
1 

 

Developing Interactive Learning Resources for Python and Machine Learning 
 

Amaris Vélez Candelaria 

Master in Computer Engineering 

Alfredo Cruz, Ph.D. 

Electrical and Computer Engineering and Computer Science Department 

Polytechnic University of Puerto Rico 

Abstract – This paper describes the process of 

developing learning resources for students in 

computing and offers various examples of the 

learning resources that were successfully developed 

as a result. Two main learning resources were 

developed from the project described in this paper: 

A supplementary technical guide and interactive 

workshops. The technical guide was found to be 

beneficial for different types of students such as 

students who are interested in the field of computing 

but, have not yet started their formal education on 

the field, students in computing who wish to review 

concepts they were previously taught, and students 

who wish to mentor other students in programming 

concepts. On the other hand, the interactive 

workshops written as Jupyter notebooks were found 

to be beneficial for community outreach activities 

since they contain both examples and exercises that 

presenters may easily discuss while the audience is 

interacting with code relating to each example and 

exercise. 

Key terms – Jupyter Lab, Machine Learning, 

Pythontechnical guide, and Workshops 

INTRODUCTION 

Proper technical preparation will allow students 

to be able to secure the opportunities that are 

available to them in the field of computing. There are 

many ways in which students could improve their 

technical knowledge in this field such as: taking 

online and in-class courses, watching educational 

videos, reading articles and textbooks, and 

participating in workshops and competitions. 

However, for each topic in this field of study, the 

student must be able to review a vast amount of 

resources and filter them to ensure that only those 

which are most relevant are used. This filtering task 

can be time consuming and, at times, some students 

may become overwhelmed by the subject that they 

wish to study.  

 To this end, this paper describes the details from 

a project that aims to develop interactive learning 

resources for students in the field of computing to 

facilitate the student’s task of understanding and 

practicing specific topics in computing. The 

interactive learning resources were devised by using 

Jupyter Lab; a next-generation web-based user 

interface for Project Jupyter. Jupyter Lab allows 

users to work with kernel-backed documents that 

enables code in any text file (Markdown, Python, R, 

C++, etc.) to be run interactively in any Jupyter 

kernel. These kernel-backed documents are known 

as Jupyter notebooks and for the project, they served 

as workshop content with which students could read 

documentation on a topic and practice the concept by 

interactively running code in the same document. 

From another point of view, before devising the 

interactive content, a supplementary technical guide 

was devised to provide additional learning resources 

to students using the interactive workshops. The 

supplementary technical guide discussed the 

following topics: compiler theory and practical 

programming, algorithms and data structures, and 

data science for machine learning. 

JUSTIFICATION 

 The Digital Revolution and continuing 

technological advances have affected the job outlook 

for almost every type of position available across the 

world has been observed. [1] found that in the US, a 

positive job outlook has emerged for computer 

scientists and engineers and the need for computer 

scientists can be found in nearly every major 

industry in the United States (US). According to the 

Bureau of Labor Statistics, jobs in computing and 

information technology are expected to grow nearly 

as twice as fast as the average for all careers, adding 



2 

 

more than half a million new jobs from 2016 to 2026 

[2]. As a result, the development of these interactive 

learning resources for students in computing would 

be highly beneficial due to the current and future 

demand for computer engineers and scientists. 

 From another point of view, the topics that were 

selected to be discussed through the devised learning 

resources were practical programming and machine 

learning. These specific topics were selected due to 

their current importance in the job market for 

computer scientists and engineers. The topic of 

programming has always been essential for the 

computer scientists and engineers. Programming 

provides the necessary tools to solve any problem 

that may be computationally solved. On the other 

hand, the topic of machine learning, which is a sub-

topic of artificial intelligence (AI), is important due 

to how the topic of AI has been projected to 

transform the global economy [3]. Furthermore, 

computer scientists and engineers have the 

responsibility of predicting and adapting to the 

changes in the industry due to the increasing demand 

for machine learning. 

DESIGN PROCESS 

 The design process of the project may be 

divided in three phases: environment setup, 

developing supplementary technical guide, and 

developing interactive workshops. Each phase is 

individually described below. 

Environment Setup 

 To execute the different scripts offered 

throughout the supplementary technical guide and 

the developed interactive learning material for 

Python and Machine Learning, a Jupyter Lab 

environment had to be set-up. This section will 

specify the necessary steps to replicate such 

environment. Note that Jupyter Lab is a next-

generation web-based user interface for Project 

Jupyter. It allows users to work with documents 

kernel-backed documents which enable code in any 

text file (Markdown, Python, R, C++, etc.) to be run 

interactively in any Jupyter kernel. 

 This section focuses on describing the steps to 

be executed to be able to program in C++ and Python 

using Jupyter Lab. Note that the Jupyter kernel for 

C++ is not supported by the Windows operating 

system. For this reason, aside from showing how to 

download and install Jupyter Lab with the necessary 

kernels, this guide will show how to create a virtual 

machine running on the latest version of the Ubuntu 

operating system which supports the Jupyter kernel 

for C++. The steps to setup the environment are 

shown below: 

1. Downloading and installing VirtualBox: Go to 

link https://www.virtualbox.org/ and download 

the latest version of Virtual Box. Once the 

download has been completed, proceed to 

installing virtual box in your computer. Note 

that VirtualBox is a free and open source 

virtualization software from Oracle that allows 

for the installation of other operating systems in 

virtual machines. On the other hand, the 

computer system must have the virtualization 

feature enabled for VirtualBox to work. To 

ensure that virtualization is enabled, reboot the 

system and as soon as it powers up press F2, 

F10, or F12 to access the BIOS settings. Look 

for the virtualization option in the BIOS settings 

and ensure that it is enabled. 

2. Creating a virtual machine running on the latest 

version of Ubuntu: Go to the link 

https://ubuntu.com/desktop and download the 

latest version of Ubuntu. Once the download has 

been completed, proceed to installing Ubuntu 

using VirtualBox by executing the following 

steps: 

• Start VirtualBox and click on the New 

symbol. Pop-up will appear to specify 

name, type (Linux), and version (Ubuntu 

64-bit). After specifying name, type, and 

version press next. 

• Specify the memory size (RAM) to be 

allocated to the virtual machine. Allocate at 

minimum 2GB of RAM. After specifying 

memory size, press next. 



3 

 

• Create a virtual hard disk and specify the 

hard disk file type as VDI. 

• Choose either the “Dynamically allocated” 

or the “Fixed size” option for creating the 

virtual hard disk and press next. 

• Specify the file location and the virtual hard 

disk size. Specify a size that is equal or 

greater (if possible) than 10GB. After 

specifying the virtual hard disk size, press 

create. 

• Boot and install the downloaded Linux ISO 

by clicking on the created virtual machine 

and selecting the downloaded ISO. Note 

that if the ISO does not appear in the pop-

up, it may be found by clinking on the 

folder icon and searching for the ISO in the 

file explorer. 

• Ubuntu will start to boot and the option to 

install Ubuntu should appear. Select the 

install Ubuntu option and then, press 

continue. 

• Select Erase disk and install Ubuntu and 

then, press install. 

• Specify time zone, keyboard layout, and 

password. 

• Once installation finishes, restart virtual 

system by pressing Restart now. 

3. Downloading and installing Anaconda: Open 

the web browser and enter the following link: 

https://www.anaconda.com/distribution/ and 

copy the installer bash script for Linux. Then, 

execute the following commands on the Linux 

terminal: 

• Move into the /tmp directory: $ cd /tmp 

• Use curl to download copied link from the 

Anaconda website: $ curl -0 

https://repo.anaconda.com/archive/Anacon

da3-2020.02-Linux-x86_64.sh 

• Run the Anaconda script: $ bash 

Anaconda3-2020.02-Linux-x86_64.sh 

• Review Anaconda’s license agreement and 

press ENTER until the end is reached and 

type yes if you agree with the license 

• Press ENTER to accept the default location 

or specify a different location 

• Once the installation is complete, select the 

option to use the conda command: Type yes 

• Activate the installation: $ source ~/.bashrc 

4. Downloading and installing cling. -To 

download and install cling, execute the 

following commands on the Linux terminal: 

• Install the C++ interpreter cling: (base) $ 

conda install -c conda-forge cling 

• Create new environment named cling: 

(base) $ conda create -n cling 

• Activate cling environment: (base) $ conda 

activate cling 

5. Installing with Jupyter lab using Anaconda. -To 

download and install cling, execute the 

following commands on the Linux terminal: 

• Install Jupyter Lab in the cling 

environment: (cling) $ conda install -c 

conda-forge jupyterlab 

• Open Jupyter Lab (Python kernel should 

now be available) and click on the 

outputted url to open the web-based 

interface: (cling) $ jupyter lab 

6. Installing xeus-cling using cling - To download 

and install xeus-cling, execute the following 

commands on the Linux terminal: 

• Install the Jupyter kernel for C++ in the 

cling environment: (cling) $ conda install 

xeus-cling conda-forge 

• Open Jupyter Lab (Python and C++ kernels 

should now be available) and click on the 

outputted url to open the web-based 

interface: (cling) $ condajupyter lab 

Developing Supplementary Technical Guide 

 Before proceeding to develop learning 

resources for students in the field of computing, the 

term computing had to be defined. The field of 

computing involves the study of computer 

technology and how it is used to manage, process, 

and communicate information to accomplish a given 

task. It encompasses both the design and 

development of the hardware and software necessary 



4 

 

to the computing system [4]. This is a vast field of 

study and the development of a complete technical 

guide would be a complex task  to fulfill. For this 

reason, only three sub-fields in computing were 

chosen for the creation of the guide. As previously 

mentioned, these topics were selected according to 

their current importance in the job market for 

computer scientists and engineers. The selected sub-

fields to be discussed in the technical guide are the 

following:  

• Programming languages: In theory and in 

practice 

o Historical background 

o Compiler theory 

o Practical programming 

• Algorithms and data structures 

o Greedy algorithm 

o Divide and conquer 

o Dynamic programming 

o Searching & Sorting techniques 

o Linked lists 

o Stacks & Queues 

o Graphs 

o Trees 

• Data science for machine learning 

o Introduction to machine learning 

o The five tribes of machine learning 

Developing interactive Jupyter Lab notebooks 

 Once the supplementary technical guide was 

devised, two workshops were created. One 

workshop covered the topic of programming basics 

with Python and another covered the topic of 

supervised machine learning with Python. Each 

workshop was composed of four main sections and 

for each section there were a series of examples and 

exercises. Additionally, these workshops have been 

made available in a GitHub repository. 

RESULTS 

 The project of developing learning resources for 

students in computing produced two main results: 

the supplementary technical guide and the 

interactive workshops. Each result is briefly 

presented in this section. 

Supplementary Technical Guide 

 As previously mentioned, the technical guide 

summarized concepts from three topics in 

computing: compiler theory and practical 

programming, algorithms and data structures, and 

machine learning. An example of the content that 

was presented for each of the guide’s topics is shown 

below. 

 The first topic that was introduced in the 

technical guide was related to compiler theory and 

practical programming. The 7 phases of the compiler 

according to [5] were individually discussed. The 

compiler phases are shown in Figure 1. 

 
Figure 1 

Phases of the Compiler 

 Then, after offering students a small theoretical 

background on compilers, basic programming 

concepts were taught using C++ and Python. These 

concepts included: the three phases to develop a 

program, inputs and outputs, variables, operators, 

control flow, arrays, pointers, references, functions, 

classes, and objects. In the guide, C++ and Python 

were taught in parallel by offering examples of 

written code in both languages for each of the 

discussed programming concepts. 

Concerning the Concept of Program Inputs, the 

following Content was Presented 

 Whenever a program requires user input, an 

input statement must be declared. The syntax for an 

input statement varies according to the programming 

language. In C++, cin is used to receive inputs. In 

Python, the input( ) function is used to receive 

inputs. The behavior of the input statement when the 



5 

 

program reaches its execution at runtime is generally 

as follows: 

• Program is halted and waits for input data. 

• After user enters the data by pressing ENTER, 

program reads value and stores it in a specified 

variable.   

 Figure 2 and Figure 3 offer an example of an 

input statement in C++ and Python, respectively. 

Additionally, the figures show how a program 

remains halted when expecting inputs. 

 
Figure 2 

Waiting for user Input in C++ Program 

 
Figure 3 

Waiting for user Input in Python Program 

Concerning the Programming Concept related 

to the Three Phases to Develop a Program, the 

following Content was presented 

 The three phases to develop a program are the 

following: analyze problem, write program, and 

validate program. The phase of analyzing a problem 

refers to the act of clearly defining the problem and 

identifying the input and output data that will be 

needed to solve the problem. The phase of writing 

the problem refers to the act of taking into 

consideration the data to be expected as input and 

output, identifying the program variables, and 

implementing the operations to be executed on the 

data using a specific programming language syntax. 

Finally, the phase of validating the program refers to 

the act of ensuring that the program correctly solves 

the defined problem by validating each line of code 

and comparing the output data with the expected 

result. 

 To provide an example of these three phases 

consider the case in which the area of a circle had to 

be calculated. Each phase would be executed as 

follows: 

• Phase #1: Problem analysis 

o Expected inputs and outputs: To calculate 

the area of a circle (output), the circle’s 

radius (input) must be known. 

o Operations: Once the radius of the circle 

has been obtained, its area may be 

calculated as the square of the circle’s 

radiusmultiplied by the constant pi. 

• Phase #2: Write program 

 Taking into consideration the previous analysis, 

Figure 4 and Figure 5 show the written program in 

Python and C++, respectively. 

 Phase #3: Validate program 

 If the area of the circle is manually calculated 

for the same radius as in previously executed pieces 

of code, the following result is obtained: 

 𝐴𝑟𝑒𝑎𝑐𝑖𝑟 = 𝑟2𝜋 = 4.52𝜋 = 63.6173 (1) 

 As it may be observed, the calculated result is 

equal to the results obtained by running the written 

scripts. Thus, the program has been validated. 

 
Figure 4 

Finding the Area of a Circle in Python 



6 

 

 
Figure 5 

Finding the Area of a Circle in C++ 

Concerning the Concept of Classes and Objects, 

a Example of the Written Content is presented 

Below 

 Everything in C++ and Python is associated 

with classes and objects. This is due to the fact that 

C++ and Python are both object-oriented 

programming (OOP) languages. The object-oriented 

programming approach solve problems by creating 

objects using classes. Objects can be viewed as a 

collection of data and functions that act on that data. 

As a result, objects can be defined through the 

following two characteristics: attributes and 

behavior. On the other hand, a class can be viewed 

as the object’s blueprint. In more detail, classes are 

user defined datatypes that specify the data members 

(attributes) and member functions (behavior) for an 

object. 

 To provide an example for classes and objects 

in C++, consider a dog as object in a program. The 

dog class may be defined as shown in Figure 6. Then, 

the dog object may be declared and its member 

functions may be implemented as shown in Figure 7. 

 On the other side, in Python, the dog class may 

be defined as shown in Figure 8. Then, the dog object 

may be declared and its member functions may be 

implemented as shown in Figure 9. 
 

Figure 6 

Defining Dog Class in C++ 



7 

 

 
Figure 7 

Declaring and Implementing Dog Object in C++ 

 
Figure 8 

Defining Dog Class in Python 

 
Figure 9 

 Declaring and Implementing the Dog Class in Python 

Concerning the Concept of Control Flow, an 

Example of the Written Content is presented 

Below 

 The if… else statement is used whenever there 

are two possible execution paths in which the 

program could proceed. Then, the execution path to 

be taken depends on the result from an evaluated 

condition. If the result is true then, the code in the 

body of the if will be executed. If the result is false 

then, the code in the body of the else is executed. The 

flow diagram for this statement is shown in Figure 

10. 

 
Figure 10 

Flow diagram for the if… else Statement 

 Both C++ and Python incorporate the if… else 

statement. However, there is a slight variation in 

syntax between the two languages. Figure 11 and 

Figure 12 show this variation by offering an example 

implementation of the while statement in C++ and in 

Python, respectively. 

 
Figure 11 

Implementation of the if… else Statement in C++ 



8 

 

 
Figure 12 

Implementation of the if… else Statement in Python 

 The second topic that was introduced in the 

guide was related to algorithms and data structures.  

Concerning the Topic of Algorithms, an 

Example of the Written Content is presented 

Below 

 An algorithm may be defined as a sequence of 

precise and unambiguous instructions telling a 

computer what to do. It’s important to note that not 

any sequence of instructions may be defined as an 

algorithm. According to [6], to be able to define a 

sequence of instructions as an algorithm, the 

sequence must have the following characteristics: 

• Clear and unambiguous: The sequence should 

be clear and unambiguous. The repeated 

execution of a sequence using the same starting 

parameters should always lead to the same 

result. 

• Input clarity: If a sequence requires any inputs, 

these inputs must be clearly defined. 

• Output clarity: The sequence must clearly 

define the outputs to be obtained. Also, the 

amount of outputs should be greater or equal to 

one. 

• Finite-ness: The sequence should end after a 

finite number of steps. 

• Feasible: The execution of the sequence should 

not depend on future technology and should by 

achievable with the currently available 

resources. 

• Language independent: The instructions in the 

sequence should be independent of any 

programming language. 

 Computers are made of billions of switches. The 

simplest algorithm would instruct a computer to flip 

a switch (1 or 0). However, this section will focus on 

more complex algorithms, particularly those 

involved when implementing data structures. These 

algorithms may be divided into the following 

categories according to their main functionality in 

the data structure: 

• Search algorithm: Used to search for an item in 

the data structure 

• Sort algorithm: Used to sort items in the data 

structure 

• Insert algorithm: Used to insert an item into the 

data structure 

• Update algorithm: Used to update an item 

already inside the data structure 

• Delete algorithm: Used to delete an item already 

inside the data structure 

Concerning the Topic of Data Structures, an 

Example of the Written Content is presented 

Below 

 A data structure can be defined as a 

programmatic way of collecting, organizing, and 

managing data. Any structure capable of storing data 

may be referred to as a data structure. The main goal 

of the data structure is to increase efficiency and 

reduce complexity whenever operations are 

performed on data. There are different types of data 

structures and these may be classified based on the 

following characteristics: linear, non-linear, 

homogenous, non-homogenous, static, or dynamic. 

Linear data structures, such as arrays, are 

characterized by using a linear sequence to arrange 

data items. Non-linear data structures, such as trees 

and graphs, are characterized by using a non-linear 

sequence to arrange data items. Homogenous data 

structures, such as arrays, are characterized by 

containing only elements of the same data type. Non-



9 

 

homogenous data structures, such as lists, are 

characterized by containing elements of any data 

type. Static data structures, such as arrays, are 

characterized by having a fixed size at compile time. 

Finally, dynamic data structures, such as linked lists 

created using pointers, are characterized by having a 

size that may increase or decrease depending on the 

program’s needs during its execution.Furthermore, 

there are two groups in which data structures may be 

divided which are primitive data structures and non-

primitive as shown in Figure 13. Primitive data 

structures are those which directly operate upon 

machine instructions. On the other hand, non-

primitive data structures are more complex data 

structures that are derived from primitive data 

structures. The following sections in the guide 

focused on discussing the theory behind non-

primitive data structures. 

 
Figure 13 

Types of Data Structures 

 For each data structure a diagram was created to 

describe it. Figure 14 offers an example of the 

created diagrams by showing the diagram created to 

describe the tree data structure. 

 
Figure 14 

Tree data structure 

 The third and final topic that was introduced in 

the guide was related to the five tribes of machine 

learning which provides a small theoretical 

background on the topic. 

 Learning algorithms aim to learn an algorithm 

that solves any problem given the appropriate data 

relating to the problem. Thus, any learning algorithm 

could approximate any function arbitrarily closely 

given enough data. However, enough data could be 

infinite. To counteract this problem, learning 

algorithms have to make assumptions and these 

assumptions vary from one learning algorithm to 

another. In the best case scenario, the learning 

algorithm’s assumptions allow it to function as a 

“master algorithm”; which in [7] Domingos defines 

as an algorithm capable of solving any problem 

given a finite amount of data relating to the problem. 

 In [7] Domingos established that machine 

learning experts have devised five schools of thought 

in their journey to find the master algorithm, 

although no such algorithm still exists. The five 

schools of thought are the following: symbolists, 

connectionists, evolutionaries, bayesians, and 

analogizers. Each of these schools of thought and 

their respective “master algorithm” were 

individually discussed in the guide. Table 1 

summarizes the key factors to consider for each of 

the schools of thought that were introduced in the 

guide. 

Table 1 

The Five Tribes of Machine Learning 

Tribe Problem Solution 

Symbolists Knowledge 

composition 

Inverse deduction 

Connectionists Credit 

assignment 

Backpropagation 

Evolutionaries Structure 

discovery 

Genetic 

programming 

Bayesians Uncertainty Probabilistic 

inference 

Analogizers Similarity Kernel machine 

 Note that due to its length, the complete guide 

cannot be described in this paper. Only examples of 

the written content was presented in this paper. 

However, the complete version of the guide may be 



10 

 

reviewed and downloaded from the following 

GitHub repository: https://github.com/avelez-

cloud/Interactive-Learning-Resources-for-Python-

and-ML. 

Interactive Workshops 

 Apart from the supplementary technical guide, 

another of the results obtained from the project were 

the developed workshops which allow students to 

interactively learn and practice concepts in 

computing. As previously mentioned, the project 

focused in developing interactive learning resources 

for two specific topics in computing: Python 

programming (workshop #1) and Machine Learning 

with Python (workshop #2). The starting sections of 

one of the workshops is shown in Figure 15. 

 
Figure 15 

Starting Section of the Machine LearningWorkshop 

 Note that due to their extensive length, the 

complete workshop has not been included in this 

paper. However, the complete version of the 

workshops may be reviewed in the following GitHub 

repository: https://github.com/avelez-

cloud/Interactive-Learning-Resources-for-Python-

and-ML. 

DISCUSSION OF RESULTS 

 Through the project two main learning 

resources were developed which were the 

supplementary technical guide and the interactive 

Jupyter notebook workshops. The supplementary 

technical guide was included in the results section of 

the report. This guide allows students to read and 

learn about the following concepts in computing: 

compiler theory, programming in C++ and Python 

and the comparison between them, algorithms and 

data structure definitions, and the five tribes of 

machine learning which provides a general idea of 

the different types of algorithms that are being 

implemented in machine learning. 

 As a result, this guide may be used by different 

types of students such as students who are interested 

in the field of computing but, have not yet started 

their formal education on the field, students in 

computing who wish to review concepts they were 

previously taught, and students who wish to mentor 

other students in programming concepts may use the 

guide as a reference. 

 From another point of view, the developed 

workshops are expected to be highly beneficial for 

community outreach activities since they contain 

both examples and exercises that presenters may 

easily discuss while the audience is interacting with 

code relating to each example and exercise. In the 

results section, only a partial demonstration of the 

workshops were given due to their length. The 

complete pdf version of the interactive Jupyter 

notebook workshops may be review in the 

previously specified GitHub repository. 

FUTURE WORK 

 Developing a technical guide and workshops for 

topics in computing proved to be a lengthy task due 

to the large amount of information that could be 

discussed with simply one sub-topic. For future 

work, the development of technical guides and 

workshops for more topics would be recommended 

to create a more complete guide to the field of 

computing. The inclusion of the following topics 

would make for an interesting guide: Operating 

Systems, Databases, Computer Architecture, Human 

Computer Interaction, Robotics, Networks, and 

Theory of computation. 

CONCLUSIONS 



11 

 

 The main goal of the project was successfully 

achieved by developing learning resources that will 

surely benefit students with the desire to learn. The 

developed guide and interactive workshops offer 

students a head start into computer engineering and 

computer science by teaching them how to use one 

of the most important tools for the computer scientist 

and engineer; programming. Additionally, the 

popular topic of machine learning is discussed to 

motivate students to learn about topics that are 

projected to transform our global economy. 

REFERENCES 

[1] Kowarski, I. (2019). What Can You Do With a 

Computer Science Degree?. US News & World 

Report. [Online] Retrieved from 

https://www.usnews.com/education/best-

graduate-schools/articles/2019-05-02/what-

can-you-do-with-a-computer-science-degree. 

[2] Colino, S. (2018). 8 College Majors With Great 

Job Prospects. US News & World Report. 

[Online] Retrieved  from 

https://www.usnews.com/education/best-

colleges/articles/2018-09-11/8-college-majors-

with-great-job-prospects. 

[3] Johansson, A. How AI Is Upending Computing 

IEEE Computer Society. Computer.org. 

[Online] Retrieved from 

https://www.computer.org/publications/tech-

news/trends/how-ai-and-machine-learning-are-

affecting-the-computer-science-industry. 

[4] What is Computing? - Definition from 

Techopedia. Techopedia.com. (2019).   [Online] 

Retrieved from 

https://www.techopedia.com/definition/6597/c

omputing. 

[5] Mogensen, T. (2010). “Basics of compiler 

design” (pp. 2-3). [Verlag nichtermittelbar]. 

[6] Bhatt, S. (2019). Characteristics of an 

Algorithm. Medium. [Online] Retrieved from 

https://medium.com/@bhattshlok12/characteris

tics-of-an-algorithm-49cf4d7bcd9. 

[7] Domingos, P. “The Master Algorithm”. Basic 

Books. (2015). 

 


