for mi since a test for the uncomplemented bit line 
b2 is not feasible. However, it is possible to derive a 
minimal shrinkage test set for mt of size 2 if the x-
complementary minterm of any of the four test 
vectors is found. The string 5 (0011) is a free 

TABLE I: GENERATION 0 

String Population Minterms Fitness # of copies Mate Pool Mate 
reproduced (cross point # 

site shown) 

Crossover 
Pcross= 10 

x, X; X, X4 m? m4 m. 
(1) 0 1 0 u © - - - 4 1 0 1 0 1 0 
(2) 1 1 1 0 © - - - 4 1 11 1 1 0 
(3) 0 1 0 0 © - - - 4 2 0 1 0 1 1 0 
(4) 1 0 1 1 3 - - © 3 0 0 1 0 I 1 0 
(5) 0 0 1 1 3 © - - 3 2 0 0 1 1 1 1 
(6) 1 1 0 0 © - - - 4 2 0 0 1 1 1 
(7) 0 0 0 1 3 - © - 3 0 1 1 1 0 0 
(8) 1 0 1 1 3 - - © 3 0 11 1 0 0 

II * 

Mutation 
w/template 
(twice each 

generation) & 
P™,= 0.01 

0  1 0  1  
1 1 0  0  
0 1 o 0 
0  1 0  0  
0 0 0 0 
0 0 10 
1 1 1 1  
1 1 1 0  

0  1 0  1  
1 1 0  0  
1 o I 0 
0  1 0  0  
0 0 0 0 
1 1 0 0 
1 1 1 1  
1 1 1 0  

Sum 28 
Average 3.5 
Max 4 
Min 3 
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TABLE II: GENERATION I 
String Population Minterms Fitness # of copies Mate Pool Mate Crossover 

reproduced (cross point # Pcro<:s = 1.0 
site shown) 

Mutation 
w/template 
(twice each 

X, x, X, x4 mi m-, m± 
generation) 

&Pm„r= 0.01 
(1) 0 1 0 1 3 3 © - 3 2 0 1 0 1 1 1 3 0 1 0 0 0 I 0 0 
(2) 1 1 0 0 © 2 - - 2 0 0 11 1 0 1 5 0 1 0 0 < - / • > - »  0 0 0 1 
(3) 1 0 1 0 © 3 - - 3 1 1 0 11 0 1 1 0 1 1 1 0 1 1 
(4) 0 1 0 0 © 3 - - 3 1 0 1 1 0 0 7 0 1 1 ! 0 1 1 1 
(5) 0 0 0 0 © 3 - - 3 2 0 0 1 0 0 2 0 0 0 1 0 0 0 1 
(6) 1 1 0 0 © 2 - - 2 0 0 0 0 1 0 8 0 0 0 0 <- h -> 0 1 0 1 
(7) I 1 I 1 3 3 - - 3 1 1 1 1 1 1 4 1 1 @ 0 1 1 © 0 
(8) 1 1 1 0 © 3 - - 3 1 1 1 11 0 6 1 1 1 0 1 1 1 0 

ff * 

Sum 29 

Average 3.625 

Max 4 

Min 3 

Sum 22 

Average 2.75 

Max 3 

Min 2 

minterm test vector for product term m2. This vector 
yields a test for a fault in the b2. The strings 4 and S 
have the same value (1011) in m4. This test vector is 
a complete test vector for m4 since it is assumed that 
the PLA is irredundant. Hence the implicant is 
essential and part of the final set. Obviously, one 
shrinkage test vector is sufficient for testing isolated 
product term with one element. The product term m4 

is marked with an in Table I to disable it from 
further consideration. The string 7 (0001) can test for 
a fault in the complement bit line b2 of 1113. The fittest 
members can be selected more than once. Table I 
shows how many times an individual is reproduced. 

Next, the Crossover operator is applied to two 
individuals chosen from the population using the 
selection operator. A crossover site along the bit 
strings is randomly chosen and the values of the two 
strings are exchanged up to this point. Mating 

between strings 1 (01010) and string 6 (00111) with a 
crossover point 3 (see Table I) yields two new 
offspring (0101) and (0010), which are placed into 
the next generation of the population. By 
recombining portions of good individuals, this 
process is likely to create even better individuals. 

Next, the mutation operators are applied. The 
mutation with template (ti for m() is applied 
randomly with probability of 0.25. This avoids 
"Hamming cliffs". The regular mutation operator is 
not applied until generation 1. 

Tables II and III represent generations 1 and 2, 
respectively. The test vectors found after generations 
0, and 1, are shown in Tables IV and V, respectively. 
The final Shrinkage Test Vectors for the PLA under 
consideration are shown in Table VI. 

Table III of generation 2 shows the test vector 
generated for m2 (0111). The test vector {(0011), 

TABLE III: GENERATION 2 
X\ X2 X; X4 m, m2 m3 m4 m2 

( 1 )  0  1  0  0  -  3  -  - 3  1 0  1 1  1  0  0  8  0  1 1  0  0  1 1  0  

(2) 0  0  0  1  -  3  -  - 3  1 0  0  1  1  0  1  7  0  0  1  0  0  u  1 0  

( 3 )  1  0  1  1  -  3  -  - 3  1  1  1  0  1 1 4 1 1 1  1  1  1  1 1  

(4) 0  1  1  1  - © - - 4 2  0  1 1  1  1 3  0  0  1  1 0  0  1  1  

(5) 0  0  0  1  -  3  -  - 3  0  0  1  1 1 1  1  6 0  I 1 i  h ~> 0  y  1  0  

( 6 )  0  1  0  1  -  3  -  - 3  1 0  1  0  1 1 5 0  1  0  1 0  1 0  1  

( 7 )  1  1  1  0  -  3  -  - 3  1  1  1 1  1  0  2  1  1  0  i < - r 2 - »  1  0  u  y  

(8) 1  1  1  0  -  3  -  - 3  1  1  11 1  0  1  1 1 0  0  1  1  0  u 

* $  *  *  

Sum 25 

Average 3.125 

Max 4 

Min 3 
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C0U1)} yields an incomplete test for m2 since the 
minterms (0010) and (0110) are bounded. Therefore, 
a test for the uncomplemented bit line b4 is not 
possible. 

V- CONCLUSIONS AND PARALLEL 
IMPLEMENT A TION 

This article describes the use of genetic 
algorithms to generate patterns for testing 
programmable logic arrays. Existing methods tend to 
be computationally expensive. Our proposed 
algorithm overcomes this problem to generate good 
solutions efficiently. While the preliminary results 
are encouraging, further testing with larger size PLA 
is necessary to validate these results. 

The algorithm described is well suited for 
parallel processing. PLA fault simulation in parallel 
using GA should help to overcome the well-known 
bottleneck of serial simulation. Genetic algorithms 
are inherently parallel algorithms. Hence PLAGA 
should be easily scaleable to multiple processor 
systems with shared memory. 
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