
Abstract Results

This project seeks to explore how to take an existing software developing process in

the Avionics Department of an Air Force base and improve it so that the product quality is

increased and lower the number of defects found by the customer by 30%. Extensive

analysis of past development was performed accompanied by Root Cause Analysis to

determine the most repeating causes. The results suggest that functional defects were the

most common with causes such as lack of experience in the team, no coding standard, lack

of communication with the client, ambiguous requirements, among others. In order to

achieve the objective, a coding standard was created, routine meetings with the clients and

pair programming was established. The results showed a good effect in the reduction of

defects found by the client. These results suggest that tackling these common causes will

greatly help the development team to deliver a higher quality product and thus improving

their process.

References

Methodology – Defect Classification

The Defect Classification showed a large number of reported defects

by the client. These defects were successfully collected and categorized into

three main categories: Functional, Cosmetic and Off-Suite. Data analysis

showed that the worst offender were Functional defects by a large margin

of 59%, followed by Cosmetic defects with a 34% and lastly Off-Suite

defects with a 7%. Root Cause Analysis showed various causes in different

areas that were present more than once. Lack of experience from the

management and the development team was one of these causes.

Introduction

Literature Review

Problem Statement: Can the software quality be improved to reduce reported defects?

Objective: Lower the number of defects identified by the client in the deliverables by a

minimum of 30%.

Problem Statement & Objective

Software quality is the core of any software development company. It is very

important for teams to do their projects correct the first time because it brings better client

satisfaction and performance. An effective team can deliver software in a timely manner

with little to no rework. As the world continues moving forward into the future of Software

Development, quality is the focus of many companies and departments. Being able to

constantly produce quality software to the client with the least number of defects possible is

the goal of every software developer and thus is the main motivation for this project. This

paper explores how an existing software developing process in an Air Force base,

Department of Avionics, could be improved to ensure a higher quality deliverable.

Predictability is driven by software quality. Do it once and do it right, and less re-work, less

efficiency volatility and overall improved results can occur. Things are shipped on schedule,

and more productively they are installed. Bad quality is much harder to handle. The purpose

of this project is to lower the number of defects identified by the client in the deliverables

by a minimum of 30%.

Improvement of The Software Development Process to Achieve Higher Quality

William Rivera García

Advisor: Héctor J. Cruzado, PhD, PE

Polytechnic University of Puerto Rico

Conclusion

The implementation of a coding standard to aid in the development

of software for new developers and to maintain a standard across the

project shows to be the best solution. Along continued communication with

client, pair programming, training sessions and peer reviews. The major

causes identified in the analysis were the lack of experience from

developers, the lack of input from the client, ambiguous requirements

among others which lead to a high number of defects. Table 3 and Figure 4

shows the data collected after solutions were implemented with a reduction

on the defect ratio to 28% thus achieving the established objective.

Software Quality is a concept that has been changing as time passes in an effort to

achieve maximum effectiveness while producing the right product. A big aspect of this is

for developers to be able to produce a product with little to no rework needed after being

delivered to the client. An article exposes how effective communication from the client

affects the software development process, with three case studies performed which provide

ample data supporting the idea that less communication leads to higher defects [1].

Traditional software development practices and methods have been proven to not be

efficient enough to mitigate the fast pace of real-world problems like requirement changes

which is why Agile methodology are being widely adopted to increase productivity and

quality [2]. A study looked into the effects of teamwork quality as it pertains to project

success in software development teams, which is perceived to have a small to large effect

on team performance [3]. A study draws a systematic relationship between the policies for

setting deadlines and the quality of software products, especially when teams want to focus

on quality but fear the negative consequences of missing a deadline [4]. Many firms are

investing in product quality due to the exponential growth of the software industry in order

to remain competitive by delivering high quality software on time [5].

Historical data was gathered from various past developments in order to classify the defects reported by the

client into different categories. Table 1 shows data gathered from the beginning of year 2020 with the amounts of

Source lines of Code and the reported defects. Figure 1 shows data analysis performed on the defects with a P chart

which shows an average amount of defects of 39%.

Methodology – Worst Offender

Defects were divided into categories with the purpose of determining the defects that occurs more regularly

during development. The categories defined by this exercise were Functional, Cosmetic and Off-Suite defects. Table 2

presents these categories with their description. Further analysis on this data showed that the majority of reported

defects from the client were Functional defects, followed by Cosmetic then finally Off-Suite. Figure 2 below shows

this relation in the form of a Pareto Chart. Functional defects being the worst offenders, were selected to be the focus

of this project.

Methodology – Root Cause Analysis

Cause and effect analysis and other problem-solving tools taken and implemented from Scaled Agile

framework. These took the form of a fishbone diagram which was used to identify the possible causes to the defects.

The possible causes were divided into four categories: People, Process, Tools and Management. Some of the causes

found were lack of experience, not having a coding standard, lack of communication with the client, ambiguous

requirements, having to use and old programming language, no existing development tools, rigorous deadlines.

Future work for this project would be to motivate management to

follow through and implement the changes necessary and tackle the other

root causes that weren’t covered by the scope of this project.

[1] Korkala, Mikko & Abrahamsson, Pekka & Kyllönen, Pekka. (2006). 

A Case Study on the Impact of Customer Communication on Defects 

in Agile Software Development. Proceedings - AGILE Conference, 

2006. 2006. 76-88. 10.1109/AGILE.2006.1.

[2] Ahmed, S. Ahmad, N. Ehsan, E. Mirza and S. Z. Sarwar, "Agile 

software development: Impact on productivity and quality," 2010 

IEEE International Conference on Management of Innovation & 

Technology, Singapore, 2010, pp. 287-291, doi: 

10.1109/ICMIT.2010.5492703.

[3] Lindsjørn, Yngve & Sjøberg, Dag & Dingsøyr, Torgeir & Bergersen, 

Gunnar & Dybå, Tore. (2016). Teamwork Quality and Project 

Success in Software Development: A Survey of Agile Development 

Teams. Journal of Systems and Software. 122. 

10.1016/j.jss.2016.09.028.

[4] Austin, Robert. (2001). The Effects of Time Pressure on Quality in 

Software Development: An Agency Model. Information Systems 

Research. 12. 195-207. 10.1287/isre.12.2.195.9699.

[5] Slaughter, Sandra & Harter, Donald & Krishnan, M.. (1998). 

Evaluating the Cost of Software Quality. Commun. ACM. 41. 67-73. 

10.1145/280324.280335.


