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Abstract 

Data compression is the packing of data, the process of transforming a 
°f data into a smaller representation from which the original or an 

approximation of the original can be computed at a later time. Most data 
sources contain redundancies such as non-uniform symbol distribution, pattern 
repetition, and positional redundancy. A data compression algorithm encodes 
the data to reduce these redundancies. 

Vector quantization (VQ) is an efficient data compression technique for 
speech and images. VQ maps a pattern defined by a discrete vector into a short 
digital sequence suitable for transmission over a digital channel or storage in 
a digital medium. Today, with the computing power available, the time spent 
or data processing has been reduced and the application of vector 

cIuantization for real-time coding is once again considered. A study of different 
techniques of vector quantization will be done. The details of some schemes 
will be presented. 

Quantization vectorial 

Sinopsis 

La compresion de datos es la action de codificar un grupo de datos, el 
proceso de transformar un grupo de datos en forma compacta a su forma 
original o una aproximacion que pueda recuperarse nuevamente. La mayoria 
do las fuentes de information contienen redundancias en forma no uniforme, 
Patrones repetidos y redundancia posicional. Los algoritmos de compresion de 
datos reducen estas redundancias. 
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La quantization vectorial (QV, por sus siglas en ingles) es una tecnica de 
compresion de datos eficiente para voz e imagenes. La QV toma muestra de 
os patrones definidos por vectores discretos y los convierte en secuencias 

digita es cortas adecuadas para transmitirlas por medio de un canal digital o 
para acenarlas en forma digital. Con la capacidad de computadoras que hay 
oy e tiempo para procesar datos ha disminuido considerablemente y la 

Ca,.e se considera para para codificar a tiempo real. En este trabajo 
se estudian diferentes tecnicas de QV y se presentan los detalles de algunos de 
los esquemas seran presentados. 

Basic quantization and coding 

Memoryless quantizer 

and r. t ° *nen*ory Quantlzer which operates on one input sample at a time, 
useful in irnao depends only on that input. This type of quantizer is 
is irrevprcihl kC techniques. Unfortunately the quantization operation 
Quantization ]t ,eCaUSe ® Quantization maps a range of values with one 
original Den^d- ence ^ inPut value cannot be reproduced exactly as the 
quantization aPPlication the distortion introduced by the 
offer various trad ff^k ^ several Quantizer designs available that 
otter various trade-offs between picture quality and complexity. 

The Lloyd-Max quantizer 

of dê Soriere]?(Tâ ri eZTt  ̂f°r " S'Ven 

continuous nrohak ' a • U 3 rea' scalar random variable with a 
quantizationTevnk' / ZT- " * «^ed to find the 
qZS S tk and 4112 mverse q^tization levels t for an L-level 

t, + l , ... (1) e=El(u-W)^l (u-u -fPu(u)du 
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is minimized. Rewriting this becomes 

l '^l 

e=E[(M-u')2]=X f (u-r-fPu(u)du (2) 
<=1 I 

From basic calculus, it is known that the minimum occurs where the 
derivative with respect to t^ and rk is zero. This gives 

f<h-r^?PM-(fk-rk?Pu(tk)=0 (3) 
olk 

a f*+1 
—= f (u-r^P (u)du=0 , 1 < k <L (4) 
dtk , K ti 

Using the fact that tk_, <1^., simplification of the preceding equations gives 

and 

f uPn(u)du 

r , = —  = E [ u / u e \ i|r J (6) 
k tk+1 

f Pu(u)du 

h 

where r k is the k* interval ft. ,U ]• These results state that the optimum 
quantization levels are located halfway between the reconstruction level, whic 
lie at the center of mass of the probability density in between the quantization 
levels. Equations (5) and (6) are nonlinear equations. The equations ave o 
be solved simultaneously given the transition interval t, and tL+1. n Prac 1C 
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these equations can be solved by an iterative numerical method. 

The application of PCM for a signal is performed in the following 
manner: 

The signal is sampled 
All levels are quantized 
The signal is transmitted or fed to a digital modulator for 
transmission 

Figure 1 shows the process of pulse code modulation (PCM), a digital 
modulator for transmission. Generally PCM is coded by a fixed-length binaiy 
code. The amount of bits required depends on the signal to be coded. For 
xm-r xT/t0 COde 512 dlfferent values at least nine bits are needed. 
NB Ix)gN(amount of codes)/LogN(2). NB=Log(512)/Log(2)=9. Log base 2 

Entropy Coding 

the n of the data not uniform, then 
y (B ge bit length) of those data points will be less than B, and 
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there is a code that uses less than B bits per data point. The goal of entropy 
coding is to encode a block of M data points containing MB bits with 
probabilities Pj; {1=0,1,..., L-l}, L=2MB, by -log2P,bits, so that the average bit 
rate is 

SP/log/,)^ (7) 

This gives codes with variable-length for each block, where the blocks 
with higher probability of occurrence are coded by short-length codes. If -Log2 

i is not an integer, the achieved rate exceeds H, but approaches it 
asymptotically as the number of blocks increase. For a finite block size, the 
most efficient fixed to variable length encoding method is Huffman coding 
[(Jain, 1989); (Barnley and Hurd, 1993)]. 

The Huffman coding algorithm 

1 Arrange the symbol probabilities Pi as follows: 

Put the two smallest Pj together. Their sum forms a node. 

Subsequently, the next adjacent P, has to be greater or equal to the 
sum of the previous node formed. 

2- Make a tree: 

Merge the two nodes with smallest probabilities to form a new 
node whose probability is the sum of the two merged nodes. 

Arbitrarily assign 1 and 0 to each pair of branches merging into a 
node, but assigning 1 to the smaller of the two branches. 

Continue the process until a home is formed. All branches 

243 



Hernandez/Vectorial quantization 

together. 

Read sequentially from the home to the symbols. 

The preceding algorithm gives the Huffman Codebook for a set of 
sym o s given their probabilities. The Huffman code is not unique. For 
mm n'i-v*the symbols A,B,C, D and E with probabilities 0.264, 0.053, 
0.108, 0.137 and 0.438 respectively. 

1 - Merge {B,C} to form a tree with weight PBC=0.161. Here, the 
use of the notation PBC means the probability of seeing either 
symbol B or symbol C. 

2 - Merge BC and D to form a tree with weight PBCD=0.298. 
- Merge A and BCD to form a tree with weight PABCD=0.562. 

Merge ABCD and E, completing the tree. 

B=ninnri?im0^e graphic "^Pretation. The code words are: A= 

code word is 2 02 bits Th^tr^1"8 Huffinan codinS averaSe la,$b 1 
2.02 bits. The entropy average bit length is 1.9932 

H O M E  ^  

O.S62 

0.264 

A 
0.053 

B 

0.108 

C 

0.137 

L> 

0.438 

E 

Figure 2. Huffman tree for codification of letters ABCD. Steps aje 
indicated at the nodes 
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Vector quantization 

Vector quantization has been established as an efficient data compression 
technique for speech and images. Using a suitable communication channel, 
VQ maps a sequence of continuous or discrete vectors into a digital sequence 
for transmission. The main goal is to reduce the amount of data while fidelity 
evels are preserved Vector quantization has received much attention recently 
as a method for coding images and motion video and has been shown to be an 
e ective method for coding images. VQ methods are a family of schemes that 
are being actively studied for image codification. Although simple memoryless 

Q schemes yield acceptable performance at low bit rates, there are other 
quantization schemes that have been shown to be more efficient. 

m 

In this thesis the application of VQ to image compression will be C 
performed decomposing the images in blocks of 4x4 pixels, using MATLAB 

ock processing modules. First the images will be transformed into a column £ 
°nn, then re-order in a matrix of 16 elements column vectors. Those matrixes 3 
w 1 be used as the input to the algorithm. For the neural networks algorithm g 
1 e same matrix will be used. The neural networks input has to be a 
normalized vector from the re-ordered image matrix. For the conventional VQ 
techniques it is not necessary to normalize the input vectors, but it is « 
recommended because the ratio of compression would increase. That is 
because many vectors could be quantized with the same normalized vector if 
j eir difference is only in their length, but in turn it is needed to store the 
en§th as an additional value which reduces compression. 

Image quantization 

After sampling an image and representing its digital values, the next step 
Is quantization or mapping. A quantizer maps a continuous variable or vector 
u a discrete variable or vector u*, which takes values from a user defined 
finite range {r,rn}, which represent quantization levels or numbers (Jain, 
1989; Barnley and Hurd, 1993; Lindley, 1991). Each r contains a value that 
^presents a group of values. This mapping is generally a staircase function, 
35 figure 3 shows. 
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Figure 3. A quantizer (Jain, 1989) 

domain resnerfi™»u c,u 1 L+' as Iower and upper values of thi: 
interval it t ) then if5' ^ cont'nuous space to be quantized u. If u lies ir 
reconstruction level Fig!^4 sfof'° CO,lespondinS maP sPace r» ̂  k" 

^lgure 4 shows a basic C decoder model. 

m°St C<™ q^ntizer is the unifonn 
themapsptejf^™'!™ °f ^'CTels °f " to *<= '-els of 
between 0 0 to 1 0 and the" PU i° 30 samPler take continuous values 
«. -».-SSSSf-» M2 a* ta 

''"TIT- i-1'2 5I3' 2-1,2 512. (81 

terval 1=^-^.,=^-^., is constant for different values of k. 
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Conventional vector quantization methods 13 
33 

Tree-search vector quantizer 
^SfilOUJuMizsr 

A vector quantizer is a system used for coding symbols or data pattern. 
The basic system receives the input signals and performs a search of its 
Codebook ROM where stores all the pattern or symbols that represent vectors 
10 compare with the input one, and the output of the quantizer will be t e 
corresponding index of the Codebook of the minimun distortion codewor 

After using the Hufftnan coding technique to code the symbols that can 
he macrobloks or a sequence, the data or signal is coded using zeros 

(1), depending on the path in the tree. The codification takes place; at^tne 
encoder, so at the decoder we need the inverse process for recons ^ 
has to define (R), the minimum bits that represent a symbo or wor 

Figure 4. The basic C decoder model 
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»ntoitteC^Hlet\Channel Codeworks> which « the element* 

creatine a7odeh<vi7 ,7 , ^ a fu" Search kt° the Codebook or 
you choose the node 7^77 "f^ 3 trCe' and ™stead °f a ful1 search 
specifenTio matCheS 11,6 iDpUt vector md ** sea^ a' ** 

„!lT,m.Ple' SUPP0SC thc Huffinan coding is used. Let following data: uumi coauiS1S used- Let us transmit the 

[ A B C E C C A H 0 0 0 1 0 1 0  1  0 1  1 0 1 0 1 0 1 0 0  0 0 ]  

r" .•fu"symbo1 is found The 
symbol Then the verifi™*- S 1S S*ze s^ortest possible 
Tk decoder ^ Wlth ̂  next ^^mmg bit. 
^bo.ist^;^~^ - ** bit to compare, after a 
for A, B C D and F shows the binary representation for A, B, C, D, and E. 

Table 1. Binary representation of symbols 

Symbol Binary 
A 1010 
B 1011 
C 1100 
D 1101 
E 1110 
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Table 2. Probability of occurrence of the 26 letters in English text 

Symbol Probability Symbol Probability 

A 0.0761 N 0.0711 

B 0.0154 O 0.0765 

C 0.0311 P 0.0203 

D 0.0595 Q 0.0010 

E 0.1262 R 0.0615 

F 0.0234 S 0.0650 

G 0.0195 T 0.0933 

H 0.0551 U 0.0272 

I 0.0734 V 0.0099 

J 0.0015 W 0.0189 

K 0.0065 X 0.0019 

L 0.0411 Y 0.0172 

M 0.0254 Z 0.0009 
Note: (Barnley and Hurd, 1993) 

To transmit the given data the system must transmit 20 bits with no 
codification and an average length of 14 bits using Huffman coding. As a 
result the Huffman code algorithm performed a compression of 14/20 or 
reduced the data to a 70% of the original size. Figure 5 shows a graphic 
interpretation. 

Multi-step vector quantizer 

Figure 6 shows a multistep VQ, which is a tree-searched VQ where only 
a single small codebook is stored for each layer (node) of the tree instea o a 
different codebook for each node of each layer. Such codes provi ® 
computation reduction of tree-searched codes while reducing e s 

requirements below those of even ordinary VQs. The f f rs t  instance ° 
code was the multistage codebook (Juang and Gray, 1982). The firs q 
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is designed as in the tree-searched case. This codebook is used to encode the 
aining sequence and then a training sequence of errors or residual vectors is 

tormed. For waveform coding applications the error vectors are simply the 
dmerence of the input vector and their codeword. In Multistage VQ with two 
stages, die input vector is first encoded by one VQ and an eiror vector 

l i l t ^  V Q  ̂  e n C O d C S  ̂  e r r o r  v e c t o r ' A e  t r a n s m i s i o n  
will be (ij) Un-Un, which has the indexes of each codeword. 

A  I 
A  

B  v  
"""" 

o  /  B  
(c) 1 HOME HOME /V t 

l "  c  
D C code 1 nput code 
E 1 0101 0101 D 

^ E 
ENCODER DECODER 

m atch wa^Y^rs'n^n^i ^v,1 7 ® 3 ^ 3,1(1 suPPOse that in the search the best 
10 01 After the h u firSt ^ °Utput is 00I0; ^ error is f° 1 

VQ outnut ^ beSt match is 1 2 0 0], so the error 
codebook and an e u 3t 1116 dec<xier there are also a sequence 
codebook and an error codebook. After the decoder search, its outputs are. 

y2 [5 0 6 0 3] , = [0 i 2 0 0] (9) 

the reconstruction is: 

= Y> + ej = Y2 + ^ = [5 1 8 0 3] (10) 
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V'V*V*Y'v.".v.v.v.v 

Figure 6. A multistage vector quantizer 

0 
1 

wn 

3 
A 
Ti r> 
> 
c 
"13 
13 
33 

Gain/shape vector quantizer 

One example of a product-code, which is a vector quantization method 
s unplemented using several scalar quantizer, is a gain/shape VQ, where 

seParate> but interdependent, codes are used to code the "shape" and "gain" of 
waveform. "Shape" is defined as the original input vector normalized by 

removal of the "gain" term such as energy in a waveform coder or LPC 
residual energy in a vocoder. Gain/shape encoders were introduced by Buzo, 
Gray and Markel (1980) and were subsequently extended and optimized by 
Sabin and Gray (1982; 1984). A gain shape VQ for waveform coding with a 
square-error distortion is illustrated in figure 7. 
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Figure 7. Gain/shape vector quantizer with the decoder 

The derivation of those fonnuJas is as follows: 

- . 
at; 

TjFiT - llxJiyv*2+*3 (ii) 
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m- £*,2, xr=[W3] (12) 

but if the Euclidean norm is considered, then the value is 

XX. •• ' 
Ifcll 

(13) 

Comparing the two vector, Ym and XX„ if they are not the same then they are 
related by the angle between them, 

I \Xn\ I-II7JI cos(0)=XYnJ, =x1y1+x3y2+x3y3 (14) 

S 

\ Ex; 

to be maximized. 
Let D be the square error between and YiYn 

(15) 

0 
5 
•N 

\ 
R 
D 

tt*K M* 

13 
33 

D=&.-V frWn-yfJ (16) 

D<Xn-ylYm)(Xn'-yiYmt) (17) 
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D=XX'y Y -  X y Y '+v 2Y Y '  w  " '  '  m l i  I m Im (18) 

D=W-2y +vX2 (19) 

lfX°= [x' *2 Xjl and Y™= ly> y* y3] then X„Y*n =Xt„Ym .therefore, 

+Jy3 = Xi*, +>% +^3 (20) 

n^NoTdefme1" diSta"Ce h®1"6™ v«='ors is measured using a vector 

also yx2=X„2. (21) 

easily calculated™ eJuat'on D can be dropped because it can be 

•SO*, totaaLDl">?. ?™ iJ" to™ 

to™. «s» 7 w"toS£l 

Separating mean vector quantizer 

where a code is the separating mean VQ 
vector. In the separated mean vn° r Samp,emean of a k-dimensional 
sample mean of the vector then th 3 ^ quantizer is first used t0 code the 

the components of the input vect "trfonT"Ple ̂  " SubtraCted fr°m f 
zero sample mean. This vector ic th "CW vector WIth approximately 

then vector quantized. Such a system if 
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depicted in figure 8. The equations for this quantizer are as follows: 

Let Xn=[x1 x2 x3... xj and X"n be the mean of X„ then 

(AT - xr)  
Y  = _ ^ _ n  n j _  ( 2 2 )  

• m\ ( '  

Let Uj - scalar value that approaches X„ The transmited values are u that 
contain the values of i and j, so at the decoder the reconstruction is: 

\\<butK*K (") 
IAJ 

Figure 8. The separating mean VQ model 
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+x>« <24) 

therefore the reconstruction is X 

e state or decision VQ has several codebooks inside. Adaptation cai 
vnarari!?501^3! !?*i? 3 vector Quantizer by using different codebooks o; 
. ^CaCt. , e ^mto aset°fsub-codeboks, where the codebooks are 
«5vnrhrr.n'0I1f 6 ^3St vectors. The decoder must have £ 
order tn u encoc*er to know which codebook is being used in 

ec e e c annel symbols. This can be accomplished in two ways: 

The encoder can use a codebook selection procedure that 
depends only on past encoder output and hence the codebook 
sequence can be tracked by the decoder. 

The decoder is informed if the selected codebook via a 
special low rate side channel (Gray, 1984) 

used to s^hmnOn^ti!0n ^ C3^ feedback VQ because the encoder output is t  ̂CCti0n °f 016 nCW C0deb0°k A feedback 
with backward an W . 33 vector extension of a scalar adaptive quantizer 

? f,gUreS 9 ^ 10 show- Feedb-k VQ ^ be 
called states and that for"Estate'FS Wh°Se ekmentS °^ 
oreroun an c « , m Fs y°u have a separate quantizer class 
s 3 ^  B "  a n d  C 0 d e b 0 0 k  C -  T 1 > c  c h a n n e l  c o d e w o r d  
compression svst^ * ̂  ̂  ** a" of «» VQ's. Consrdcr a data 
machine is hi state f r^'8"118 °f 3 Se1uential machine such that if the 
machine * m state fs. then it uses the quantizer with encoder Es„ and decoder 
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B,. Using the synchronization value it then selects its next state by a function 
called a state-transition function f such that given a state fs and a channel 
symbol x, then f(x,fs) is the new-state of the system. Specifically, given a 
sequence of input vectors {Xn;n=0,l,...,2R} and an initial state fs0, then the 
sub-sequence state fsn, channel symbol sequence x, and reproduction 
sequence xn are defined recursively for n=0,l,2,...n a% x =^s Qi ), and 
reconstructed as x'^B^xJ, fsn+1=f(xn,fsn). Since the next state depends only 
® the current state and the channel codeword, the decoder can track the state 
if it knows the initial state and the channel sequence. If die state space has a 
limited universe, then the resulting system can be called a finite-state vector 
quantizer (FSVQ). A disadvantage in all feedback quantizers is that channel 
error can accumulate and cause severe reconstruction errors. As with scalar 
feedback quantizer systems, this problem must be handled by cyclical 
resetting of the state control line. 

Figure 9. The feedback VQ encoder model 
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Conclusion 

The basic Lloyd's iterative algorithm and how this method can be 
improved and applied to a variety of vector quantization systems, ranging 
from the fundamental VQ techniques to a feedback model, was described. 

ough a variety of examples of systems and code design simulations, some 
of the tradeoffs among performance, rate, complexity, and storage for these 
codes were illustrated. 

Figure 10. The feedback VQ decoder model 

traditionafscalar ditPr0aCl1 ^ ̂  bC incorporated int0 design of some 
<tS VO ' V compression schemes, an approach which Gersho calls 
s"Son r 0f 1VQ algonthm has been tned for 
error theltakura ding the squared error, weighted squared 
error, the Itakura-Saito dtstortton and a segmented signal to noise ratio. 
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^ The theory of the VQ techniques is widely used. The complexity of the 
VQ technique depends on the type of application used. The result from a VQ 
system may vary from one application to the other. Therefore, the efficiency 
o your VQ system also depends on the application selected. 
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