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Abstract ⎯   The amount of data generated by 

people each day on social media platforms is 

increasing at an alarming rate. Studies performed 

show that approximately 1.5 billion images are 

uploaded to the internet each day. Applications that 

can use and analyze this data are not available to all 

users due to limitations in processing power or 

storage space required for the analysis of these large 

datasets. Apache Hadoop is an open-source 

framework that allows distributed processing and 

fault tolerance of Big Data with the use of 

commodity hardware using Hadoop Distributed File 

System (HDFS) and MapReduce. Using HDFS data 

is stored in a distributed manner across different 

machines (datanotes). The use of the MapReduce 

framework parallelized computing is available and 

manageable to be able to mine and analyze the 

image data available created by users. The focus of 

this article will be the analysis of image data in large 

datasets to create feature vectors using the k-means 

algorithm to group together images that contain 

similar objects inside them using Apache Hadoop, 

MapReduce, Apache Spark, Computer Vision, and 

the Python programming language. 

Key Terms ⎯ K-Means Clustering, Map 

Reduce, Sequence File, Scale Invariant Feature 

Transform (SIFT) 

INTRODUCTION 

 The term Big Data is used to describe the huge 

volumes of data generated by digital processes. 

Currently, the use of social media sites has increased 

the amount of image data being uploaded every day 

on sites like Facebook, WhatsApp, and Twitter. This 

increasing amount of information growth has created 

a new kind of problem for data analysts. Analyzing 

and processing such huge amounts of data could 

create bottlenecks caused by the use of a single 

computer, power concerns, and the amount of 

storage space needed. The present-day computer 

architectures are reaching their physical limitations 

and with this, the implementation of distributed 

systems is becoming more widespread. The main 

reason to which the popularity of distributed systems 

can be attributed are: i) physical limitations of 

processors, ii) scalability, iii) fault tolerance iv) 

latency. [1] With the use of distributed systems tasks 

are completed by dividing a task into multiple 

subtasks. Dividing system tasks is known as 

parallelization, this makes applications running on a 

distributed system more scalable and efficient. A 

widely known distributed system platform is Apache 

Hadoop and the Hadoop MapReduce algorithm. 

Hadoop is being used as a system for processing 

huge datasets by using parallel and distributed 

computing. In addition, various studies have been 

performed using Apache Hadoop an example of 

these are: conducting analysis of text files, 

examining DNA sequencing data, converting images 

to PDF, and feature extraction and selection. These 

studies are performed by dividing the data across 

multiple features like algorithm parameters, images, 

or pixels. The k-means algorithm has been 

implemented within the MapReduce programming 

framework to analyze images and classify them 

based on their color. 

BACKGROUND AND RELATED WORK 

The following section will explain in detail the 

tools, concepts, and previous knowledge required for 

the implementation of image object recognition 

using Apache Hadoop and Python. 

Apache Hadoop 

 Hadoop is an open-source framework that 

works as a distributed system with a scalable, fault-

tolerant design. It is used for data storage and 

processing. The creation of Apache Hadoop was 



inspired by Google’s articles on Map Reduce and 

Google Distributed File System. Apache Hadoop 

was developed and written in the java programming 

language. Currently, it is being used for the analysis 

of Big Data at companies such as Facebook and 

Yahoo!. Since the Hadoop framework is best known 

for its scalability and fault tolerance it can be used 

for data analysis. The main components of Apache 

Hadoop are HDFS and MapReduce [2]. 

Apache Hadoop Distributed File System 

HDFS is a filesystem designed for storing large 

files in a distributed manner with streaming data 

access patterns. These are usually run-on commodity 

hardware. The definition of “very large files” in the 

Big Data environment means files that could span 

from hundreds of GB, TB, or PB. The architecture 

of HDFS makes it scalable but there are a few 

drawbacks: 1. HDFS works better performing long 

sequential reads from files, but it is not used for 

random reads 2. Caching is not the best since files 

contain a big overhead and data would be re-read 

from the source. 3. HDFS only performs appends to 

files there is no updating functionality [2].   

 The files stored within HDFS are stored as 

metadata files and a collection of blocks. The 

standard block size for an HDFS file is 64 MB. 

Block size is important regarding image processing 

for example if a file is bigger than the default block 

size it could be stored in different physical locations 

and if a file is too small more than one file will be 

stored inside a block or one file of KB will be stored 

in the block causing an impact to HDFS 

performance.  

 The master component or master node in the 

HDFS architecture is called the NameNode. The 

NameNode stores metadata information like where 

each block is stored, and how many times the file is 

replicated within the system and tracks the 

DataNodes. The DataNode is where the files and 

data are stored in the system. The NameNode is the 

one that administers all the DataNodes in the cluster. 

This includes DataNode failure and heartbeat 

messages. A heartbeat is a message that includes 

information about activity within the cluster and 

DataNode failures. These messages are configured 

to be sent every three seconds [3]. 

 HDFS has implemented a checksum to track 

faults in storage, network, or data that arrives 

corrupted. Each DataNode block has its hidden 

checksum. When a client using HDFS requests a 

block of data; it receives both the content and the 

checksum file. If the checksum does not match the 

locally calculated checksum the system will look in 

another DataNode for the replica of the data. See 

Figure 1 below. 

Figure 1 

HDFS Architecture 

Apache Hadoop MapReduce 

 MapReduce was originally developed by 

Google and detailed in the article; MapReduce: 

Simplified Data Processing on Large Clusters. 

Apache Hadoop implemented its own open-source 

version of MapReduce considering the design 

described in Google’s article. MapReduce can be 

defined as a programming model used for processing 

data. MapReduce considers the problems of 

distributing the data in a network of computers to 

always assure that all available memory, processor, 

and storage are used in the most optimized manner. 

MapReduce works with parallel data processing 

using the map phase and the reduce phase. Both 

phases have input and output key-value pairs. The 

type of input and output is chosen by the 

programmer or developer using this programming 

paradigm. 



  Additionally, the programmer must specify 

what will the map and reduce function do.  Hadoop 

divides the input into fixed-size splits, for each split 

created in the map and reduce phases are performed 

using the client-specific code in both functions. 

Hadoop performs exceptionally well when all the 

data being processed is contained within a single 

DataNode in HDFS [3]. The Map function writes its 

output to the local disk since it is an intermediate 

output received as the reduce function’s input. The 

reduce function is the one that writes its output 

directly to HDFS because the output from the phase 

is the final output of this programming model.  

 The execution of a MapReduce program or job 

can be summed up in the following steps: 

1. The user uploads input data to HDFS, which in 

turn distributes and stores it in the computing 

nodes. 

2. The user starts the job by specifying the 

MapReduce program to execute along with the 

input-output paths and other parameters. 

3. The master node sends a copy of the program 

along with its parameters to every computing 

node and starts the job. 

4. Computing nodes start the Map phase by first 

processing data on their local storage, fetching 

more data from other nodes if necessary and 

possible. 

5. After all Map tasks are finished, their output is 

sorted in a way, that for every Key, a Reduce 

task processes all the pairs with the Key. 

6. Once the Reduce phase is finished and its output 

has been written back to HDFS, the user 

retrieves the data. [4]. See Figure 2. 

 Also, the programmer must specify various 

things to be able to write a MapReduce program: 

InputFormatClass, Mapper class, Reducer class, and 

OutputFormat. Hadoop MapReduce performs better 

when the input is a small number of large files. When 

faced with a large amount of small files MapReduce 

is faced with an increasing amount of seeks that are 

needed to run a job. One way to avoid this problem 

is to merge all the small files by turning them into 

Sequence Files. In Sequence Files the key is the 

filename and the value, the file content. 

 

Figure 2 

MapReduce Program Flow

Sequence Files 

 Sequence files are a Hadoop file format that 

stores binary key-value pairs in a sequential form. 

This type of file is splitable, supports compression, 

and can store arbitrary types using serialization 

frameworks [3]. In addition, it is possible to create 

multiple sequence files in parallel and merge them 

into a bigger, more robust file. Hadoop was designed 

to work with files that are large, and larger than the 

default block size of 64 MB or 128 MB, depending 

on the version of Hadoop implemented. 

 Sequence files can be visualized as a container 

for multiple small files. In the case of images, the file 



name would be converted into the key of the 

sequence file and the value will be the binary content 

of the image or file. The creation of a sequence file 

must be performed using a MapReduce job. This job 

would receive as an input the large number of small 

images which are already stored within different 

blocks in HDFS, and it will output the sequence file 

in a <key, value> format. See Figure 3 below. 

Figure 3 

Visualization of a Sequence File 

 The use of sequence files is required for the 

objective discussed in this article; since most of the 

files generated by social media or found across the 

internet are small in file size. Hadoop has some 

limitations when dealing with many small files. The 

performance of Apache Hadoop’s HDFS is severely 

affected by this for the following reasons: DataNode 

memory, NameNode memory, and CPU time 

consumption.  

 The DataNode memory is affected because each 

file will be stored in a single HDFS block if the size 

is smaller than the default block size and having 

many blocks with such small files consume too 

much of the DataNode memory. NameNode 

memory is affected because files, directories, and 

blocks are objects that consume a lot of the system’s 

memory. Finally, the CPU time is spent more slowly 

and less efficiently since the MapReduce job will 

have the same number of mappers as the number of 

files being converted [5]. These deficiencies in the 

Hadoop system are mitigated when converting the 

small files into a sequence file.  

Feature Extraction using Descriptors 

The SIFT was created by D.Lowe in 2004. The 

main goal of this algorithm is to extract features or 

descriptors from keypoints [6]. The features will be 

extracted and stored in HDFS as a sequence file 

having as the key the image name and the features as 

the value. The dimensions of the feature are 

separated by commas for simplicity of use. SIFT is a 

reliable algorithm since it is invariant to image scale 

and rotation. The descriptors of this algorithm were 

created for the sole purpose of image matching. Each 

feature vector descriptor is highly different which 

facilitates the process of matching with another 

feature vector within the file system. 

The properties of an image that are commonly 

used for feature extraction are intensity, color, and 

texture. Image feature building requires a feature 

vector to have the repeatability property. When a 

feature vector has a proper repeatable factor when 

feature extraction is done it will bring back many of 

the same features that were detected from the images 

being compared. Consistency is also an important 

factor in feature detection and extraction since 

features must be detected even while an image has 

suffered changes like blurring, re-orientation, and re-

escalation [7].  

The SIFT algorithm can be divided into four 

steps: (1) keypoint localization, (2) orientation 

assignment, (3) keypoint descriptor, and (4) 

keypoint matching. In keypoint localization, an 

image is scaled, and then with this scaling, the 

Difference of Gauss is calculated. The result of the 

Difference of Gauss is then used as the input to 

calculate the Laplacian of Gaussian. Afterward, a 

pixel is compared to its 8 neighboring pixels and 9 

pixels in the previous and next scale. If it is 

determined that the pixel is a local maximum, then it 

can be considered a potential keypoint. In the 

orientation assignment, a direction is given to each 

keypoint. A histogram that covers all 360 degrees is 

created with 36 bins. The highest point in the 

histogram is used and any other peak that is above 

80 percent is also considered.  

In the keypoint descriptor stage, a window of 

16x16 is crated around the selected keypoint. This 

window is further divided into 16 sub-blocks of 4x4. 

In each of these 16 sub-blocks, an orientation 

histogram of 8 bins is created. This makes for a total 

of 128 bins that are transformed into a vector of 

descriptors [7]. The recently created feature vector 

still has a few problems; it is rotation dependent and 

illumination dependent. These are mitigated by 

removing keypoint orientation and thresholding the 

big numbers. Resulting in a normalized vector. The 

final step in the SIFT algorithm is keypoint 



matching. Keypoint matching is achieved when two 

images are matched by the identification of the 

nearest neighbor. 

Feature Vector Clustering 

One of the most important tasks in data mining 

is the use of clustering techniques. Clustering allows 

the user to extract significant knowledge from the 

dataset. Clustering consists of partitioning the data 

of a dataset into different amounts of subsets or 

groups in a way that all the data that is similar end 

up together and the other unrelated data is grouped 

in other subgroups. One of the most known and most 

used clustering techniques in data mining is the K-

Means clustering algorithm. K-means is defined as 

an unsupervised clustering algorithm [8]. The main 

purpose of K-Means is to classify the data in a 

dataset into multiple groups based on the patterns 

found in the data.  This is achieved by looking for 

several clusters (k) in a dataset. The time complexity 

of the K-Means algorithm is O (nkt), where n refers 

to the number of datapoints, k is the number of 

clusters and t is the number of iterations [9]. 

The K-Means clustering algorithm can be 

divided into two main steps: (1) Cluster Assignment 

and (2) Move Centroid Step. These steps are 

repeated iteratively until one of the following 

conditions is reached; the centroids will not change 

their positions anymore or the iterations have gone 

through the maximum number. The centroid of the 

clusters (k) can be chosen randomly at the start, or 

several centroids can be assigned initially using the 

elbow method. See Figure 4 below. 

Figure 4 

Visualization of the K-Means algorithm in MapReduce 

The Elbow Method consists of plotting values 

with a different number of clusters (k). The graph 

will show a tendency where the number of clusters 

will grow while the amount of data points per cluster 

diminishes. Hence, the optimal number of clusters 

will be at the inflection point. The elbow point can 

be easily chosen as observed in the graph. See Figure 

5 below.  

Figure 5 

Elbow Method Example 

After having a set number of clusters, the next 

step is to calculate the Euclidean distance. The 

Euclidean distance is the distance calculation 

between datapoints and the established centroid or 

cluster centers [9]. The K-Means algorithm can be 

implemented on the terms of Hadoop MapReduce, 

where the Map function will assign each data point 

to the nearest cluster center or centroid and the 

Reduce function will be constantly updating the 

cluster centers until they remain unchanged. 

METHODOLOGY 

Hadoop’s principal components: Hadoop 

Common, HDFS, MapReduce, and YARN will be 

installed using a binary tarball which can be found 

on the Apache Software Foundation. Before 

installing Hadoop, the user must make sure they 

have Java installed on the computer. The Hadoop 

environment can run on Unix and Windows, but only 

Linux is given support, and Windows is mostly used 

for development purposes. A stable release in form 

of a gzipped tar file can be downloaded from the 

releases page of Apache Hadoop. After downloading 

the stable version of Apache Hadoop various 

environment variables must be set, this file should be 



a shell startup file, for example, JAVA_HOME and 

HADOOP_HOME. All the individual components 

in Hadoop are configured via XML files. Hadoop 

can be configured to run in one of three modes: 

standalone or local mode, pseudo-distributed mode, 

and fully distributed mode [3]. 

In standalone mode, no daemons are running, 

and everything runs in a local JVM. In pseudo-

distributed mode, the daemons run locally creating a 

simulated virtual cluster and in fully distributed 

mode the daemons run on a cluster of PCs or 

machines. Configuration for pseudo-distributed 

mode and fully distributed mode require to have 

SSH installed and configured to be a password-less 

login. After this step, the HDFS installation must be 

formatted to create the storage directories and the 

namenode’s data structures on the system. When all 

these steps are completed the only left to do is to start 

the Hadoop daemons on the machine. 

Additionally, another tool from the Hadoop 

ecosystem that needs to be installed is Apache Spark. 

First, the correct Spark version must be downloaded 

which should be the correct version for the Hadoop 

installation that’s already configured in the machine. 

After this step, two Hadoop configuration files must 

be included inside Apache Spark’s classpath, these 

are hdfs-site.xml and core-site.xml. These 

configuration files will provide behaviors for the 

HDFS client and will set the default filesystem 

name. Inside Hadoop, the files can be found within 

the /etc/Hadoop/conf directory. Making these files 

visible requires including an environment variable 

located in spark-env.sh. The variable is 

HADOOP_CONF_DIR. Enabling the use of Python 

with Spark requires installing Pyspark, this can be 

done using the command pip install pyspark [10]. 

Last, when the use of applications that use spark a 

SparkSession must be created. The SparkSession 

allows the use of Spark across the cluster. 

Now that HDFS, MapReduce, and Apache 

Spark have been installed on the machine we can 

begin the process of processing the images and turn 

them into one sequence file. The first step is to store 

in HDFS a text file that contains the paths of all the 

images that are going to be used for object 

recognition purposes. This file is stored within 

HDFS using the following command: -put 

/home/file.txt /user/input, the user must be aware 

that the target path must be created beforehand using 

the command -mkdir /user/input.  

After this file is stored in the distributed file 

system a MapReduce job must be performed to 

convert the images in the path into one 

SequenceFile. This MapReduce job can be 

completed without the use of a reduce function since 

the output of the map function does not have to be 

combined. The output of the map function will be a 

sequence file in the <key,value> format in which the 

key will be the path of the image and the value will 

be the contents of the image in a binary format. 

Afterward, another MapReduce job must be 

performed to read the image bytes from the images 

and save the image itself in HDFS. This job can also 

be performed using a map function since the 

individual results of the map function are the 

information needed to be stored in the file system. 

Now that the sequencefile has been created, the 

features from the different images stored in HDFS 

must be extracted. The SIFT technique will the 

applied feature extraction algorithm. This 

functionality is included within the opencv library 

included in the pyspark script. SIFT is used to detect 

the different features in the images and generates 

feature vectors of the descriptors in a 128-

dimensional array. Additionally, the pyspark script 

includes the numpy and pyspark libraries. 

The input parameters of the pyspark script are 

the following: feature extraction name, the path 

where the sequence file is located, the output path 

where the file will be stored, and the number of 

partitions. First, the instance of Apache Spark is 

created by generating the spark context. The 

sequencefile that was specified in the input is 

transformed into a flatmap, which arranges the file 

in a dataframe. The images received will be 

converted into a 128-dimensional array. The 

resulting array is then decoded by using the 

computer vision function imdecode which converts 

the image data in the cache to an image format. After 

this process, the images are inputted to another 



function which creates and computes the keypoints 

and descriptors using the SIFT algorithm available 

in the computer vision library. Finally, the keypoints 

and descriptors created from the SIFT algorithm are 

filtered using a map function that groups the 

filenames with the feature extracted. 

After having created the feature vectors using 

the SIFT algorithm, these vectors are going to be 

inputted into a python script that uses Apache-Spark 

library MlLib and OpenCV. This will cluster feature 

vectors by their similar properties using the K-

Means Algorithm. Before performing the actual 

clustering of the feature vectors, the k-means model 

must be trained with the existing feature vectors. To 

begin an Apache-Spark context is created.  

This script has the following input parameters, 

the number of centroids, the path where the file 

containing the feature vectors is located, and the path 

where the results of the script will be outputted. The 

script reads the file containing the feature vectors of 

all the images, flattens the data frames, and returns a 

new resilient distributed dataset.  

This means that every item, image, on the file 

will transform from a 128-dimensional array to one-

dimensional vectors of 128 in length. This new 

resilient data set is given as input to the k-means 

training model which in turn returns the clusters and 

final centroids in a plain text file. Another Apache-

Spark application then takes the k-means model 

dictionary and proceeds to encode it to a single 

cluster. The process is performed by taking every 

row of the original 128-dimensional array and 

assigning it to a single cluster of the k-means 

dictionary. 

CONCLUSION 

 In conclusion, computer vision techniques and 

processes have been integrated with the use of the 

Hadoop environment to achieve a scalable algorithm 

capable of performing parallel tasks to manage Big 

Data applications such as image classification. This 

approach has been based on the Vector for Locally 

Aggregated Descriptors (VLAD) technique to 

generate an algorithm capable of recognizing image 

features. With the use of clustering algorithms like 

K-means through the Hadoop MapReduce function, 

the system can generate a dictionary of features or 

Bag of Visual Words (BoW) and then classify 

images based on this trained set for desired features.  

 The use of the Hadoop environment for this type 

of application over the years has been developed 

with the creation of analytics engines such as 

Apache Spark. This robust engine has simplified the 

process for users to develop algorithms without the 

need to learn the complex parallel programming 

behind a classical MapReduce function.  

 Having a programming base such as Python 

makes the proposed algorithm an accessible means 

for implementation, given that all tools used for this 

design are considered open source. Making this type 

of solution to even be distributable for commercial 

use. Given the hardware limitations required for a 

Hadoop application of this nature, applying it on a 

small scale was not possible during the time frame 

of this investigation. Since this environment 

platform performs efficiently through a dedicated 

networking system, proportional to the number of 

datanodes associated and dedicated to such type of 

analysis.       

FUTURE WORK 

The proposed solution to the problem should be 

implemented on a server that has Hadoop installed 

in fully distributed mode. The server should have at 

the bare minimum 6 datanodes to at least 10 

datanodes with a principal namenode. Also, the 

solution could be implemented using cloud services 

like the ones offered by Amazon Web Services 

(AWS). AWS is a service that allows users to 

process and study large datasets using all the latest 

versions of big data frameworks. Hadoop installed in 

standalone mode does not have the memory or 

processing requirements necessary to perform the 

computations needed for content-based image 

recognition. Additionally, to complete the process of 

content-based image recognition the inclusion of a 

supervised algorithm for classifying the images. The 

process of classification is to label each image 



according to the feature vector for the main purpose 

of querying or fetching an image from a large dataset 

which includes a feature vector that represents the 

object. 
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