
Abstract

Future Work

Acknowledgements

The Internet of Things (IoT) is a topic in the Computer Science

and Engineering field that has rapidly grown in the last couple of

years. The popularity of the topic has made different companies to

make proprietary IoT devices which can be purchased with ease.

Although these devices are very accessible now days, there are

many students and professionals in the STEM area that like to

create their own IoT devices using tools such as Raspberry Pi and

Arduino. Working with these devices in such projects will

definitely give students a boost in networking knowledge, but

many miss the security part of the project. Using AES encryption

to share messages and RSA public key encryption to encrypt the

AES key can greatly improve the security of the HTTP

communication for these projects as well as improving the

student’s knowledge in network security.

References

Methodology Conclusion

The system is far from being completely secure. In this project I

focused on the HTTP communication security. Although I did add

other security measures to the Raspberry Pi, such as the Iptables

firewall and disguising the ports used with port forwarding, the

system needs other security measures. The first thing missing is

authentication for the system. As of right now, anyone that has the

client can turn on and off the LEDs without authenticating.

Another thing listed as future work would be to create a more

complex and useful circuit to better demonstrate the importance of

applying encryption to the communication.

Introduction

• Raspberry Pi 3 Model B+

• Breadboard

• GPIO Pin Bridge to Breadboard

• 220 ohm Resistors

• LED (red, blue, green)

• Jumper Wires

• Raspbian

• Python and PyCrypto

• React-JS and Crypto-JS

• Wireshark

Materials

The Internet of Things (IoT) is a trending topic in the Computer

Science and Engineering area. Creating your own IoT device

using tools such as the Raspberry Pi can be very educational and

inexpensive for students an STEM professionals. The Raspberry

Pi offers great resources for people to develop all sots of projects,

but people mainly focus on the functionality of the device they are

building and not the security. The goal of this research is to

provide a guide for people interested in making their home- made

IoT devices on how to apply security to the system.

Securing HTTP Communication for Homemade IoT Projects
Author: Jose R. de la Vega

Advisor: Dr. Jeffrey Duffany

Computer Science: IT Management and Information Assurance

I want to thank my advisor, Dr. Duffany for all his support

throughout the project. I also extend my gratitude to the National

Science Foundation (NSF) and Cybercorps: Scholarship for

Service (SFS).

This project is a great way for students and STEM professionals

interested in IoT to be able to develop a homemade IoT device

while learning important concepts in network security. The project

can be considered a homemade version of Open SSL. There are a

lot of software designed for Raspberry Pi that serve as IoT

controllers, but it takes away the users experience to learn about

security. I made the project using inexpensive items so that

students with limited resources could follow along and learn about

network security for IoT devices. By using HTTP, the user avoids

spending money on SSL certificates, and he/she gains knowledge

on how the perform the encryption used in said technology.

Overall, I’m very proud of the project and I think every student or

STEM professional interested in learning about homemade IoT

devices and HTTP communication security should give this

project a try.

1. Brix. (2019, January 4). brix/crypto-js. Retrieved from

https://github.com/brix/crypto-js

2. Clark, J. (2017, September 19). What is the Internet of Things,

and how does it work? Re- trieved from

https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/

3. Flask. (n.d.). Retrieved from http://flask.pocoo.org/

4. Fritzing. (n.d.). Retrieved from http://fritzing.org/

5. Pycrypto. Retrieved from https://pypi.org/project/pycrypto/

6. Raspberry Pi 3 Model B – Raspberry Pi. Retrieved from

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-

plus/

7. SSL Certificate Digital Certificate Authority. (n.d.). Retrieved

from https://www.ssl.com/

8. Wireshark. (n.d.). Retrieved from https://www.wireshark.org/

9. Icons8 Retrieved from https://icons8.com/icons

1. Setting Up the Raspberry Pi:

• Connect the Raspberry Pi to the network.

• Give the Raspberry Pi a static IP address.

• Crete rules for port forwarding in the router.

• Create a firewall for the Raspberry Pi using Iptables for more

security.

• Assemble the circuit using the breadboard, LEDs, jumper wires,

resistors, and GPIO bridge.

2. Building the code for the client and server:

• Client:

• Developed using React JS.

• It sends a GET request to the server to get information about 

the lights.

• When a button is pressed it sends a PUT request and a JSON 

to the server with the information of the changes:

• GPIO pin that we want to change.

• Status of the GPIO that we are changing.

• Server:

• Using Flask to develop the web server.

• Using REST API to send and receive JSON data.

• When a GET request for light status is received, the server 

sends a JSON with the lights.

• When a PUT request for updating the lights is received, the 

server updates the json and turns on or off the lights.

• Turn on/off the lights depending on the status received in the  

JSON using the GPIO pins.

3. Applying security measures to the system:

• AES:

• Used Advanced Encryption Standard (AES) to encrypt the 

communication between server and client.

• Encryption is done by using PyCrypto in the server and 

Crypto-JS in the client.

• AES is a fast encryption method that uses a symmetric key.

• Symmetric encryption means that both the sender and 

receiver of a message need to have the same shared key.

• Needs a secure method of sharing the key.

• RSA:

• Used RSA public key encryption to encrypt the AES key used 

in the communication.

• This encryption method is slower than AES, which makes it 

not efficient to be used in all the communications.

• It is an asymmetric encryption algorithm which means that 

both parties do not need the same key.

• Both the sender and the receiver have their own set of keys; a 

public key and a private.

• The public key is used to encrypt the message.

• The private key is used to decrypt the message.

• The key pairs where generated using PyCrypto.

4. Sniffing the network traffic:

• There are three instances of the project where a sniffing test was 

performed using Wireshark:

• Before adding any encryption: All JSON messages where seen 

in plain text, revealing information about the status of the lights 

of the circuit.

• After adding AES encryption: The JSON messages where 

encrypted, and the information about the lights status was not 

readable, but the AES key that was shared between the client 

and the server was in plain text.

• After adding AES and RSA encryption: Both the JSON 

message and the AES key where encrypted and no 

information could be seen by a hacker.


