
Securing HTTP Communication for Homemade IoT Projects

Jose R. De la Vega López

Master in Computer Science

Advisor: Dr. Jeffrey Duffany

Electrical and Computer Engineering & Computer Science Department

Polytechnic University of Puerto Rico

Abstract ⎯ The Internet of Things (IoT) is a topic

in the Computer Science and Engineering field that

has rapidly grown in the last couple of years. The

popularity of the topic has made different

companies to make proprietary IoT devices which

can be purchased with ease. Although these devices

are very accessible there are many students and

professionals in the STEM area that like to create

their own IoT devices using tools such as

Raspberry Pi [1] and Arduino. Working with these

devices in such projects will give students a boost

in networking knowledge, but many miss the

security part of the project. Using AES encryption

to share messages and RSA public key encryption

to encrypt the AES key can greatly improve the

security of the HTTP communication for these

projects as well as improving the student’s

knowledge in network security.

Key Terms ⎯ DIY, IoT, Network Security,

Raspberry Pi.

INTRODUCTION

The Internet of Things (IoT) is a trending topic

in the Computer Science and Engineering area.

According to IBM IoT is the concept of connecting

any electronic device to the internet and to other

devices [2]. It is not a surprise why this topic is so

popular nowadays living in a world where

convenience and information are a priority. People

often have home devices connected to the internet

such as the fridge, thermostats, humidifiers,

artificial intelligence assistants, and even cleaning

robots. These devices can bring a lot of helpful and

useful information to the owner of said devices,

leading to a more convenient life. Having devices

connected to the internet imminently establishes a

security risk. Security measures must be taken in

order to protect the information stored and

transferred by these devices. Although security

risks are true for any IoT device, it is even more

risky to create a homemade IoT device.

Creating one’s own IoT device using tools such

as the Raspberry Pi can be very educational and

inexpensive for students and STEM professionals.

The Raspberry Pi offers great resources for people

to develop all sorts of projects, but people mainly

focus on the functionality of the device they are

building and not the security. The goal of this

research is to provide a guide for people interested

in making their homemade IoT devices on how to

apply security to the system.

For this project a simple circuit was build. It

consists of three LEDs of different colors, which

the user could turn on and off by using a web client

from anywhere in the world. Using the web

interface the actual status of the different LEDs can

be seen whether they are on or off and their color.

For this project to work, a client and a server to

communicate with each other were develop, and the

circuit was connected to the server so that the

server could turn on and off the LEDs. Figure 1

shows how the project is connected and how it

should work.

Figure 1

Client-Server Communication Diagram

The client and the server will communicate

with each other over the internet, encrypting the

communication using AES and RSA public key

encryption. The server will be connected to a

breadboard via the GPIO pins by using a bridge

adapter. This way the server will be able to send

voltage to the breadboard and turn on and off the

LEDs of the circuit.

MATERIALS AND TOOLS

The total cost of the materials and tools used in

this project is under $100 USD which is considered

affordable and most of the tools can be used for

various IoT projects. The list of materials is:

• Raspberry Pi 3 Model B Breadboard: This

tool will be the base of the circuit that will be

used to represent the IoT device.

• GPIO Pin Bridge to Breadboard: This is not

a requirement for the project as a solder or

female to male jumper wires can be used and it

will serve the same purpose. This tool was

added to the list because it made the usage of

GPIO Pins easier.

• 220-ohm Resistors: The resistors are used in

the circuit so that it does not burn the LEDs.

• LED (red, blue, green): The LEDs are used in

the circuit as well. The user will interact with

the LEDs by using the client interface.

• Jumper Wires: The jumper wires are used to

connect the whole circuit together.

• Raspbian: The Operating System used in this

project is Raspbian, which is a distribution of

Debian (Linux) optimized for the Raspberry Pi.

• Python and PyCrypto [3]: The code running

in the server is built with Python and the

Library used for encryption is PyCrypto. The

PyCrypto library is mainly used for its AES

and RSA encryption and decryption methods

as well as RSA key generation.

• React-JS and Crypto-JS [4]: The client is

built using React-JS which is a JavaScript

Framework. The AES and RSA encryption

functions are done with Crypto- JS.

• Wireshark [5]: The analysis of the network

traffic for this project is done using Wireshark.

Wireshark is an open source packet sniffing

tool mainly used for network traffic analysis.

THE CIRCUIT

The circuit built for this project is a very

simple one. Its purpose is to turn on and off 3

different LEDs of different colors, red, blue and

green. This simple circuit is only used as a

representation of any homemade IoT device. This

circuit could have been one used to unlock doors,

measure room temperature or any other

functionality. Every time a user interacts with one

of the LEDs via the web client, information about

the specific LEDs are sent via HTTP protocol. The

information each LED holds is the color of the

LED, the GPIO pin that sends voltage to that LED

and the status of the LED (if it is on or off). In a

real-world scenario, a person could have more

information regarding the LEDs, like for example

the name of the room where the LED is in.

The idea behind creating this circuit was to be

able to control something at home from far away

over a TCP/IP network and verifying how secure

was the data being transmitted. It was decided to

use the LEDs because it was very simple to make,

and all the materials for the circuit were available.

More details about how the circuit was built can be

found in the next section under the Setting Up the

Raspberry Pi subsection.

METHODOLOGY

The project can be divided into 4 parts: setting

up the Raspberry Pi, building the code for the

client, building the code for the server, and

applying the security measures for the client-server

communication.

Setting up the Raspberry Pi

The first step is to set up the Raspberry Pi and

the circuit. To make the Raspberry Pi available to

external networks the first thing needed to do is to

give the device a static IP address. This is because

it will be forwarding traffic from external networks

to that static IP address if the traffic is intended to

reach the server of the IoT device. This can be done

by accessing the /etc/dhcp.conf path in the

operating system and manually typing the static IP

address desired. Now that the device has a static IP

address, the next step would be to add some rules

into the router for port forwarding. In this case a

forwarding rule stating that all traffic coming into

the router intended for port 7979 will be sent to the

Pi’s address using port 22 (SSH). Instead of using

port 22, 7979 was used to make it less obvious that

the SSH port is open. The second forwarding rule,

which can be seen in Figure 2, will be for all traffic

intended for port 5000; any traffic for port 5000

will be sent to the Pi as well. This port will be used

by the server to listen for commands.

At this point there is a device that is opened to

external networks which can be accessed by using

ports 5000 for the application, and 7979 (routed to

22) for SSH. Since the ports that wanted to be able

to listen for communications in the Raspberry Pi

are known, Iptables for the system can be created.

Iptables are a software firewall for Linux systems,

which can be used to drop or allow network traffic

to the device. The Iptables will be used to create

rules that make the Pi ignore all traffic unless it is

intended for ports 22 or 5000. In Figure 3 the

specific rules made for this project can be found.

The most important rules are to drop everything by

default and accept every output the device makes.

Now that no traffic is received and anything can be

sent, it is possible to create rules to allow the traffic

specifically for ports 5000, 80, 443, and 22.

Figure 2

Rules for Port Forwarding on the Router

Figure 3

Iptables Rules That allow Access to Ports 5000, 443, and 22

Now the Raspberry pi can be accessed from

anywhere in the world through ports 5000 and 22.

The next and last step of the first part of the project,

setting up the Raspberry Pi, is to build the circuit.

Figure 4 shows exactly how the circuit is built. The

first thing to do is attach the GPIO Pin bridge from

the Raspberry Pi to the Breadboard. This will allow

to use voltage as desired from the Raspberry Pi to

the breadboard using specific GPIO Pins. The pins

used in this project are pin 17 for the red LED, pin

27 for the blue LED and pin 22 for the green LED.

There is a jumper cable from each pin to the

positive leg of the corresponding LED and a leg of

a 220-ohm resistor in the negative leg of each LED,

while the other end of each resistors go to the

ground side of the board. At this point the

Raspberry Pi es ready to receive network traffic and

has a built-in circuit that can turn on/off three

different LEDs.

Figure 4

Layout of the Circuit Built in the Bread Board Designed

Using Fritzing [6]

Building the Code for the Client and Server

The second and third parts of the project will

be done simultaneously so they can be considered a

single part. Building the client code and building

the server code, could fuse into a single part

because the functions were developed for the client

and the server simultaneously to test what was

being build. The client was developed using React-

JS so that the user interface could update in real

time as the user pressed the different buttons on the

interface. The interface consists of three different

buttons, one for each LED in the circuit. There are

three main functions in the client code: request the

status of the LEDs, change a LED status, and

update the interface. To understand the client better,

there will be a discussion on how the server works.

The server developed using Flask [7] and Python

has a dictionary in which each entry has

information for the GPIO Pin number, the color of

the LED and the status of the LED (on/off), as well

as their respective values. When the client starts

running, the first thing it does is make a GET

request to the server asking for the dictionary. The

dictionary is the sent as a JSON by the server.

When the client receives this JSON, it updates the

buttons on the interface with the information

provided by the server as seen in Figure 5. The user

has the option to change the value of the LEDs,

which, when done, will send a PUT request to the

server. This PUT request will contain a JSON with

the GPIO Pin number and the new status. Once the

server receives the PUT request it will update the

dictionary of the LEDs and then it will turn on or

off the LED as requested. The LEDs are turned

on/off by the Raspberry Pi using the GPIO pins on

the circuit.

Figure 5

React-JS Client Interface

Once the functions are implemented, it can be

said that a client and a server that can communicate

with each other via REST API over HTTP was

effectively built. Anyone in the world who has the

client code can turn on and off the LEDs of the new

homemade IoT device. Wireshark, an open source

packet sniffer that would help analyze the traffic

sent to and by the IoT device, was used now to test

the security of the HTTP communication. To

analyze the network traffic, a person just has to run

Wireshark and select the network interface of the

server so that they could sniff everything going in

and out of the Pi. Once the response to the initial

GET request that a client does (this response has

the status of all the LEDs) is found, the information

sent over HTTP can be found by digging deeper. If

this is done, the whole JSON in plain text can be

seen as shown in Figure 6. This is a huge security

risk since anyone that is sniffing a network will be

able to see the status of the LEDs in the house. In

this case only simple LEDs are used to represent

the circuit, but this could be another homemade IoT

device that controls things in your home such as

temperatures or even the lock of your door.

Figure 6

Plain Text of the JSON Response from the Server to the

Client as Seen in Wireshark

Applying Security Measurements to the System

Now that there is a functioning client-server

communication that is not secure, some

communication security was implemented by using

AES encryption. AES stands for Advanced

Encryption Standard, and AES is a symmetric

block cipher. In symmetric encryption the key

needs to be shared between the sender and the

receiver of the messages. This means that the key

must be sent through a secure channel, otherwise

the secured communication can be compromised.

To make the AES encryption, some changes had to

be done in both the client and the server. The first

change was that now the server would have a 16-

byte key that both the server and the client will use

for the AES encryption and decryption. The second

change is that now the client’s first request will be a

GET request for the AES key instead of the JSON.

Once the client makes the GET request, the server

will send the key to the client and then the client

will make the GET request to the server asking for

the JSON. When the request for the JSON gets to

the server, the server will AES encrypt the JSON

using the 16-byte key and it will send it to the

client. The client will use the key to decrypt the

AES JSON and then it will do the same it did

originally. Another change in the client is that now

when the user clicks a button, it will encrypt the

JSON before sending it to the server. Basically,

both the server and the client now use AES

encryption for the communication. After the

changes are made, it is time to analyze the network

traffic again. Using Wireshark, the server response

was captured to the first two GET requests of the

client, which are for the key and for the JSON.

After finding the responses it can be seen (Figure 7

and Figure 8) that the JSON is now AES encrypted,

but the key is sent in plain text.

Although having a secure HTTP

communication is close, it is still needed to find a

way to secure the AES key. To solve this problem,

RSA public key encryption is going to be used. The

advantage of public key encryption is that it is

asymmetric. An asymmetric encryption method

means that each unit will have two keys: a private

and a public key. The public key of each unit is

shared between them, while the private is kept save

and secret. The idea behind this type of encryption

is that if Bob and Alice want to communicate with

each other, Bob will encrypt the message using

Alice’s public key, which he has. The only key that

can decrypt the message encrypted with Alice’s

public key is Alice’s private key, which she has.

This eliminates having to share keys using a secure

channel. To implement this, the server and the

client’s RSA public and private keys was generated

using python and the key distribution was made.

The server has both of its keys and the clients

public key and the client has both its keys and the

server public key. Now the changes to the code

would be to add, in both the client and server,

functions to properly encrypt and decrypt using

RSA public key encryption. It is important to note

that this encryption is slower than AES, thus it will

only be used once in the client-server

communication to encrypt and decrypt the AES

key. All the code will remain the same, but when the

client makes the GET request of the key to the

server, the latter will RSA encrypt the AES key

using the public key of the client. In the other hand,

the client will receive the RSA encrypted key and it

will decrypt it using its own private key. Once the

key is decrypted, the whole code will run the same

as before using AES encryption between

communications.

Now that both RSA and AES encryption were

implemented, another network traffic analysis using

Wireshark must be run. This time the responses to

the two initials GET requests done by the client will

be captured, which are supposed to contain the AES

key and the JSON. As expected, Figure 9 and

Figure 10 show that the response to the GET

request for the JSON is still AES encrypted, just as

before, but now the AES key in plain text can no

longer be seen. Now the key RSA are getting

encrypted.

Figure 9

JSON Message Encrypted Using AES as Seen in Wireshark

Figure 10

AES Key Encrypted Using RSA Public Key Encryption as Seen in Wireshark

CONCLUSION

This project is a great way for students and

STEM professionals interested in IoT to be able to

develop a homemade IoT device while learning

important concepts in network security. The project

can be considered a homemade version of Open

SSL [8]. There are a lot of software designed for

Raspberry Pi that serve as IoT controllers, but it

takes away the users experience to learn about

security. The project was made using inexpensive

items so that students with limited resources could

follow along and learn about network security for

IoT devices. By using HTTP, the user avoids

spending money on SSL certificates, and they gain

knowledge on how they perform the encryption

used in said technology. Overall, the researcher is

very proud of the project and thinks every student

or STEM professional interested in learning about

homemade IoT devices and HTTP communication

security should give this project a try.

FUTURE WORK

The system is far from being completely

secure. This project focused on the HTTP

communication security. Although other security

measures to the Raspberry Pi were added, such as

the Iptables firewall and disguising the ports used

with port forwarding, the system needs other

security measures. The first thing missing is

authentication for the system. As of right now,

anyone that has the client can turn on and off the

LEDs without authenticating. Another thing listed as

future work would be to create a more complex and

useful circuit to better demonstrate the importance

of applying encryption to the communication.

REFERENCES

[1] Raspberrypi.org. (2019). Raspberry Pi 3 Model B –

Raspberry Pi [Online]. Available: https://www.raspberry

pi.org/products/raspberry-pi-3-mode-b-plus/.

[2] J. Clark. (2017, Sept. 19). What is the Internet of Things,

and how does it work? [Online]. Available:

https://www.ibm.com/blogs/internet-of-things/what-is-the-

iot/.

[3] Python Package Index. (2019). Pycrypto [Online}.

Available: https://pypi.org/project/pycrypto/.

[4] Brix. (2019, Jan. 4). Brix/crypto-is [Online]. Available:

https://github.com/brix/crypto-js.

[5] Wireshark.org. (2019). Wireshark [Online]. Available:

https://www.wireshark.org/.

[6] Fritzing.org. (2019). Fritzing [Online]. Available:

http://fritzing.org/.

[7] Flask.pocoo.org. (2019). Flask [Online]. Available:

http://flask.pocoo.org/.

[8] SSL Certificate Digital Certificate Authority, 2019.

[Online]. Available: https://www.ssl.com/.

