
Informative Overview of Rainbow Hashes

Víctor Hornedo Martínez

Computer Science

Jeffrey Duffany, Ph.D.

Electrical and Computer Engineering and Computer Science

Polytechnic University of Puerto Rico

Abstract — This article gives an overview for

rainbow tables and the results of testing rainbow

tables according to the length of the chosen chain.

The article presents a password cracking process that

contains its own algorithms for reduction functions,

changes the length of the chain and generates tables

accordingly. These are measured to see the

effectivity of the password search in detail. Within

the executed tests it was noticed that there is a

dependence of rainbow tables size in relation to the

password length, the affection of the hash search by

the size of the chosen chain and their links to

collisions. After completing the testing with

different passwords and tables the cause of this

arises from the principle of using the reduction

function. These results objectively describe the pros

and cons of using rainbow tables and finally the

article ends talking about what are some effective

use cases for this password cracking method.

INTRODUCTION

Theoretically all passwords are “crackable”

Breaking any encryption system can be done with

unlimited time and unlimited computing power, both

of which do not exist. Anything less than that

unlimited power and time will require chance and

good investigative skills. Several methods to break

encryption include dictionary attacks, brute-force

attacks, and rainbow tables. Knowing that

recovering the password requires time, computing

power and most of all luck for a dictionary or brute-

force attack to find a valid password. “Strong

passwords increase the likelihood, if not guarantee

that it would be harder for attackers to break the

encryption of it “. [1]

Several styles to break encryption include

wordbook attacks, brute-force attacks, and rainbow

tables. A dictionary attack tries variations of words

in the wordbooks. The speed at which depends upon

the computing power of the system being used.

Millions of words can be tried each second using a

suitable computer system for password breaking.

However, dictionary attacks should not be

overlooked because of not knowing the password.

Although using the highest-grade encryption is easy,

quick and effective, a flaw remains with the user in

choosing a strong password. The password can make

a seemingly impossible to crack file easily done in

minutes.

On the other hand, brute-force attacks are

similar to dictionary attacks in that guessing is the

key method. Brute-force attacks try variations of

characters of various lengths that could be the

password. The amount of time and computing power

required depends on the complexity and length of the

password. Short passwords can be recovered

quickly, but longer passwords increase the time

exponentially according to password length and

complexity. “Dictionary attacks are generally the

chosen method over brute-force attacks “. [1] None

of these methods are guaranteed to work all the time

or even some of the time depending on the encrypted

file properties.

The other method being rainbow tables that are

the focal point of this article. These are tables of

reversed hashes used to crack password hashes.

Computer systems requiring passwords typically

store the passwords as a hash value of the user’s

password. When a computer user enters a password,

the system hashes the password and compares it to

the stored hash. If the hashes match, the user is given

access. Rainbow tables use precomputed hashes to

recover the pre-hashed password.

Rainbow tables rely on a clever time/memory

tradeoff. This technique was researched by Martin

Hellman and improved upon by Philippe Oechslin.

This technique contains a long chain of password

hashes known as plaintext/ciphertext pairs these are

connected. In which thousands or millions of pairs

may be connected into one chain called a rainbow

chain and many chains may be formed, connected

via a reduction function, which takes a hash and

converts it into another possible variation for a

password. At the end, everything in the chain may be

removed, except the first and last entry. These chains

may be rebuilt as needed, reconstituting all

intermediate entries. “This saves a large amount of

storage, in exchange for some time and CPU cycles”.

[2] This in fact is why rainbow hashes are known as

the most efficient method when dealing with brute

forcing hashes. All this comes at a cost, which is the

sizes of the hash tables that are used.

THE RAINBOW HASH OPERATION

Passwords are hashed using encryption rather

than being saved as plain text in a computer system.

It is impossible to decrypt a hash function because it

is a one-way function. Once the user inputs a

password, it is transformed to a hash value and

contrasted to the hash value that has previously been

recorded.

The rainbow table is a dataset that can be used

to crack the password hash and get authorization. It's

a pre-computed database of unencrypted passwords

and associated hash values which could be used to

figure out just what unencrypted password generates

a specific hash. Because multiple texts can yield the

same hash, it isn't necessary to know what the initial

password was as long as the hash is still the same.

Password Decryption

The rainbow table operates by fast and

accurately performing cryptanalysis. Unlike with

brute force, that calculates the hash function of each

string they have, calculates their hash value, and then

compares it to that in the system at each step. The

hashed text is first verified to see if it consists in the

database. If that's the case, go back to the beginning

of the chain and hash until you find a match. The

process ends when the match is found, and the

validation is broken. The stages are illustrated in

Figure 1 below:

Figure 1

Rainbow Hash Flowchart

By generating hashes of the large collection of

accessible strings, a rainbow table attack removes

the requirement for this. In this process, there are two

basic steps:

• Putting Together a Table: A string's hash is

extracted and then decreased to form a new

string, which will then be decreased again and

again. Let's make a table with the most used

password, by using the MD5 hash function, see

Table 1 below to understand reasoning, on the

first eight characters. We begin by running the

string through the md5 hash function. Only the

first eight letters are used to lower the hash. This

process is continued until the output chain has

enough hashes. When there are enough chains

collected, they can be placed on a table. Some

hash algorithms used in Rainbow Tables are

given below.

• Reduction function: Rainbow Table files are

very large, though. So that the required storage

space doesn’t get out of hand, rainbow tables

use a reduction function below (Figure 2) that

changes the hash value into plaintext.

Important: “The reduction function doesn’t

reverse the hash value; it outputs a completely

new one”[2].

Table 1

List of Hash Algorithms

Figure 2

Reduction Function

A new hash value is generated from this text. In

a rainbow table, this takes place not only one time,

but many times, resulting in a chain. In the final

table, however, only the first password and the last

hash value of a chain appear.

Figure 3

Reduction process

A brute force hash cracker generates all possible

plaintexts and computes the corresponding hashes

on the fly, then compares the hashes with the hash to

be cracked. Once a match is found, the plaintext is

found, see Figure 3. If all possible plaintexts are

tested and no match is found, the plaintext is not

found. With this type of hash cracking, all

intermediate computation results are discarded.

METHODOLOGY

The storage techniques to be tested are: MD5

Hashing and SHA-256 Hashing. Although not

proven to be secure, a commonly used superset of

password hashing is hash chaining. Following the

National Institute of Standards and Technology

(NIST) guidelines on password strength, “both a

weak and robust password will be passed through the

stated techniques” [3]. Then, reversal of each of the

resulting strings will be attempted using online and

offline rainbow tables. The data recorded will be the

time taken to reverse the hash or whether the

attack was successful.

Creating a Hash to Crack

Creating a hash is very simple to do. You can

create a hash of a file or of a string of text. In the

below example we will create two hashes using the

words P@55w0rD and thisismypassword (Table 2 &

Table 3). Next, we will create a file containing our

hashes so we can put them into a cracking program.

Now that we have our hashes let's try to crack them!

Methods of password cracking use for this

experiment are Ophcrack for the offline cracking

using rainbow tables and Crackstation for the online

cracking component of this comparison.

Table 2

MD5 Hashes

P@55w0rD B884DBCC2FEDE312066A9B760

9A2E3C9

thisismypassword 31435008693CE6976F45DEDC55

32E2C1

Table 3

SHA256 Hashes

P@55w0rD 7F0897E8D62D3E3641EAFC270

D311CBF777E67B9DF608571C9

3056D5AACF3189

thisismypassword 1DA9133AB9DBD11D2937EC8

D312E1E2569857059E73CC72D

F92E670928983AB5

In the above example, while the password

"thisismypassword" is not unique it serves the

purpose of this experiment which is testing a raw

simple and complex password using two different

hashing algorithms and compare the results. As a

plus in future testing we can try salting it such as

"thisismypassword" + “s41Ty” to make it more

unique. It is highly unlikely to be a password that

would show up in a rainbow table already. This

means that hackers would need to do all the costly

the computation themselves. Adding a salt to the

hashing process is a great way to force the hash to be

more unique, complex, and increase its security

without giving extra requirements to a user. The salt

is usually stored with the password string in the

database. Adding salt can help to mitigate password

attacks, like rainbow tables, because it will be

encrypting the user's password with a random string

that wouldn't be naturally included in any rainbow

table.

You can also add pepper to extra secure your

data from this sort of attack. The difference between

salt and pepper is that “pepper is a site-wide static

value that is kept a secret and not stored in the

database”[3]. It is oftentimes hard coded into the

application's actual source code. Its main added use

is that since it isn't store in the database, if there was

a large-scale compromise of the database, the

application's password table containing the hashes

wouldn't be able to be brute forced as the pepper was

still a secret.

Cracking Passwords with Crackstation

When you have a hash, it is always best to first

try to use a rainbow table to crack it. This is because

it can take an astronomical amount of time to brute

force crack the hash. To save time we will use a well-

known website called Crackstation.net. This website

has billions of hashes which could save us centuries

of time. So, let's enter our hashes into the box and

see what we get. As you can see, it successfully

found passwords for both the hashes! Now that we

have this our work is done!

The results for both SHA256 and MD5 hashes

using the online method of cracking we can start to

see its drawbacks. While not needing the user to

download tables to run, the process comes with the

drawback of slower times. The reason for this is

“because it searches for all available tables it can

find while proceeding with the validation of the hash

existence” [4]. If it does not exist, it will make a new

entry of the hash in its database. After this step it

keeps going threw the process until it can find the

result. The result of the two passwords is displayed

in the table below.

Table 4

MD5 Password Crack Time Using Crackstation

P@55w0rD Not found

thisismypassword 0.7 seconds

Table 5

SHA256 Password Crack Time Crackstation

P@55w0rD Not found

thisismypassword 0.8 seconds

As we can see the hash for “thisismypassword”

both in the MD5 and SHA256 variants were the easy

passwords variable used for the experiment.

Knowing this we can also see both variants being

cracked fast because the hashes were found in public

tables, see Table 4 & Table 5. “As for the more

complex passwords both variants could not be found

in any public hash table" [4]. This can be because

how this password was constructed. Meaning it

contains uppercase, lowercase, numbers and

symbols. This ensures the password is more unique

and harder to crack.

Cracking Passwords with Ophcrack

Ophcrcack is based on rainbow tables and a

popular Windows password cracker freeware. It can

crack password within minutes but can take time

also depending on the password strength, for

example "1234567" will take less time than

"wuntsg256". The free version of Ophcrack comes

with a table which can break password not more than

14 characters using only alpha numeric characters.

Ophcrack uses brute force method to crack

password. Ophcrack is an extremely fast password

cracker because it uses rainbow tables. Brute-force

cracking tools typically try thousands of

combinations of letters, numbers and special

characters each second, but cracking a password by

attempting every conceivable combination can take

hours or days.

Rainbow tables pre-computes the hashes used

by passwords, allowing for a speedy password

lookup by comparing the hashes it has, instead of

computing them from scratch. Thinking of it another

way, someone else has already generated the

password hashes for millions of potential passwords

using the same algorithm as Windows XP and Vista.

Ophcrack simply loads the megabytes of hashes it

already has and compares the password hash in

Windows against its giant database. When it finds a

match, Ophcrack reveals the password in plain text.

Figure 4

Ophcrack Rainbow Table List

Rainbow tables are great but there are plenty of

times where you will be unable to find the password

for a hash. When this occurs, you will need to brute

force a password using either pure brute or using

hash tables. Brute force is rarely feasible for

passwords of 10 or more characters. So, let's see if

we can crack the hashes, we created above using a

table offered in Figure 4.

Note that when thinking of the success rate for

the tables it was calculated using the cases where the

passwords have a determined characters in length.

To do so, the storage requirement had a fixed value

and compute the achievable success rate. The

equation used to find the success rate was dividing

the result of all possible combinations inside the

intended character length and the number of hashes

stored inside each table. The examples of Figure 5

shows the success rate when the storage is capped at

a certain value for different password lengths. While

looking through all the success rates we can notice

that the bigger the table the more plausible it is to

find the correct hash and its accompanying hash

value.

The password recovery success rate computed

ignores collisions. Because the collision probability

increases with the size of a rainbow table, ignoring

collisions is reasonable only for very small rainbow

tables. We compute a more realistic password

recovery success rate based on collisions with the

distinct plaintext-hash pairs that are generated.

Figure 5

Examples of Success Rate for Character Alpha-Numeric

Passwords

Figure 6

Rainbow Table Hash Lookup

Table 6

MD5 Password Crack Time Using Ophcrack

P@55w0rD 414 seconds

thisismypassword 34 seconds

Table 7

SHA256 Password Crack Time Using Ophcrack

P@55w0rD 419 seconds

thisismypassword 39 seconds

As we can see from the Table 6 & Table 7, it

takes considerably longer to crack these hashes. It

takes a bit more time than the online method because

we don’t have the luxury of just comparing the

testing hash to public hashes available. Also, in this

process we have larger pre-computed tables to

expedite the process, see Figure 6. It takes a long

time to generate these massive rainbow tables, but

once they're out there, every attacking computer can

leverage those tables to make their attacks on hashed

passwords that much more potent. The smallest

rainbow table available is the basic alphanumeric

one, and even it is 388 megabytes. That's the default

table you get with the Ophcrack bootable ISO. Even

that small-ish table is remarkably effective.

It wasn’t expected that this rainbow table would

not work on the passwords with non-alphanumeric

characters (%&^$#@!*) because the table doesn't

contain those characters. So, to the next one we go.

The table that found the result for both variants had

size of 207 gigabiytes in total. The size of the table

is tied to how long the plain text pasword is and what

combinations can exist. For example, if the table is

only alphabetic characters then the size would be

smaller than one that holds full alphanumeric or even

non alphanumeric charcter like the one we used. It

also accounts for all the possible plain text values

that may exist.

Time Memory Trade-Off

A time-memory tradeoff is basically when you

accept a longer runtime in favor of fewer memory

requirements or the other way around. A table, on the

other hand, in which billions of passwords are

presented together with their hash values, takes up

an enormous amount of storage space, but can very

quickly run decryptions. Rainbow tables represent a

compromise for both. In principle, they also perform

real-time calculations, but to a lesser extent, and so

save a lot of storage space compared to complete

tables. Rainbow tables will fit in between. When the

table is built, you choose a parameter t called the

"average chain length". The table size will be

proportional to N/t: it is reduced by a factor of t,

compared to the precomputed table. On the other

hand, each attack will imply a computational effort

proportional to t2 hash computations, and t lookups.

Depending on the operational conditions.

Lastly the experiment has demonstrated that the

time-memory trade-off allows anybody owning a

modern personal computer to break cryptographic

systems which were believed to be secure when

implemented years ago and which are still in use

today. This goes to demonstrate the importance of

phasing out old cryptographic systems when better

systems exist to replace them. Since memory has the

same importance as processing speed for this type of

attack, typical workstations benefit doubly from the

progress of technology.

ADVANTAGES AND DISADVANTAGES OF

RAINBOW TABLE

 For a short period of time, rainbow tables were

an effective way of cracking passwords. With a big

enough table, the chances of finding some matches

were quite likely. Mainly because of the hash

algorithm used and because of common hashes that

circulated the web. However, as the popularity of

less secure hashing algorithms fell, and as password

salting became a more common practice, rainbow

tables have fallen out of common use.

Advantages

Rainbow Tables have the advantage of most

data being pre-computed, resulting finding faster the

target hash. Therefore, the whole process is just a

simple search and compare operation on the table

unlike the Brute Force Attacks. Another crucial

advantage using of Rainbow Tables is the ability of

authentication without serious obstacles. This occurs

because the exact password string does not have to

be known or estimated. If a hash match occurs, then

it is enough for the attack to be performed.

Disadvantages

One main and most common problem when

dealing with Rainbow Table is the fact that these

tables need to be stored in a huge memory partition

(Hard Disks). Sometimes terabytes are needed,

resulting in an increased maintenance cost. Another

disadvantage of rainbow tables is the fact that if the

target hash that is looking to be broken is not in the

table used, then he will be unable to find the resultant

password in a short period of time. This gives the

limitation of the table in use.

Lastly rainbow table attacks, can be thwarted

using salt a technique that forces the hash dictionary

to be recomputed for each password, making

precomputation infeasible, provided that the number

of possible salt values is large enough. Salts are a

random token usually used only once that is

combined with the password before hashing. It

artificially increases the length of a password in the

rainbow table, so to crack a 4-character password

with a 4-character salt, you’d need to generate an 8-

character rainbow table.

Protective Measures Against Rainbow Table

Don’t use MD5 or SHA1 in your password

hashing function. MD5 and SHA1 are outdated

password hashing algorithms. Consider using more

modern hashing methods and a cryptographic “Salt”

in your password hashing routine. Countermeasures

for attacks with rainbow tables are the use of modern

key derivation functions. These are special hash

functions that should be used for hashing passwords.

Primarily for protection against rainbow tables

is the use of a so-called salt. A salt is a random string

that is combined with the entered password the first

time it is hashed and then saved together with the

password hash and the username. If the password is

re-entered, the salt is added to the input each time

and the correct hash for authentication can only be

generated through this combination. The salt doesn’t

have to be kept secret. To be able to crack such a

password successfully with a rainbow table, the

tables would have to be precalculated for each

individual possible salt value. If the salt is

sufficiently complex, this is not possible because the

computing effort and memory requirements are too

great to realistically calculate these tables.

“Salts completely thwart precomputed tables,

including rainbow tables”. [5] Building a

precomputed table for N passwords has cost N,

building a rainbow table for the same N passwords

has even higher cost. This is worth the effort only if

the table can be used at least twice, to attack two

distinct hash values; a one-shot table is not

competitive with exhaustive search. But the point of

salts is that there is not one function; in fact, there is

a big family of functions, and the salt value tells you

which one is actually used. A table built for a

specific salt has absolutely no value in breaking a

hash value for any other salt.

Another measure that every user has in their

own hands to counteract a rainbow table attack is the

choice of a sufficiently complex password. By

lengthening the passwords used and using as many

different characters as possible, the complexity of

the password increases so quickly that it is no longer

possible to calculate rainbow tables or crack using

brute force. A recommendation for this is a password

length of at least 12 characters and the use of upper-

and lower-case letters, numbers, and special

characters. The password should also be randomly

combined from these character sets. Since such

secure passwords are difficult to remember, a

password manager should always be used.

Are Rainbow Table Attacks Still A Threat?

Some security experts argue that rainbow tables

have been rendered obsolete by modern password

cracking methodologies. Instead, most attackers now

use the more advanced Graphics Processor Unit

(GPU) based password cracking methods.

A moderately-sized GPU farm can easily

recreate a rainbow table within a few seconds. This

means that encoding those passwords into a rainbow

table would not make that much sense. Moreover,

“most passwords are salted anyway, meaning we

would need rainbow tables for each salt value, and

for larger salts, this is entirely impractical”.[5]

Bitcoin and other cryptocurrency miners have been

tapping GPU technology to calculate hashes for

bitcoin farming. There are existing tools that can

leverage GPU technology to decrypt password

hashes potentially. Nonetheless, rainbow tables may

not be the biggest threat to organizations today. Still,

they are certainly a threat and should be considered

and accounted for as part of an overall security

strategy.

CONCLUSION

That was a lot of technical info to take in. But I

hope this article has provided a better understanding

of what rainbow tables are, how they work, and what

you can do to secure an organization’s stored

password hashes against rainbow table attacks. Just

remember that password security is a continually

changing practice. There’s no perfect way to prevent

or thwart every type of password cracking attempt.

Unlike other techniques, huge storage is needed for

Rainbow Table Attacks and sadly the decreasing

price per Mbyte for storage solutions nowadays

doesn’t help our safety. To avoid being a victim of

Rainbow Table Attack, it is strongly advised to

perform frequent password changes. Password

security it’s all about just following recommended

best practices and trying to at least keep up with

cybercriminals (if not staying one step ahead).

For a short period of time, rainbow tables were

an effective way of cracking passwords. With a big

enough table, the chances of finding some matches

were mainly because of the hash algorithm used and

because of common hashes that circulated the web.

However, as the popularity of less secure hashing

algorithms fell, and as password salting became a

more common practice, rainbow tables have fallen

out of common use.

REFERENCES

[1] Shavers, B., & Bair, J. “Cryptography and Encryption. In

Hiding Behind the Keyboard”, (2016) (pp. 133–151).

Elsevier.

[2] Information Security Stack Exchange. [Online].

https://security.stackexchange.com/questions/92865.

[3] Rainbow table attacks and cryptanalytic defenses. (2022,

February 26). [Online].

https://www.esecurityplanet.com/threats/rainbow-table-

attack/

[4] CrackStation. (2019, June 5). Secure Salted Password

Hashing - How to do it Properly. [Online].

https://crackstation.net/hashing-security.htm

[5] International Journal on Advances in Software, vol. 4 no 3

& 4, year 2011. IARIA Conferences. [Online].

http://www.iariajournals.org/software/

https://security.stackexchange.com/questions/92865
https://www.esecurityplanet.com/threats/rainbow-table-attack/
https://www.esecurityplanet.com/threats/rainbow-table-attack/
https://crackstation.net/hashing-security.htm
http://www.iariajournals.org/software/

