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Abstract 

The goal of this paper is both to introduce the fields of experime 
design optimization and thermal property estimation and to Pr^s^ 
Genetic Algorithm (GA) optimization method to the facultv o 
This research environment is part of an ongoing overall researc e o 
conducted at the Virginia Polytechnic Institute and State "ivcr 

(Virginia Tech) with an aim to instrument a complex structure an acGa 

meaningful thermal property data. Some preliminary work emons r 
that the GA method is a powerful means for both design optinuza ion 
parameter estimation. 

Uso de algoritmos geneticos para optimizar el diseno y estima 

propiedades termales 

Sinopsis 

Este articulo busca presentar los campos de optimizacion de 
experimentales, estimar las propiedades termales y presentar e me 
optimizacion por algoritmos geneticos a la facultad de a niv ^ 
Politecnica de Puerto Rico. Este medio investigativo es pa e 
esfiierzo continuo que se conduce en Virginia Polytechnic ns i u 
State University (Virginia Tech) con el proposito de instrume 
estructura compleja y adquirir datos significativos so re5 P* ritmos 

termales. El trabajo preliminar demuestra que el meto o -6n de 

geneticos (GA) es una herramienta muy util tanto para op 
diseno como para estimar propiedades termales. 
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Introduction 

ainomft ofTnf ? exPenmental de^igns is crucial to maximize the 

e~on o/Zu'r ^ be 0bta,ned fr0m the <*P™ts. In fc 
dem« trat^i n ^ 3CCUraCy °f 1)16 estimates ha* bcc" SSZtX£?£l 5W-? T —* 
tvoicallv found h •' • • ' optimal input conditions are 
XTaUoZ i " Tm,Zln8 3 Smgle CntC™"> the D-°Pt™> criterion, 

variance Due eStml3teS t0 be obtamcd »'lth 

the optimization t h °f 3" a"alytiCa' Schen,e in most cases, 
l0^:nH CChn,qUC tyP,Ca"y applied is a stepwise parametnc 

ltd L? Ls; , 7u Titerative pr0cess^this techn"^ 'S tedious 
rrrr T ef°re restricts *he ** omy 

study does not guarantee the XXXXXtptX" P*™"*"0 

procedureTn the' tdyS'SnS ^ then used ln a parameter estimation 
material ' r^ T e T  ?T matenals>such as composite 
"when ftof t'tennal property is extremely important, 
knowledge of its tl P°S1,e ls subjected to a non-isothermal environment, 
Sitrls1'S rep"'red to accuratcly predict 
techniane for n Prevent component failure. An effective 

ieasT squares °f the "zation of the 

predominant methods aLTfrn'"lethod is a 

Simultaneously However ht a Pfameters to be estimated 
behavior resulting in ' Procedure has encountered unstable 
correlated As ' Convergence when the parameters are 
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use of genetic algorithms (GA) with real number coding in the 
development of both an optimal experimental design strategy an 
simultaneous parameter estimation procedure. This researc P1"0-)6^ 
associated with a dual US-French doctoral program between the Heat 
Transfer Laboratory of the Department of Mechanical Engineering of 
Virginia Tech, Blacksburg, Virginia, and the Laboratoire 
Thermocinetique de V1S1TEM, Nantes, France. Some preliminary work 
conducted at Virginia Tech demonstrates that GA are a power mea 
for both design optimization and parameter estimation. Since the present 
paper focuses on presenting the fields of experimental design optimization 
and thermal property estimation and describing the GA optimisation 
method, only a brief summary of the results of an application examp e wi 
be provided'. The readers are referred to the literature for detailed results 
and discussions (Garcia and Scott, 1996, 1997; Garcia et al„ 1997). 

Literature review 

Optimization of experiments 

The use of optimization for designing experiments is essential to 
provide the maximum amount of insight and information on the 
phenomena being analyzed (Scott and Haftka 1995). Nunierous s udies 
on dus topic have been published. Most of them deal with the field of 
statistical inference and data analysis (Brown et al„ l985); how'ever an 
increasing number of publications can be found over the past two decades 
m the field of engineering design. 

When the purpose of the experiment is to estimate parameters the 
obiective is to design an experiment in which there is minimum correlation 2XKSS- .-U.« «• - —— -s 
measured experimental variables to changes in the properties being 

«rfr oSS r^ 
subjected to constrain - Although its establishment should 

•SZ3S&Z. * .  -  • * - « »  — "  
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S ITtVt "•Fa~ — ». **. 
^ o J ™r ° *» i"a'•• 

derivatives of the experimental sensitivity coefficients are the 
with respect to the unknown Pr°CeSS vanab,es> such as temperature, 
conductivity (Scott and Haftka^S^The^ CXamP,e' ^ 
• i • . lKd' the main optima itv criteria 
include maximization of the determinant of X*X (D ' fiiT 
nia.x.m,zat.on of the minimum eigenvalue of XW tF j 
maximization of the trace of X'xl, (^mality) and 
the most common one. The effect of t r ^ ̂  Cnten°n 1S 

volume of the usual confix n- opt,mahty IS to minimize the 

providing the minimum var.micHstLrtorf (K^fcf ^7' 

~i^rdtout r ?isns 

would increase the accuracy of so 6 °Ut ^ D"°Ptimahty criterion 
a large error in others. parameters at t,ie expense of creating 

opt̂ rutdit™!̂  rmaiity â maa™ 
parameters which satisfy the 1 ° deterrmne tlle °Pt«nal experimental 
experimental designs "S to estimam ^ ^ °Pt™°" °f 

are considered: an analytical analvsi Parameters' 'fP'cally two choices 
Arnold, 1977). The first method °" " p/ramstnc st"dy (Beck and 
function by differentiatine it tl COnSlsts maximizing the objective 
and then s'olvinTTZLTsJT'* ^ ̂  ™abks 

optimal values of the design variables S! fS™U,taneously for the 

equations involved, this method can h ,of 1,16 eomplexity of the 
The second method ist "teratt annrl T, and tlme lntenslre-
determination of the practical ranee of th^ "S c aractenzed by first the 
the reduction of Js L 2 t °P"ma' Va,UeS' and seco"d ^ 
precisely. As 

intensive for a large number of design variables Hoover, for onTva^ 
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design variables to optimize, the parametric study has been found to be 
efficient with the D-optimality criterion. This technique was applied by 
Beck (1966) to determine the optimal conditions for the simultaneous 
estimation of the thermal conductivity and specific heat, and to determine 
the optimum transient experiment for estimating the thermal contact 
conductance (Beck, 1969). Taktak et al. (1991) used this procedure to 
estimate the thermal properties of isotropic composite materials by 
optimizing the number of sensors, sensor placement, and the duration of 
an imposed heat flux. Two-dimensional D-optimum experimental designs 
have also been developed by Moncman et al. (1995) using a parametric 
study for the simultaneous estimation of thermal properties of anisotropic 
composite materials. It is relevant to mention at this point that a third 
method, the GA method, has recently been proven to be highly efficient 
and well-suited in designing optimal experiments for the estimation of 
thermal properties. Indeed, the work by Garcia and Scott (1996 and 1997) 
shows that GA outperform the parametric study. The appraisal of the use 
of the GA method in the field of experimental design optimization is 
engaging as genetic agorithms could allow the optimization of both 
experiments with a large number of design variables (e.g >3) and more 
complex designs. 

The present state of knowledge should be concluded with the 
importance for the optimal designs to be verified. This ensures that the 
best possible estimates have been obtained and allows for the validation of 
not only the optimization procedure but also the mathematical model used 
to describe the process. Hanak (1995) demonstrated that the optimal 
design provided the most accurate combined thermal property estimates 
bv testing the optimal design along with two non-optimal designs. The 
non-optimal experimental parameters were chosen so that they did not 
satisfy the D-optimal criterion used in the optimization technique. Hanak s 
results showed that an individual property might be estimated with greater 
accuracy at a non-optimal setting but the combination of properties 
reached a higher accuracy at the optimal setting. In the same manner 
Knight et al (1992) stressed the performance of an optimal air cooled 
aluminum fm The two non-optimal designs analyzed maintained fewer 
and greater fins. Also, verification of an optimal structure against 
buckling allowed Thompson and Supple (1973) to show that the 
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optimization produced larger imperfection sensitivity. This was the 
consequence of the optimization of a limited analytical model. Indeed, the 
analytical model was found not to account for the unavoidable 
imperfections in the material due to manufacturing. 

Estimation of parameters 

Once the optimization of the critical experimental parameters has 
been conducted, the optimal designs are employed in the development of 

! fti a" estimat'on procedure to determine the desired parameters. In the 
jjj. absence of correlation between the parameters, the modified Box-
P Kanemasu method has proven to be an effective routine to simultaneously 

, 0 estimate thermal properties. This method is a modification of the Gauss 
method, which is a first order unconstrained descent method. It is based on 
tie minimization of an objective function containing calculated and 

temperatures (Beck and Arnold, 1977). Scott and Beck 
; • (1992a,b) implemented this approach for the estimation of the thermal 

properties of composite materials during and after curing as functions of 
temperature and fiber orientation, and for the development of an 
estimation methodology for thermoset composite materials during curing. 
Jurkowski et al. (1992) also used this method to simultaneously estimate 

thermal conductivity and thermal contact resistance without internal 
temperature measurements. 

The modified Box-Kanemasu method, however has the drawback of 
emg inefficient for use in models which have correlated parameters or a 

nearly flat sum of squares function, as it may not converge. Indeed, using 
tie two-dimensional optimal designs developed by Moncman et al. (1995), 
Hanak (1990) could not perform the simultaneous estimation of the 
effective thermal conductivity perpendicular and parallel to the composite 
fibers and the effective volumetric heat capacity with the modified Box-
Kanemasu method. Note that the investigation of correlation between the 
parameters was actually considered in the optimization process. The 
experimental designs were then re-optimized for the restricted 
simultaneous estimation of the effective thermal conductivity parallel to 
the fibers and volumetric heat capacity. 
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This correlation problem has been addressed by different approaches. 
One approach is to modify the experimental design. For example, Loh and 
Beck (1991) were able to simultaneously estimate both effective therma 
conductivities of anisotropic thermoset carbon composites through the use 
of nine thermocouples embedded at various locations within the samples. 
The number and location of the sensors were a priori fixed by the authors, 
but the potential correlation problem was never detected. This wor s ows 
that the use of multiple sensors could be a solution to overcome potentia 
correlation between parameters as more information is provided to the 
estimation procedure. Nevertheless, modifications to the experimental 
design, such as the use of internal sensors, are not always feasible, 
especially when non-destructive testing is required. Another approach is to 
modify the minimization method. For example, Copenhaver (1996) used a 
constrained parameter estimation procedure based on a penalty function 
method with limited success to simultaneously estimate three nearly 
correlated properties of a honeycomb sandwich structure. Indeed, 
parameters could be simultaneously estimated for only a specific 
combination of sensor locations, with the use of a maximum of two 
sensors, and boundary conditions. An alternative approach is to apply a 
robust non-gradient optimization technique such as the GA method in the 
minimization procedure. The potential of this optimization method has 
indeed been recently illustrated by Garcia et al. (1997) who were able to 
perform the simultaneous estimation problem unsolved by Hanak (1 ) 
and mentioned earlier. Their work, which includes several case studies, 
demonstrates that GA is an effective strategy for overcoming .correlation 
between thermal properties and is an effective means of simultaneously 
estimating thermal properties. 

Genetic algorithms 

Developed by Holland (1975). these algorithms are based on 
techniques derived from biology, as then name implies, and belong to the 
class of computational techniques based on artificial intelligence y 
imitate genetic and selection mechanism of nature. Even though they are 
based on the law of coincidence, they show a steep gradient with regard 
to improvement, and ensure to a high degree of probability that the global 
op .mum will be found (Krottmaier, 1993). Easily programmed, they 
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^ZZnTTS1T and T n0t b0Und t0 assurnPti°ns regarding 
search tool The f T*' them M exce,lent probabilistic 
search tool. These features explain why GA is a better means of 
op imizing complex problems (defined by several local opfimalTonh 

IndcSln thTseZ^ T  ̂̂  3nd ana,>tical "«hods 

enormous effort fiZ °f Vely sma"' ,imited ^eas require 
onZ2 I n 3rm°re' they d° not §uarantee reaching the global 

Mdbem'SZtTn0"8 0f the features 0f GA 's detailed by 
Goldberg (1989 and Mitchell (1995). In addition, useful information can 
be found on the Internet (Heitkoetter and Beasley, 1995). 

Because of the complexity associated with the traditional binarv 

slow Zspread 7" (° ̂  ̂  reSearch 0n GA has 
to spread from computer science to engineering. The recent 

and real number^ 7' ef^e<j*'veness of these algorithms with both integer 
apphclt ons For t 8 " '° Ut'Hzati°" ** 4 
haZ b en anold ar,Ce' " ***'  ̂GA mth reai coding 
optimization of the present fie]ds of '"forest, the 
optmuzation of experimental designs for thermal property estimation and 

these fields' In I'V , ™ aPP,icatlon °f ^ OA method in 

01 a crack tn a frame structure More rerentlv r,A 1,0 u atstsr r - r-** -
ZorlTml s 9ln Z,Cations- The 

world pa i 'S 3 stnk,nS demonstration of the possible real 
world GA applications ,n industry. In the second part of this book 13 
ase studies written by various authors include the use of GA for: 

1. Large scale optimizations (such as call routing in a US West 
telecommunication network, path planning8 for robotZm 
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motion,... etc.) 

2. Production systems (evolving strategies for aircraft missile 
avoidance for instance) 

3. Scheduling (for activities in a laboratory) 

The first part consists in a tutorial written by Davis in which 
emphasis is placed on tailoring the GA to the problem at hand. The author 
also recommends the use of current encoding. Davis's approach is to 
incorporate domain knowledge into the GA as much as possible, and to 
hybridize the GA with other optimization methods that work well. A 
comparable approach, although much simplified, as it does not deal with a 
hybrid GA, was conducted by Wright (1996). This latter applied a 
combination of the gradient-based Gauss method and a GA to determine 
the specific acoustic admittance of the inlet and outlet ports of a 
combustion chamber. By exploiting the advantages of both techniques, 
Wright was able to arrive at accurate estimates of the acoustic boundary 
conditions for nearly any candidate systems. 

Another relevant feature of genetic algorithms pertains to their 
flexibility in the optimality criterion approach. Indeed, the effectiveness of 
these algorithms in optimizing multiple objectives has recently been 
demonstrated by Belegundu et al. (1994). 

Design optimization and parameter estimation formulations 

Design optimization formulation 

The objective of design optimization is to select the values of the 
design variables Xi (z"=l,...,«) in such a way that an objective function 
f=f(x) attains an extreme value within the various constraints. This can be 
expressed in the abbreviated form 

min«6«»{/(x> : k<x> = °> X<x> <x<x"}, ( I )  
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vector If 'T- ̂  °f rea' nunlbers'/a" objective faction, * € 91" a 
vector of;,n;SIS;>Variab,eS' h 3 Vect?r °f 9 epua,it>' constraints. g a 
unner hn ' paa y constraints, and ^ and a-" the respect,ve lower and 
nomt Z r! n ? °f 'he desig" variab,es' I"1* set °f des'S» 
(Arora 1989) constraints correspond to the feasible domain 

thermal nmn!^ 0356 °foptimization of experimental designs used for 
ZSJZTTT? jS a" UnC°"Stra"led optimization, in which 
as oe aL r, "* * ™ed be Specified' The Unction is 
is r~eld H n6 pTCy °f th£ cstimatioa- D-ophmality criterion 
minlndzinetheh ? 3"d Am°'d °977) because i( has tbe eflfect °f 
minimizing the hypervolume of the confidence region. 

Parameter estimation formulation 

opti,naTdetL?t,mal T™'™'3' para,"ctere have been determined, the 
eTt mat ofnfnhl u * th° desired ,be™al p^perties. The 
toon to m ^ 6 "? 35 a" 0p"mlza"0" which the objective 
mrCat,call™r,Ze * "* ^ " *"**» 9 -plcssed 

s '=[ y ~r( (5) ] T  [y~r(p) ]  ( 2 )  

ttnperature VeCtor> ^ is the calculated 
exact parameter value's. ^ paranieter vector tbat contains the 

p a r i ' a n  a n a i y s , s  ° f  t h e  
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Application example: Optimization of a one- and two-dimensional 
experimental design for the estimation of the thermal properties of an 
anisotropic composite material. 

This application example deals with two optimization and estimation 
problems previously solved in the literature. 

Optimization test problems 

The experiments investigated include one- and two-dimensional 
optimal designs performed by Moncman (1994) and Hanak (1995), 
respectively, for the estimation of thermal properties of composite 
materials. They both used a parametric study with the D-optimal criterion 
which implied the maximization of the determinant D of the Fisher 

information matrix given by X X. Note that their analysis was 
performed in nondimensional terms so their results could be applicable for 
any material. Their experiments were subjected to the constraints of a 
fixed large number of observations n with uniform spacing in time and the 
maximum temperature being 7* max reached at steady state. Only a brief 
summary of their analysis is provided here. 

In the one-dimensional analysis, the sides of the composite were 
insulated while an imposed heat flux was applied across the entire top 
surface and the bottom surface was held at constant temperature (fig. 1). 
Moncman sought to optimize three critical parameters which were the 
sensor location xs+, the duration of the heat flux th+ and the overall 
experimental time r„+ for the simultaneous estimation of two properties, 
the effective thermal conductivity perpendicular to the fibers and 
volumetric heat capacity (product of density and specific heat). In this 
case, D ].d was a 2x2 matrix and was given by 

D\-D = 
d\\ dx; 

d2; d2; 
(3) 
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Heat Flux 

Insulated 1e n u n  
V 

Insulated 

Constant Temperature 

Figure 1. One-dimensional boundary conditions. 

In the two-dimensional analysis, Hanak investigated two different 
experimental configurations (fig. 2). Both had a unifomi heat flux applied 
over a portion of one boundary, with the remainder of the boundary 
insulated. In addition, Configuration 1 had constant temperatures at the 
remaining three boundaries, while Configuration 2 had a constant 
temperature boundary opposite to the heat flux, with the remaining two 
boundaries insulated. The five critical parameters optimized were the 
sensor locations perpendicular and parallel to the fibers, xs+ and v,+ 

respectively, the duration of the heat flux th+, the heating area Lp and the 
overall experimental time //. The objective was to simultaneously 
estimate three properties which were the effective thermal conductivities 
a ong perpendicular planes and volumetric heat capacity. In this case D%. 

D was a 3x3 matrix and was expressed by 

D\.d = 
du+ dn* d,; 

d,: <iT; 
23 

d , *  d n +  d - . :  
'33 

(4) 

For both analysis, the one- and two-dimensional cases, the dv+ were 
round from Beck and Arnold, 1977 

dl - U j'°" X<(r)x+j('*) dt\ i = l,n . (5) 

where X,+ are the dimensionless sensitivity coefficients associated with the 
thermal properties being estimated, p„ and they are calculated from 
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d r u + )  
(6) 

It is relevant to point out that the optimal overall experimental time of 
each specific design was determined by evaluating the determinant D 
without time-averaging, using the optimal values of the other critical 
parameters that were obtained applying the parametric study. The optimal 
overall experimental time corresponded to the time when no significant 
information about D ni was provided. Consequently, in the one-
dimensional analysis, the actual number of design variables was two (xs 

and th+), and in the two-dimensional analysis, there were actually four 
design variables (xs+, ys+, Lp+ and th+). 

Heat Flux 
. . I I Insulated 

I/////, 
V^fx Configuration 1 y| 

Constant Temperature 

(a) 

Heat Flux 
Insulated 

Insulated 
gfx Configuration 2 " gi Insulated 

Constant Temperature 

(b) 

Figure 2. Two-dimensional boundary conditions 
(a) configuration 1 and (b) configuration 2. 

Estimation test problems 

The estimation test problems studied include the simultaneous 
estimation of two and three thermal properties of a composite material 
using the optimal designs of the one-dimensional and configuration 1 of 
the two-dimensional experiments described in the previous section, 
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respectively. These problems were investigated by Hanak (1995), who 
used the modified Box-Kanemasu method for both estimations. In the one-
dimensional analysis, the effective thermal conductivity perpendicular to 
the fibers and the volumetric heat capacity were simultaneously estimated. 
However, in the two-dimensional analysis, the simultaneous estimation of 
the effective thermal conductivities along perpendicular planes and 
volumetric heat capacity could not be performed because of the non-
convergence of the estimation technique due to correlation between both 
thermal conductivities. 

Unlike some traditional optimization techniques that work in the 
neighborhood of a point, GAs operate on a population of chromosomal 
strings. Note that in the optimization and estimation procedures a single 
chromosome designates a design variable and a thermal propertv 
respectively. 

Two GAs have been demonstrated on the test problems. The first one, 
which was modeled according to the algorithm described by Furuva and 
Hattka (1993), was called Basic Elitist GA (BEGA) because it used a 
asic elitist strategy. BEGA involved successive operations consisting of 

selection, crossover and mutation, which simulated" the mechanics of 
natural genetics. The second algorithm used an extended elitist strategy 

caIled Extended Elitist GA (EEGA). A detailed description 
of the BEGA ,s first given for the particular case of the optimization test 
problems. Then, the main features of the EEGA are outlined. Simplified 
flowcharts of both algorithms are shown in figure 3. 

Description of the Basic Elitist GA 
Design coding 

In the optimization of the one-dimensional experiment, a genetic string 
describing^ particular design contained two chromosomes for the sensor 
location x* and the heating time th+. In the same logic, in the optimization 
of the two-dimensional experiments, each string contained four 
chromosomes for the design variables x/, ys+} L/ and th+. Because the 
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design variables were continuous, BEGA used real string representation. 
The ranges of these real numbers depended on the lower and upper bounds 
of the design variables which were specified by the experiments. For 
instance, the chromosome xs+ (dimensionless sensor location perpendicular 
to the fibers) ranged from zero to one. 

Figure 3. Flow charts of BEGA and EEGA. 

Initial population 

The optimization algorithm started by generating the initial parent 
population of ns candidate strings (designs). Each string was created by 
randomly selecting nc chromosome values (design variable) from the 
design space. The strings were then ranked in terms of the value of the 
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nondimensional determinant D* using the D-criterion. Obviously, the best 
string had the highest D\ 

Selection 

Parents were selected by pairs for breeding using a rank-based fitness 
technique The fitness of the ith ranked string was defined as 
/, + i allowing for the high ranked string to have a high fitness 

parameter and to thus most likely contribute to the determination of the 
next generation strings. The probability of the ith ranked string to be 

selected as a parent was given by p, = - 2/ . The selection process 
».(»,+1) V 

was then accomplished at random, according to the roulette wheel 
mechanism, the ith ranked string was selected if P ,<r<P where 

1-1 ' 1 ' ' 

P' = and r was a uniformly distributed random number between 

zero and one. 

Crossover 

, yh.efCh,'d st™gs were made the mating of the pairs of parents 
selected for breeding This process began by generating a random integer 
chromes ° P4°,"t> between J and where nc was the number of 
n,™™ ' K. Ch,ld was des,S"ed by using the first k chromosomes of 
parent 1 and the remaining ones came from parent 2. For instance 
consider in the one-dimensional analysis the strings with x/=0 5 t,*= I 0 

there^re n V aS P3T ' and 2' resPect'Vcly. As nc=2 (recall that 
loss M 7°.deS,gn var,ables in the one-dimensional analysis), the onlv 
possible child string could be *>0.5, r,>l.5. nlis process js the 

simplest crossover, the so called single-point crossover. Note that there 
exist more elaborated variants of this operation which are used with 
efficiency when the genes are all of the same kind [for instance thev 
represent location of actuators, see Furuya and Haktka (1993)1 However 
these variants may not be adequate when the genes represent different 
parameters (such as the location of sensors, the heating time, the total 
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experimental time,...). Furthermore, because the primary goal in the study 
of these test problems was to test the effectiveness of the genetic algorithm 
method comparatively to the parametric study in the optimization of 
experimental designs, the simplest crossover operation was to be used. 

Mutation 

Mutation was implemented by changing at random the value of a 
chromosome. This process insured that new chromosomes were generated, 
thus preventing the solution from locking on a non-optimum value. The 
mutation probability pm is usually small (0.001 <pm^ 0.15) so as not to 
interfere with the combination of the best features of parents made by the 
crossover operation. In the BEGA, pm was taken arbitrarily as 0.05. If the 
chromosome was mutated, it was replaced by another one randomly 
chosen from the allowable range of values for that chromosome. 

When the operations of selection, crossover and mutation were 
completed on the ns parent population, a new generation was created from 
the ns-1 child strings in addition to the best parent string. This addition 
denotes the basic elitist strategy of the BEGA. Over the course of several 
generations, the algorithm tended to converge on the string giving the 
maximum determinant, which was hence considered as the predicted 
optimal design. Note that the stopping criterion was simply to perform ng 

generations. 

Description of the extended elitist OA 

This algorithm was developed to improve the efficiency of the BEGA. 
Following is an outline of the five main differences between the EEGA 

and the BEGA: 

I A pure random search is initially performed to obtain good starting 
conditions for the lower and upper bounds of each chromosome 
(parameter to be optimized/estimated). The purpose of this seeding is 
therefore to help direct the genetic algorithm search. Note that this 
initial search is run separately from the EEGA run. 
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2. The EEGA starts by randomly searching a number of npop initial 

population in which only the nbesll first ranked strings are kept. This 
produces  an  in i t ia l  e l i t i s t  popula t ion of  s ize  n s  = np o p  xnh e s l ] .  

3. ns children are created and then combined to the parent population. 
After ranking this combined population of size 2ns the "twins" are 
removed and only the nbesl2 first ranked strings are kept, where < 
n5. 

4. The parameter ranges are updated from the analysis of the first 
ranked strings, where nbest3 < nbest2 . The next generation comprises, 
therefore, the nbest2 + (tis - nbest2) random strings generated from the 
just updated parameter ranges. This addition allows some "new 
blood" in the population and prevents the EEGA from premature 
convergence on a non-optimal string. 

5. When ng generations have been performed, some statistics are 
performed on the nbestI first ranked strings. This enables the 
computation of the means and their 95% confidence intervals for each 
chromosome of these nbest, strings. The 95% confidence intervals 
computed are a good evaluation of the convergence of the EEGA. 

When EEGA is used as an estimation procedure, the output for a 
particular experimental data set includes the means of each chromosome 
(t ermal property) and the 95% confidence intervals representing the 
ranges of values which the actual properties lie within for that particular 
experiment. 

Summary of results 

In the optimization of the experimental designs the results from these 
two test problems indicated that the computational efficiency of the EEGA 
\VaS hlgher and the results were slightly better than those of either 
the BEGA or the parametric study. Therefore, by keeping the best 
information generated throughout the search process, the EEGA proved to 
be well-suited for optimizing experiments designed for thermal property 
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estimation. In the estimation of the thermal properties, the results 
demonstrated that the EEGA is also an effective strategy for the non­
linear simultaneous estimation of correlated properties. The readers 
should consult the work of both Garcia and Scott (1997) and Garcia et al. 
(1997) for detailed results and discussions. Note that in these papers, it is 
pointed out that the excellent results obtained by the EEGA in these 
specific optimization and estimation test problems do not imply that this 
algorithm would also excel for every other application. Indeed, the scheme 
used in a GA could by no means be quantified in terms of a single recipe 
and the performance of a GA can be viewed as application-specific. 
Therefore, there are no a priori best GAs but good GAs that are tailored 
to the problem at hand (Davis, 1991). 

Conclusions 

The focus of this paper was on both presenting the fields of 
experimental design optimization and thermal property estimation and 
describing the genetic algorithm (GA) optimization method. One example 
of the application of the GA method to these two fields was supplied and 
the results were briefly stated. This example dealt with two optimization 
and estimation problems previously solved in the literature. The study of 
these test problems allowed assessment of the use of genetic algorithms 
(GAs) as a procedure for both the optimization of experiments designed 
for thermal property estimation and the following simultaneous estimation 
of the thermal properties. The methodology developed exploits both the 
elitist feature and the non-gradient nature of the GA method to overcome 
the main limitations of the conventional optimization and parameter 
estimation techniques (Garcia and Scott, 1997 and Garcia et al., 1997). 

The enhanced elitist GA described in this paper has also been 
demonstrated in other case studies to be a flexible, powerful and easy-to-
apply, all-purpose algorithm (Garcia et al., 1997). 

This research, which is associated with a dual US-French Ph.D. 
program between the Heat Transfer Laboratory of the Department of 
Mechanical Engineering Department of Virginia Tech, Blacksburg, 
Virginia, and the Laboratoire de Thermocinetique de I 'ISITEM, Nantes, 

123 



Garcia/Use of genetic algorithms 
France, is currently directed toward the enhancement of this innovative 
procedure based on GAs Future research is projected on its application to 
the thermal characterization of composite materials during curing. 
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