
Image Object Recognition Using Apache Hadoop and Python

Jaileen Del Valle Maldonado

Master in Computer Science

Nelliud Torres Batista Ph.D.

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract ⎯ The amount of data generated by

people each day on social media platforms is

increasing at an alarming rate. Studies performed

show that approximately 1.5 billion images are

uploaded to the internet each day. Applications that

can use and analyze this data are not available to all

users due to limitations in processing power or

storage space required for the analysis of these large

datasets. Apache Hadoop is an open-source

framework that allows distributed processing and

fault tolerance of Big Data with the use of

commodity hardware using Hadoop Distributed File

System (HDFS) and MapReduce. Using HDFS data

is stored in a distributed manner across different

machines (datanotes). The use of the MapReduce

framework parallelized computing is available and

manageable to be able to mine and analyze the

image data available created by users. The focus of

this article will be the analysis of image data in large

datasets to create feature vectors using the k-means

algorithm to group together images that contain

similar objects inside them using Apache Hadoop,

MapReduce, Apache Spark, Computer Vision, and

the Python programming language.

Key Terms ⎯ K-Means Clustering, Map

Reduce, Sequence File, Scale Invariant Feature

Transform (SIFT)

INTRODUCTION

 The term Big Data is used to describe the huge

volumes of data generated by digital processes.

Currently, the use of social media sites has increased

the amount of image data being uploaded every day

on sites like Facebook, WhatsApp, and Twitter. This

increasing amount of information growth has created

a new kind of problem for data analysts. Analyzing

and processing such huge amounts of data could

create bottlenecks caused by the use of a single

computer, power concerns, and the amount of

storage space needed. The present-day computer

architectures are reaching their physical limitations

and with this, the implementation of distributed

systems is becoming more widespread. The main

reason to which the popularity of distributed systems

can be attributed are: i) physical limitations of

processors, ii) scalability, iii) fault tolerance iv)

latency. [1] With the use of distributed systems tasks

are completed by dividing a task into multiple

subtasks. Dividing system tasks is known as

parallelization, this makes applications running on a

distributed system more scalable and efficient. A

widely known distributed system platform is Apache

Hadoop and the Hadoop MapReduce algorithm.

Hadoop is being used as a system for processing

huge datasets by using parallel and distributed

computing. In addition, various studies have been

performed using Apache Hadoop an example of

these are: conducting analysis of text files,

examining DNA sequencing data, converting images

to PDF, and feature extraction and selection. These

studies are performed by dividing the data across

multiple features like algorithm parameters, images,

or pixels. The k-means algorithm has been

implemented within the MapReduce programming

framework to analyze images and classify them

based on their color.

BACKGROUND AND RELATED WORK

The following section will explain in detail the

tools, concepts, and previous knowledge required for

the implementation of image object recognition

using Apache Hadoop and Python.

Apache Hadoop

 Hadoop is an open-source framework that

works as a distributed system with a scalable, fault-

tolerant design. It is used for data storage and

processing. The creation of Apache Hadoop was

inspired by Google’s articles on Map Reduce and

Google Distributed File System. Apache Hadoop

was developed and written in the java programming

language. Currently, it is being used for the analysis

of Big Data at companies such as Facebook and

Yahoo!. Since the Hadoop framework is best known

for its scalability and fault tolerance it can be used

for data analysis. The main components of Apache

Hadoop are HDFS and MapReduce [2].

Apache Hadoop Distributed File System

HDFS is a filesystem designed for storing large

files in a distributed manner with streaming data

access patterns. These are usually run-on commodity

hardware. The definition of “very large files” in the

Big Data environment means files that could span

from hundreds of GB, TB, or PB. The architecture

of HDFS makes it scalable but there are a few

drawbacks: 1. HDFS works better performing long

sequential reads from files, but it is not used for

random reads 2. Caching is not the best since files

contain a big overhead and data would be re-read

from the source. 3. HDFS only performs appends to

files there is no updating functionality [2].

 The files stored within HDFS are stored as

metadata files and a collection of blocks. The

standard block size for an HDFS file is 64 MB.

Block size is important regarding image processing

for example if a file is bigger than the default block

size it could be stored in different physical locations

and if a file is too small more than one file will be

stored inside a block or one file of KB will be stored

in the block causing an impact to HDFS

performance.

 The master component or master node in the

HDFS architecture is called the NameNode. The

NameNode stores metadata information like where

each block is stored, and how many times the file is

replicated within the system and tracks the

DataNodes. The DataNode is where the files and

data are stored in the system. The NameNode is the

one that administers all the DataNodes in the cluster.

This includes DataNode failure and heartbeat

messages. A heartbeat is a message that includes

information about activity within the cluster and

DataNode failures. These messages are configured

to be sent every three seconds [3].

 HDFS has implemented a checksum to track

faults in storage, network, or data that arrives

corrupted. Each DataNode block has its hidden

checksum. When a client using HDFS requests a

block of data; it receives both the content and the

checksum file. If the checksum does not match the

locally calculated checksum the system will look in

another DataNode for the replica of the data. See

Figure 1 below.

Figure 1

HDFS Architecture

Apache Hadoop MapReduce

 MapReduce was originally developed by

Google and detailed in the article; MapReduce:

Simplified Data Processing on Large Clusters.

Apache Hadoop implemented its own open-source

version of MapReduce considering the design

described in Google’s article. MapReduce can be

defined as a programming model used for processing

data. MapReduce considers the problems of

distributing the data in a network of computers to

always assure that all available memory, processor,

and storage are used in the most optimized manner.

MapReduce works with parallel data processing

using the map phase and the reduce phase. Both

phases have input and output key-value pairs. The

type of input and output is chosen by the

programmer or developer using this programming

paradigm.

 Additionally, the programmer must specify

what will the map and reduce function do. Hadoop

divides the input into fixed-size splits, for each split

created in the map and reduce phases are performed

using the client-specific code in both functions.

Hadoop performs exceptionally well when all the

data being processed is contained within a single

DataNode in HDFS [3]. The Map function writes its

output to the local disk since it is an intermediate

output received as the reduce function’s input. The

reduce function is the one that writes its output

directly to HDFS because the output from the phase

is the final output of this programming model.

 The execution of a MapReduce program or job

can be summed up in the following steps:

1. The user uploads input data to HDFS, which in

turn distributes and stores it in the computing

nodes.

2. The user starts the job by specifying the

MapReduce program to execute along with the

input-output paths and other parameters.

3. The master node sends a copy of the program

along with its parameters to every computing

node and starts the job.

4. Computing nodes start the Map phase by first

processing data on their local storage, fetching

more data from other nodes if necessary and

possible.

5. After all Map tasks are finished, their output is

sorted in a way, that for every Key, a Reduce

task processes all the pairs with the Key.

6. Once the Reduce phase is finished and its output

has been written back to HDFS, the user

retrieves the data. [4]. See Figure 2.

 Also, the programmer must specify various

things to be able to write a MapReduce program:

InputFormatClass, Mapper class, Reducer class, and

OutputFormat. Hadoop MapReduce performs better

when the input is a small number of large files. When

faced with a large amount of small files MapReduce

is faced with an increasing amount of seeks that are

needed to run a job. One way to avoid this problem

is to merge all the small files by turning them into

Sequence Files. In Sequence Files the key is the

filename and the value, the file content.

Figure 2

MapReduce Program Flow

Sequence Files

 Sequence files are a Hadoop file format that

stores binary key-value pairs in a sequential form.

This type of file is splitable, supports compression,

and can store arbitrary types using serialization

frameworks [3]. In addition, it is possible to create

multiple sequence files in parallel and merge them

into a bigger, more robust file. Hadoop was designed

to work with files that are large, and larger than the

default block size of 64 MB or 128 MB, depending

on the version of Hadoop implemented.

 Sequence files can be visualized as a container

for multiple small files. In the case of images, the file

name would be converted into the key of the

sequence file and the value will be the binary content

of the image or file. The creation of a sequence file

must be performed using a MapReduce job. This job

would receive as an input the large number of small

images which are already stored within different

blocks in HDFS, and it will output the sequence file

in a <key, value> format. See Figure 3 below.

Figure 3

Visualization of a Sequence File

 The use of sequence files is required for the

objective discussed in this article; since most of the

files generated by social media or found across the

internet are small in file size. Hadoop has some

limitations when dealing with many small files. The

performance of Apache Hadoop’s HDFS is severely

affected by this for the following reasons: DataNode

memory, NameNode memory, and CPU time

consumption.

 The DataNode memory is affected because each

file will be stored in a single HDFS block if the size

is smaller than the default block size and having

many blocks with such small files consume too

much of the DataNode memory. NameNode

memory is affected because files, directories, and

blocks are objects that consume a lot of the system’s

memory. Finally, the CPU time is spent more slowly

and less efficiently since the MapReduce job will

have the same number of mappers as the number of

files being converted [5]. These deficiencies in the

Hadoop system are mitigated when converting the

small files into a sequence file.

Feature Extraction using Descriptors

The SIFT was created by D.Lowe in 2004. The

main goal of this algorithm is to extract features or

descriptors from keypoints [6]. The features will be

extracted and stored in HDFS as a sequence file

having as the key the image name and the features as

the value. The dimensions of the feature are

separated by commas for simplicity of use. SIFT is a

reliable algorithm since it is invariant to image scale

and rotation. The descriptors of this algorithm were

created for the sole purpose of image matching. Each

feature vector descriptor is highly different which

facilitates the process of matching with another

feature vector within the file system.

The properties of an image that are commonly

used for feature extraction are intensity, color, and

texture. Image feature building requires a feature

vector to have the repeatability property. When a

feature vector has a proper repeatable factor when

feature extraction is done it will bring back many of

the same features that were detected from the images

being compared. Consistency is also an important

factor in feature detection and extraction since

features must be detected even while an image has

suffered changes like blurring, re-orientation, and re-

escalation [7].

The SIFT algorithm can be divided into four

steps: (1) keypoint localization, (2) orientation

assignment, (3) keypoint descriptor, and (4)

keypoint matching. In keypoint localization, an

image is scaled, and then with this scaling, the

Difference of Gauss is calculated. The result of the

Difference of Gauss is then used as the input to

calculate the Laplacian of Gaussian. Afterward, a

pixel is compared to its 8 neighboring pixels and 9

pixels in the previous and next scale. If it is

determined that the pixel is a local maximum, then it

can be considered a potential keypoint. In the

orientation assignment, a direction is given to each

keypoint. A histogram that covers all 360 degrees is

created with 36 bins. The highest point in the

histogram is used and any other peak that is above

80 percent is also considered.

In the keypoint descriptor stage, a window of

16x16 is crated around the selected keypoint. This

window is further divided into 16 sub-blocks of 4x4.

In each of these 16 sub-blocks, an orientation

histogram of 8 bins is created. This makes for a total

of 128 bins that are transformed into a vector of

descriptors [7]. The recently created feature vector

still has a few problems; it is rotation dependent and

illumination dependent. These are mitigated by

removing keypoint orientation and thresholding the

big numbers. Resulting in a normalized vector. The

final step in the SIFT algorithm is keypoint

matching. Keypoint matching is achieved when two

images are matched by the identification of the

nearest neighbor.

Feature Vector Clustering

One of the most important tasks in data mining

is the use of clustering techniques. Clustering allows

the user to extract significant knowledge from the

dataset. Clustering consists of partitioning the data

of a dataset into different amounts of subsets or

groups in a way that all the data that is similar end

up together and the other unrelated data is grouped

in other subgroups. One of the most known and most

used clustering techniques in data mining is the K-

Means clustering algorithm. K-means is defined as

an unsupervised clustering algorithm [8]. The main

purpose of K-Means is to classify the data in a

dataset into multiple groups based on the patterns

found in the data. This is achieved by looking for

several clusters (k) in a dataset. The time complexity

of the K-Means algorithm is O (nkt), where n refers

to the number of datapoints, k is the number of

clusters and t is the number of iterations [9].

The K-Means clustering algorithm can be

divided into two main steps: (1) Cluster Assignment

and (2) Move Centroid Step. These steps are

repeated iteratively until one of the following

conditions is reached; the centroids will not change

their positions anymore or the iterations have gone

through the maximum number. The centroid of the

clusters (k) can be chosen randomly at the start, or

several centroids can be assigned initially using the

elbow method. See Figure 4 below.

Figure 4

Visualization of the K-Means algorithm in MapReduce

The Elbow Method consists of plotting values

with a different number of clusters (k). The graph

will show a tendency where the number of clusters

will grow while the amount of data points per cluster

diminishes. Hence, the optimal number of clusters

will be at the inflection point. The elbow point can

be easily chosen as observed in the graph. See Figure

5 below.

Figure 5

Elbow Method Example

After having a set number of clusters, the next

step is to calculate the Euclidean distance. The

Euclidean distance is the distance calculation

between datapoints and the established centroid or

cluster centers [9]. The K-Means algorithm can be

implemented on the terms of Hadoop MapReduce,

where the Map function will assign each data point

to the nearest cluster center or centroid and the

Reduce function will be constantly updating the

cluster centers until they remain unchanged.

METHODOLOGY

Hadoop’s principal components: Hadoop

Common, HDFS, MapReduce, and YARN will be

installed using a binary tarball which can be found

on the Apache Software Foundation. Before

installing Hadoop, the user must make sure they

have Java installed on the computer. The Hadoop

environment can run on Unix and Windows, but only

Linux is given support, and Windows is mostly used

for development purposes. A stable release in form

of a gzipped tar file can be downloaded from the

releases page of Apache Hadoop. After downloading

the stable version of Apache Hadoop various

environment variables must be set, this file should be

a shell startup file, for example, JAVA_HOME and

HADOOP_HOME. All the individual components

in Hadoop are configured via XML files. Hadoop

can be configured to run in one of three modes:

standalone or local mode, pseudo-distributed mode,

and fully distributed mode [3].

In standalone mode, no daemons are running,

and everything runs in a local JVM. In pseudo-

distributed mode, the daemons run locally creating a

simulated virtual cluster and in fully distributed

mode the daemons run on a cluster of PCs or

machines. Configuration for pseudo-distributed

mode and fully distributed mode require to have

SSH installed and configured to be a password-less

login. After this step, the HDFS installation must be

formatted to create the storage directories and the

namenode’s data structures on the system. When all

these steps are completed the only left to do is to start

the Hadoop daemons on the machine.

Additionally, another tool from the Hadoop

ecosystem that needs to be installed is Apache Spark.

First, the correct Spark version must be downloaded

which should be the correct version for the Hadoop

installation that’s already configured in the machine.

After this step, two Hadoop configuration files must

be included inside Apache Spark’s classpath, these

are hdfs-site.xml and core-site.xml. These

configuration files will provide behaviors for the

HDFS client and will set the default filesystem

name. Inside Hadoop, the files can be found within

the /etc/Hadoop/conf directory. Making these files

visible requires including an environment variable

located in spark-env.sh. The variable is

HADOOP_CONF_DIR. Enabling the use of Python

with Spark requires installing Pyspark, this can be

done using the command pip install pyspark [10].

Last, when the use of applications that use spark a

SparkSession must be created. The SparkSession

allows the use of Spark across the cluster.

Now that HDFS, MapReduce, and Apache

Spark have been installed on the machine we can

begin the process of processing the images and turn

them into one sequence file. The first step is to store

in HDFS a text file that contains the paths of all the

images that are going to be used for object

recognition purposes. This file is stored within

HDFS using the following command: -put

/home/file.txt /user/input, the user must be aware

that the target path must be created beforehand using

the command -mkdir /user/input.

After this file is stored in the distributed file

system a MapReduce job must be performed to

convert the images in the path into one

SequenceFile. This MapReduce job can be

completed without the use of a reduce function since

the output of the map function does not have to be

combined. The output of the map function will be a

sequence file in the <key,value> format in which the

key will be the path of the image and the value will

be the contents of the image in a binary format.

Afterward, another MapReduce job must be

performed to read the image bytes from the images

and save the image itself in HDFS. This job can also

be performed using a map function since the

individual results of the map function are the

information needed to be stored in the file system.

Now that the sequencefile has been created, the

features from the different images stored in HDFS

must be extracted. The SIFT technique will the

applied feature extraction algorithm. This

functionality is included within the opencv library

included in the pyspark script. SIFT is used to detect

the different features in the images and generates

feature vectors of the descriptors in a 128-

dimensional array. Additionally, the pyspark script

includes the numpy and pyspark libraries.

The input parameters of the pyspark script are

the following: feature extraction name, the path

where the sequence file is located, the output path

where the file will be stored, and the number of

partitions. First, the instance of Apache Spark is

created by generating the spark context. The

sequencefile that was specified in the input is

transformed into a flatmap, which arranges the file

in a dataframe. The images received will be

converted into a 128-dimensional array. The

resulting array is then decoded by using the

computer vision function imdecode which converts

the image data in the cache to an image format. After

this process, the images are inputted to another

function which creates and computes the keypoints

and descriptors using the SIFT algorithm available

in the computer vision library. Finally, the keypoints

and descriptors created from the SIFT algorithm are

filtered using a map function that groups the

filenames with the feature extracted.

After having created the feature vectors using

the SIFT algorithm, these vectors are going to be

inputted into a python script that uses Apache-Spark

library MlLib and OpenCV. This will cluster feature

vectors by their similar properties using the K-

Means Algorithm. Before performing the actual

clustering of the feature vectors, the k-means model

must be trained with the existing feature vectors. To

begin an Apache-Spark context is created.

This script has the following input parameters,

the number of centroids, the path where the file

containing the feature vectors is located, and the path

where the results of the script will be outputted. The

script reads the file containing the feature vectors of

all the images, flattens the data frames, and returns a

new resilient distributed dataset.

This means that every item, image, on the file

will transform from a 128-dimensional array to one-

dimensional vectors of 128 in length. This new

resilient data set is given as input to the k-means

training model which in turn returns the clusters and

final centroids in a plain text file. Another Apache-

Spark application then takes the k-means model

dictionary and proceeds to encode it to a single

cluster. The process is performed by taking every

row of the original 128-dimensional array and

assigning it to a single cluster of the k-means

dictionary.

CONCLUSION

 In conclusion, computer vision techniques and

processes have been integrated with the use of the

Hadoop environment to achieve a scalable algorithm

capable of performing parallel tasks to manage Big

Data applications such as image classification. This

approach has been based on the Vector for Locally

Aggregated Descriptors (VLAD) technique to

generate an algorithm capable of recognizing image

features. With the use of clustering algorithms like

K-means through the Hadoop MapReduce function,

the system can generate a dictionary of features or

Bag of Visual Words (BoW) and then classify

images based on this trained set for desired features.

 The use of the Hadoop environment for this type

of application over the years has been developed

with the creation of analytics engines such as

Apache Spark. This robust engine has simplified the

process for users to develop algorithms without the

need to learn the complex parallel programming

behind a classical MapReduce function.

 Having a programming base such as Python

makes the proposed algorithm an accessible means

for implementation, given that all tools used for this

design are considered open source. Making this type

of solution to even be distributable for commercial

use. Given the hardware limitations required for a

Hadoop application of this nature, applying it on a

small scale was not possible during the time frame

of this investigation. Since this environment

platform performs efficiently through a dedicated

networking system, proportional to the number of

datanodes associated and dedicated to such type of

analysis.

FUTURE WORK

The proposed solution to the problem should be

implemented on a server that has Hadoop installed

in fully distributed mode. The server should have at

the bare minimum 6 datanodes to at least 10

datanodes with a principal namenode. Also, the

solution could be implemented using cloud services

like the ones offered by Amazon Web Services

(AWS). AWS is a service that allows users to

process and study large datasets using all the latest

versions of big data frameworks. Hadoop installed in

standalone mode does not have the memory or

processing requirements necessary to perform the

computations needed for content-based image

recognition. Additionally, to complete the process of

content-based image recognition the inclusion of a

supervised algorithm for classifying the images. The

process of classification is to label each image

according to the feature vector for the main purpose

of querying or fetching an image from a large dataset

which includes a feature vector that represents the

object.

REFERENCES

[1] N. Kumar, "Content Based Image Retrieval for Big Visual

Data using Map Reduce - raiith", Raiith.iith.ac.in, 2015.

[Online]. Available: https://raiith.iith.ac.in/1609/

[2] C. Reggiani, "Scaling feature selection algorithms using

MapReduce on Apache Hadoop", Claudioreggiani.com,

2013. [Online]. Available:

http://claudioreggiani.com/pdf/masterthesis.pdf

[3] T. White., Hadoop: The Definitive Guide, Second Edition.

O'Reilly Media, Inc., 2010.

[4] K. Potisepp, "Large-scale Image Processing Using

MapReduce", semanticscholar, 2013. [Online]. Available:

https://www.semanticscholar.org/paper/Large-scale-Image-

Processing-Using-MapReduce-

Potisepp/bb7ce436cc9e2b1c4c64516ae9f600dc517b7353

[5] T. El-Sayed, A. El-Sayed and M. Badawy, "Impact of Small

Files on Hadoop Performance: Literature Survey and Open

Points", researchgate, 2019. [Online]. Available:

https://www.researchgate.net/publication/337677872_Impa

ct_of_Small_Files_on_Hadoop_Performance_Literature_S

urvey_and_Open_Points#:~:text=Hadoop%20performs%2

0well%20with%20files,of%20the%20MapReduce%20appl

ications%20

[6] D. Lowe, "Distinctive Image Features from Scale-Invariant

Keypoints", Cs.ubc.ca, 2004. [Online]. Available:

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

[7] W. Murphy, "Large Scale Hierarchical K-Means Based

Image Retrieval With MapReduce", AFIT Scholar, 2014.

[Online]. Available: https://scholar.afit.edu/etd/616/

[8] S. Vemula and C. Crick, "Hadoop Image Processing

Framework", ieeexplore, 2015. [Online]. Available:

https://ieeexplore.ieee.org/document/7207264

[9] T. Habib and Z. Ansari, "An Analysis of MapReduce

Efficiency in Document Clustering using Parallel K-Means

Algorithm", researchgate, 2018. [Online]. Available:

https://www.researchgate.net/publication/325208173_An_

Analysis_of_MapReduce_Efficiency_in_Document_Cluste

ring_using_Parallel_K-Means_Algorithm

[10] B. Chambers and M. Zaharia, Spark: The Definitive Guide:

Big Data Processing Made Simple, 1st ed. Seoul: Hanbit

Midieo, 2018.

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

