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Abstract

‘The goal of this paper is both to introduce the fields of experimental
deﬂgn. g ion and thermal property estimation and to present the
Gn?ismmc ::lgol"ﬁm. (GA) Optimization method to the faculty of PUPR.
condu gl of an ongoing overall research effort
(Vi e et Polytechnic Institute and State University
mwri}nla Tech) with an aim to instrument a complex structure and acquire
MﬂlgﬁGl; method g data. Some preliminary work demonstrates

is a powerful means for both design optimization and
parameter estimation.

Uso de algoritmos genéticos para optimizar el disefio ¥ estimar
propiedades termales

Sinopsis

c‘pe?n;:gl"“b b}xsca presentar los campos de optimizacion de disefios
APCLTEAR D, SRRIEE las propiedades termales y presentar ¢l método de
(I),pu.n}m,‘”m por algoritmos genéticos a la facultad de la Universidad
olitécnica de Puerto Rico. Este medio investigativo es parte de un
?ﬁ“m continuo que sc conduce en Virginia Polytechnic Institute and
tate University (Virginia Tech) con el propésito de instrumentar una
estructura compleja y adquirir datos significativos sobre propiedades
tem!a.la_ El trabajo preliminar demuestra que ¢l método de algoritmos
S?Hetlws (GA) es una herramienta muy util tanto para optimizaci()n de
discfio como para estimar propiedades termales.
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Introduction

Optimization of experimental designs is crucial to maximize the
amount of information that can be obtained from the experiments. In the
estimation of thermal properties, the accuracy of the estimates has been
demonstrated to increase when the experiments are designed carefully
(Beck and Armold, 1977; Hanak, 1995). The optimal input conditions arc
typically found by maximizing a single criterion, the D-optimal criterion,
which allows thermal Property estimates to be obtained with minimum
variances. Due to the complexity of an analytical scheme in most cases,
the optimization technique typically applied is a stepwise parametric
study. However, because it is an iterative process, this technique is tedious
and time intensive and therefore restricts the researchers not only from
cxpanding their work to a large number of design variables and more
complex designs, but also to the incorporation of additional information or
constraints or a multicriteria optimization. In addition, the parametric
study does not guarantee the determination of global optima.

The optimal designs are then used in g parameter estimation
procedure. In the utilization of new advanced materials, such as composite
materials, reliable estimation of thermal properties is extremely important.
Indeed, when the composite is subjected to a non-isothermal environment,
knowledge of its thermal properties is required to accurately predict
thermal stresses and thus prevent component failure. An effective
technique for parameter estimation consists of the minimization of the
least squares function. The modified Box-Kanemasu method is a
predominant method that allows for the parameters to be estimated
simultaneously. However, this procedure has encountered unstable
behavior, resulting in non-convergence when the parameters arc

The need to be able to instrument a complex Structure and acquire
meaningful property data has provided the motivation for exploring the
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use of genetic algorithms (GA) with real number coding in the
development of both an optimal experimental design strategy and a
simultaneous parameter estimation procedure. This research project is
associated with a dual US-French doctoral program between the Heat
Transfer Laboratory of the Department of Mechanical Engincering of
Virginia Tech, Blacksburg, Virginia, and the Laboratoire de
Thermocinétique de 1'ISITEM, Nantes, France. Some preliminary work
conducted at Virginia Tech demonstratcs that GA are a powerful means
for both design optimization and parameter estimation. Since the present
paper focuses on presenting the ficlds of experimental design optimization
and thermal property estimation and describing the GA optimization
method, only a brief summary of the results of an application example will
be provided. The readers are referred to the literature for detailed results
and discussions (Garcia and Scott, 1996, 1997; Garcia et al., 1997).

Literature review

Optimization of experiments

The use of optimization for designing experiments 1s essential to
provide the maximum amount of insight and information on the
phenomena being analyzed (Scott and Haftka, 1995). Numerous studies
on this topic have been published. Most of them deal with the field of
statistical inference and data analysis (Brown ct al., 1985); however, an
increasing number of publications can be found over the past two decades
in the field of engineering design.

When the purpose of the experiment is to estimate parameters, the
objective is to design an experiment in which there is minimum correlation
between the estimated properties, as well as maximum sensitivity of the
measured experimental variables to changes in the propertics being
estimated (Beck and Amold, 1977). The selected design variables are
sized to provide the best estimates of the desired parameters by
maximizing or minimizing an objective function, or optimality criterion,
subjected to constraint functions. The optimality criterion is therefore a
measure of the goodness of the design. Although its establishment should
not be codified in terms of a single recipe, the optimality criterion 1S
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usually associated with the Fisher information matrix of the design

(Kiefer, 1975a). The Fisher information matrix is defined by X7X.

ty matrix. The sensitivity coefficients are the
derivatives of the experimental process variables, such as temperature,
with respect to the unknown parameters, for example, the thermal
conductivity (Scott and Haftka, 1995). The main optimality criteria
include maximization of the determinant of X7X (D-optimality),
maximization of the minimum eigenvalue of X (E-optimality) and
maximization of the trace of XX (A-optimality). The first criterion is
the most common one. The effect of D-optimality is to minimize the
volume of the usual confidence ellipsoids of the estimated values,
providing the minimum variance estimators (Kiefer, 1981). D-optimality

been found to sacrifice much in the values of all but one or two diagonal
clements of the Fisher information matrix given by X' X (Kicfer,
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design variables to optimize, the parametric study has been found to be
cfficient with the D-optimality criterion. This technique was applied by
Beck (1966) to determine the optimal conditions for the simultanecous
estimation of the thermal conductivity and specific heat, and to determine
the optimum transient experiment for estimating the thermal contact
conductance (Beck, 1969). Taktak et al. (1991) used this procedure to
estimate the thermal properties of isotropic composite materials by
optimizing the number of sensors, sensor placement, and the duration of
an imposed heat flux. Two-dimensional D-optimum experimental designs
have also been developed by Moncman et al. (1995) using a parametric
study for the simultaneous estimation of thermal properties of anisotropic
composite materials. It is relevant to mention at this point that a third
method, the GA method, has recently been proven to be highly efficient
and well-suited in designing optimal experiments for the estimation of
thermal properties. Indeed, the work by Garcia and Scott (1996 and 1997)
shows that GA outperform the parametric study. The appraisal of the use
of the GA method in the field of experimental design optimization is
engaging as genetic agorithms could allow the optimization of both
experiments with a large number of design variables (e.g.>3) and mor¢
complex designs.

The present state of knowledge should be concluded with the
importance for the optimal designs to be verified. This ensures that the
best possible estimates have been obtained and allows for the validation of
not only the optimization procedure but also the mathematical model used
to describe the process. Hanak (1995) demonstrated that the optimal
design provided the most accurate combined thermal property estimates
by testing the optimal design along with two non-optimal designs. The
non-optimal experimental parameters were chosen so that they did not
satisfy the D-optimal criterion used in the optimization technique. Hanak's
results showed that an individual property might be estimated with greater
accuracy at a non-optimal setting but the combination of properties
reached a higher accuracy at the optimal setting. In the same manner,
Knight et al. (1992) stressed the performance of an optimal air cooled
aluminum fin. The two non-optimal designs analyzed maintained fewer
and greater fins. Also, verification of an optimal structure against
buckling allowed Thompson and Supple (1973) to show that the
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optimization produced larger imperfection sensitivity. This was the
consequence of the optimization of a limited analytical model. Indeed, the
analytical model was found not to account for the unavoidable
imperfections in the material due to manufacturing.

Estimation of parameters

Once the optimization of the critical experimental parameters has
been conducted, the optimal designs are employed in the development of
an estimation procedure to determine the desired parameters. In the
absence of correlation between the parameters, the modified Box-
Kanemasu method has proven to be an effective routine to simultancously
estimate thermal properties. This method is a modification of the Gauss
method, which is a first order unconstrained descent method. It is based on
the minimization of an objective function containing calculated and
measured temperatures (Beck and Arnold, 1977). Scott and Beck
(1992a,b) implemented this approach for the estimation of the thermal
properties of composite materials during and after curing as functions of
temperature and fiber orientation, and for the development of an
estimation methodology for thermoset composite materials during curing.
Jurkowski et al. (1992) also used this method to simultancously estimate
the thermal conductivity and thermal contact resistance without internal
temperature measurements.

The modified Box-Kanemasu method, however has the drawback of
being inefficient for use in models which have correlated parameters or a
nearly flat sum of squares function, as it may not converge. Indeed, using
the two-dimensional optimal designs developed by Moncman et al. (1995),
Hanak (1995) could not perform the simultancous estimation of the
effective thermal conductivity perpendicular and parallel to the composite
fibers and the effective volumetric heat capacity with the modified Box-
Kanemasu method. Note that the investigation of correlation between the
parameters was actually considered in the optimization process. The
experimental  designs  were  then re-optimized for the restricted
simultancous estimation of the effective thermal conductivity parallel to
the fibers and volumetric heat capacity.
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This correlation problem has been addressed by different approaches.
One approach is to modify the experimental design. For example, Loh and
Beck (1991) were able to simultancously estimate both effective thermal
conductivities of anisotropic thermoset carbon composites through the use
of nine thermocouples embedded at various locations within the samples.
The number and location of the sensors were a priori fixed by the authors,
but the potential correlation problem was never detected. This work shows
that the use of multiple sensors could be a solution to overcome potential
correlation between parameters as more information is provided to the
estimation procedure. Nevertheless, modifications to the experimental
design, such as the use of internal sensors, are not always feasible,
especially when non-destructive testing is required. Another approach is to
modify the minimization method. For example, Copenhaver (1996) used a
constrained parameter estimation procedure based on a penalty function
method with limited success to simultancously estimate three nearly
correlated properties of a honeycomb sandwich structure. Indeed,
parameters could be simultancously estimated for only a specific
combination of sensor locations, with the use of a maximum of two
sensors, and boundary conditions. An alternative approach is to apply a
robust non-gradient optimization technique such as the GA method in the
minimization procedure. The potential of this optimization method has
indeed been recently illustrated by Garcia et al. (1997), who were able to
perform the simultancous estimation problem unsolved by Hanak (1995)
and mentioned earlier. Their work, which includes several case studies,
demonstrates that GA is an effective strategy for overcoming .correlation
between thermal properties and is an effective means of simultancously
estimating thermal properties.

Genetic algorithms

Developed by Holland (1975), these algorithms are based on
techniques derived from biology, as their name implies, and belong to the
class of computational techniques based on artificial intelligence. They
imitate genetic and selection mechanism of nature. Even though they are
based on the law of coincidence, they show a steep gradient with regards
to improvement, and ensure to a high degree of prpbability that the global
optimum will be found (Krottmaier, 1993). Easily programmed, they

111



o

X
a

s

Garcia/Use of genetic algorithms

require no prerequisites and are not bound to assumptions regarding
continuity in the search arca, which makes them an excellent probabilistic
search tool. These features explain why GA is a better means of
optimizing complex problems (defined by several local optima but only
one global optimum) than both purely numerical and analytical methods.
Indeed, in these latter, the examination of very small, limited areas require
enormous efforts; furthermore, they do not guarantee reaching the global
optimum. Excellent descriptions of the features of GA is detailed by
Goldberg ( 1989) and Mitchell (1995). In addition, usecful information can
be found on the Internet (Heitkoctter and Beasley, 1995).

Because of the complexity associated with the traditional binary
coding generally used to code design variables, research on GA has been
slow to spread from computer science to engineering. The recent
demonstrations of the effectiveness of these algorithms with both integer
and real number coding should lead to their future utilization for any
applications. For instance, as stated carlicr, GA with real number coding
have been applied with success in the present ficlds of interest, the
optimization of experimental designs for thermal property estimation and
the following estimation of the thermal properties. Note that to the
author’s knowledge, the work by Garcia and Scott (1996 and 1997) and
Garcia et al. ( 1997) is the first known application of the GA method in
these fields. In structural optimization, Furuya and Haftka (1993)
formulated the problem of optimal locations of actuators on large space
Structures using GA with integer coding. They showed that the
performance of the algorithms with integer coding was at least as good or

better than the performance with binary coding. Doyle (1995) also

art and music, among other applications. The Handbook of Genetic
Algorithms (Davis, 1991) is a striking demonstration of the possible real
world GA applications in industry. In the second part of this book, 13
case studies written by various authors include the use of GA for-

I Large scale optimizations (such as call routing in a US West
telecommunication network, path planning for robot-arm
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motion,...¢tc.)

2. Production systems (cvolving strategies for aircraft missile
avoidance for instance)

3. Scheduling (for activitics in a laboratory)

The first part consists in a tutorial written by Davis in which
emphasis is placed on tailoring the GA to the problem at hand. The author
also recommends the use of current encoding. Davis's approach is to
incorporate domain knowledge into the GA as much as possible, and to
hybridize the GA with other optimization methods that work well. A
comparable approach, although much simplified, as it does not deal with a
hybrid GA, was conducted by Wright (1996). This latter applied a
combination of the gradient-based Gauss method and a GA to determine
the specific acoustic admittance of the inlet and outlet ports of a
combustion chamber. By exploiting the advantages of both techniques,
Wright was able to arrive at accurate estimates of the acoustic boundary
conditions for nearly any candidate systems.

Another relevant feature of genetic algorithms pertains to their
flexibility in the optimality criterion approach. Indeed, the effectiveness of
these algorithms in optimizing multiple objectives has recently been
demonstrated by Belegundu et al. (1994).

Design optimization and parameter estimation formulations

Design optimization formulation

The objective of design optimization is to sclect the values of the
design variables x; (7=1,...,n) in such a way that an objective function
J/=f{x) attains an extreme value within the various constraints. This can be
expressed in the abbreviated form
{f(x):h(9=0,g()<0,x" <x<x"}, (1)

e xeR"
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where R” is the set of real numbers, f an objective function, x € %" 2
vector of » design variables, 4 a vector of ¢ equality constraints, g a
vector of p inequality constraints, and x* and x” the respective lower and
upper bounds on the values of the design variables. The set of design
points that satisfy all the constraints correspond to the feasible domain

(Arora, 198 9).

The specific case of the optimization of experimental designs used for
thermal Property estimation is an unconstrained optimization, in which
only the bounds x* and x” need be specified. The objective function is
associated with the accuracy of the estimation. The D-optimality criterion
Is recommended by Beck and Arnold (1977) because it has the effect of
minimizing the hypervolume of the confidence region.

Parameter estimation formulation
—<idneter estimation formulation

Once the optimal experimental parameters have been determined, the
optimal designs are used to estimate the desired thermal propertics. The
estimation problem can be seen as an optimization in which the objective
function to minimize s the least squares function S expressed

mathematically as
S=[¥Y-TB)]" [¥ - T(P)] @)

where ¥ is the measured temperature vector, T1B) is the calculated
temperature vector, and B is the exact parameter vector that contains the
exact parameter valuyes.

Note that the estimation methodology includes an analysis of the
parameter sensitivity coefficients prior to the estimation procedure in
order not only to provide insight into the experimental design (Moncman
et al., 1995), but also to indicate whether enough information is supplied
to accurately estimate the thermal properties.
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Application example: Optimization of a one- and two-dimensional
experimental design for the estimation of the thermal properties of an
anisotropic composite material.

This application example deals with two optimization and estimation
problems previously solved in the literature.

Optimization test problems

The experiments investigated include one- and two-dimensional
optimal designs performed by Moncman (1994) and Hanak (1995),
respectively, for the estimation of thermal properties of composite
materials. They both used a parametric study with the D-optimal criterion
which implied the maximization of the determinant D" of the Fisher
information matrix given by X' X . Note that their analysis was
performed in nondimensional terms so their results could be applicable for
any material. Their experiments were subjected to the constraints of a
fixed large number of observations 7 with uniform spacing in time and the
maximum temperature being 7" .. reached at steady state. Only a bricf
summary of their analysis is provided here.

In the one-dimensional analysis, the sides of the composite were
insulated while an imposed heat flux was applied across the entire top
surface and the bottom surface was held at constant temperature (fig. 1).
Moncman sought to optimize three critical parameters which were the
sensor location x,', the duration of the heat flux f,  and the overall
experimental time #,” for the simultancous estimation of two properties,
the cffective thermal conductivity perpendicular to the fibers and
volumetric heat capacity (product of density and specific heat). In this
case, D*,p was a 2x2 matrix and was given by
d ey

THEL T \ 3)

D+"D 2\ + +
d21 d22
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Heat Flux

e iag
Insulated g E Insulated

\— Constant Temperature

Figure 1. One-dimensional boundary conditions.

In the two-dimensional analysis, Hanak investigated two different
experimental configurations (fig. 2). Both had a uniform heat flux applied
over a portion of one boundary, with the remainder of the boundary
insulated. In addition, Configuration 1 had constant temperatures at the
remaining three boundaries, while Configuration 2 had a constant
temperature boundary opposite to the heat flux, with the remaining two
boundaries insulated. The five critical parameters optimized were the
sensor locations perpendicular and parallel to the fibers, x,” and v,
respectively, the duration of the heat flux 1", the heating area L, and the
overall experimental time f,'. The objective was to simultancously
estimate three properties which were the cffective thermal conductivitics
along perpendicular planes and volumetric heat capacity. In this case, D".
p Was a 3x3 matrix and was expressed by

d,’ dy,’ dyy"
20 p = d2‘+ dy" dy’ “
d31+ dy," d,’

3

For both analysis, the one- and two-dimensional cases, the dy" were
found from Beck and Arnold, 1977

dj = [—I_MILJ il 1-in. 5

2
Tmax

where X;" are the dimensionless sensitivity coefficients associated with the
thermal properties being estimated, B, and they are calculated from
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o or(1”)

X, (C=mbedssai 6

 ()=B, B, (6)
It is relevant to point out that the optimal overall experimental time of
cach specific design was determined by evaluating the determinant D,
without time-averaging, using the optimal values of the other critical
parameters that were obtained applying the parametric study. The optimal
overall experimental time corresponded to the time when no significant
information about D°, was provided. Consequently, in the onc-
dimensional analysis, the actual number of design variables was two (x;
and 7,"), and in the two-dimensional analysis, there were actually four

design variables (x;", ¥, L,” and 1;,").

Heat Flux

Insulated

x Configuration 1

T

Constant Temperature

(a)

‘ Heat Flux
Insulated

’ ViV Y

Insulated
§x Configuration2 Y X Insulated

Constant Temperature
|
(b)

Figure 2.  Two-dimensional boundary conditions
(a) configuration 1 and (b) configuration 2.

} Estimation test problems

| The estimation test problems studied include the simultancous

estimation of two and three thermal propertics of a composite material
‘ using the optimal designs of the onc-dimensional and configuration 1 of
f the two-dimensional experiments described in the previous section,
| 117
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respectively. These problems were investigated by Hanak (1995), who
used the modified Box-Kanemasu method for both estimations. In the one-
dimensional analysis, the effective thermal conductivity perpendicular to
the fibers and the volumetric heat capacity were simultaneously estimated.
However, in the two-dimensional analysis, the simultancous estimation of
the effective thermal conductivities along perpendicular planes and
volumetric heat capacity could not be performed because of the non-
convergence of the estimation technique due to correlation between both

thermal conductivities.

The genetic algorithms

Unlike some traditional optimization techniques that work in the
neighborhood of a point, GAs operate on a population of chromosomal
strings. Note that in the optimization and estimation procedures, a single
chromosome designates a design variable and a thermal property.

respectively.

Two GAs have been demonstrated on the test problems. The first one,
which was modeled according to the algorithm described by Furuya and
Haftka (1993), was called Basic Elitist GA (BEGA) because it used a
basic elitist strategy. BEGA involved successive operations consisting of
selection, crossover and mutation, which simulated the mechanics of
natural genetics. The second algorithm used an extended elitist strategy
and was thus called Extended Elitist GA (EEGA). A detailed description
of the BEGA is first given for the particular case of the optimization test
problems. Then, the main features of the EEGA are outlined. Simplified
flowcharts of both algorithms are shown in figure 3.

Description of the Basic Elitist GA
Design coding

In the optimization of the one-dimensional experiment, a genetic string
describing a particular design contained two chromosomes for the sensor
location x," and the heating time #,". In the same logic, in the optimization
of the two-dimensional experiments, cach string contained four
chromosomes for the design variables x,", y,", L," and 1,". Because the
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design variables were continuous, BEGA used real string representation.
The ranges of these real numbers depended on the lower and upper bounds
of the design variables which were specified by the experiments. For
instance, the chromosome x," (dimensionless sensor location perpendicular
to the fibers) ranged from zero to one.

Size ns

[initial Population

Calculate Fi
Select Parents

Create ns-1 Children

Next Generation:
Children+Best Parent

Initial Elitist Population
ns=nbest | xnpop

Next Generation
nbest2+{ns-nbest2)Random

Calculate Fitnesses]
Select Parents

i

Analyze nbest3

Update Parameter Ranges

3

Create ns Children

Combine Parents+Children
Rank+Remove Twins+Take nbest)

IPerfm'm Statistics on nbesllJ

Figure 3. Flow charts of BEGA and EEGA.

Initial population

The optimization algorithm started by generating the initial parent
population of # candidate strings (designs). Each string was created by
randomly selecting n, chromosome values (design variable) from the
design space. The strings were then ranked in terms of the value of the
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nondimensional determinant D* using the D-criterion. Obviously, the best
string had the highest D"

Selection

Parents were selected by pairs for breeding using a rank-based fitness
technique. The fitness of the ith ranked string was defined as
Ji=n +1-i allowing for the high ranked string to have a high fitness
parameter and to thus most likely contribute to the determination of the
next generation strings. The probability of the ith ranked string to be

2f
n(n, +1)
was then accomplished at random, according to the roulette wheel
mechanism: the ith ranked string was sclected if P, <r < P, where

selected as a parent was given by p, = . The selection process

i-1

B = Z P; and r was a uniformly distributed random number between
=1

zero and one.

Crossover

The child strings were made by the mating of the pairs of parents
sclected for breeding. This process began by generating a random integer
k, the cut-off point, between | and ne-1, where n, was the number of
chromosomes. A child was designed by using the first # chromosomes of
parent 1 and the remaining ones came from parent 2. For instance,
consider in the one-dimensional analvsis the strings with x,"=0.5, 1,"=1.0
and x;"=0.7, #,'=1.5 as parents 1 and 2, respectively. As n.=2 (recall that
there are two design variables in the one-dimensional analysis), the only
possible child string could be X =0.5, #,"=1.5. This process is the
simplest crossover, the so called single-point crossover. Note that there
exist more elaborated variants of this operation which are used with
efficiency when the genes arc all of the same kind [for instance, they
represent location of actuators, see Furuya and Haktka (1993)]. However,
these variants may not be adequate when the genes represent different
parameters (such as the location of sensors, the heating time, the total
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experimental time, ...). Furthermore, because the primary goal in the study
of these test problems was to test the effectiveness of the genetic algorithm
method comparatively to the parametric study in the optimization of
experimental designs, the simplest crossover operation was to be used.

Mutation

Mutation was implemented by changing at random the value of a
chromosome. This process insured that new chromosomes were generated,
thus preventing the solution from locking on a non-optimum value. The
mutation probability p,, is usually small (0.001 < p, < 0.15) so as not 0
interfere with the combination of the best features of parents made by the
crossover operation. In the BEGA, p,, was taken arbitrarily as 0.05. If the
chromosome was mutated, it was replaced by another one randomly
chosen from the allowable range of values for that chromosome.

When the operations of selection, crossover and mutation were
completed on the #1, parent population, a new generation was created from
the 72,-1 child strings in addition to the best parent string. This addition
denotes the basic clitist strategy of the BEGA. Over the course of several
generations, the algorithm tended to converge on the string giving the
maximum determinant, which was hence considered as the predicted
optimal design. Note that the stopping criterion was simply to perform 7,
generations.

Description of the extended elitist GA

This algorithm was developed to improve the efficiency of the BEGA.
Following is an outline of the five main differences between the EEGA
and the BEGA:

I. A pure random search is initially performed to obtain good starting
conditions for the lower and upper bounds of cach chromosome
(parameter to be optimized/estimated). The purpose of this seeding is
therefore to help direct the genetic algorithm search. Note that this
initial search is run separately from the EEGA run.
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2. The EEGA starts by randomly searching a number of 7, initial
population in which only the #s,,,; first ranked strings are kept. This

produces an initial elitist population of size Ny =Pl

3. n, children are created and then combined to the parent population.
After ranking this combined population of size 2n, the “twins™ are
removed and only the 7, first ranked strings are kept, where /s, <

H;.

4. The parameter ranges are updated from the analysis of the 7 first
ranked strings, where Ppests S Mpessz . The next generation comprises,
therefore, the n,, ., +(n, = My,.,) Tandom strings generated from the
Just updated parameter ranges. This addition allows some “new
blood” in the population and prevents the EEGA from premature
convergence on a non-optimal string.

5. When n, generations have been performed, some statistics arc
performed on the ny.,, first ranked strings. This enables the
computation of the means and their 95% confidence intervals for each
chromosome of these Ppest Strings. The 95% confidence intervals
computed are a good evaluation of the convergence of the EEGA.

When EEGA is used as an estimation procedure, the output for a
particular experimental data set includes the means of each chromosome
(thermal property) and the 95% confidence intervals representing the
ranges of values which the actual properties lic within for that particular

experiment.

Summary of results

In the optimization of the experimental designs the results from these
two test problems indicated that the computational efficiency of the EEGA
was much higher and the results were slightly better than those of cither
the BEGA or the parametric study. Therefore, by keeping the best
information generated throughout the search process, the EEGA proved to
be well-suited for optimizing experiments designed for thermal property
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estimation. In the estimation of the thermal properties, the results
demonstrated that the EEGA is also an effective strategy for the non-
lincar simultancous estimation of correlated properties. The readers
should consult the work of both Garcia and Scott (1997) and Garcia et al.
(1997) for detailed results and discussions. Note that in these papers, it is
pointed out that the excellent results obtained by the EEGA in these
specific optimization and estimation test problems do not imply that this
algorithm would also excel for every other application. Indeed, the scheme
used in a GA could by no means be quantified in terms of a single recipe
and the performance of a GA can be viewed as application-specific.
Therefore, there are no a priori best GAs but good GAs that are tailored
to the problem at hand (Davis, 1991).

Conclusions

The focus of this paper was on both presenting the fields of
experimental design optimization and thermal property estimation and
describing the genetic algorithm (GA) optimization method. One example
of the application of the GA method to these two fields was supplied and
the results were briefly stated. This example dealt with two optimization
and estimation problems previously solved in the literature. The study of
these test problems allowed assessment of the use of genetic algorithms
(GAs) as a procedure for both the optimization of experiments designed
for thermal property estimation and the following simultancous estimation
of the thermal propertics. The methodology developed exploits both the
elitist feature and the non-gradient nature of the GA method to overcome
the main limitations of the conventional optimization and parameter
estimation techniques (Garcia and Scott, 1997 and Garcia et al., 1997).

The enhanced elitist GA described in this paper has also been
demonstrated in other case studies to be a flexible, powerful and easy-to-
apply, all-purpose algorithm (Garcia et al., 1997).

This rescarch, which is associated with a dual US-French Ph.D.
program between the Heat Transfer Laboratory of the Department of
Mechanical Engineering Department of Virginia Tech, Blacksburg,
Virginia, and the Laboratoire de Thermocinétique de I'ISITEM, Nantes,
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France, is currently directed toward the enhancement of this innovative

procedure based on GAs. Future research is projected on its application to
the thermal characterization of composite materials during curing.
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