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AbstractTwo-dimensional heat transfer analysis 

using the Integral Equation Method between a 

series of parallel plates with uniform surface 

heating to determine the Temperature Distribution 

as a Thermal Model for a Supercomputer cluster 

arrangement at the Department of Electrical 

Engineering of Polytechnic University of Puerto 

Rico was developed. The Temperature and Velocity 

Profiles across the arrangement were measured 

and analyzed. 
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INTRODUCTION 

The Department of Electrical Engineering at 

the Polytechnic University of Puerto Rico has 

developed a supercomputer using a series of 

parallel clusters called LittleFE®. LittleFe® is a 

complete 6 node Beowulf style portable 

computational cluster which supports shared 

memory parallelism (OpenMP), distributed 

memory parallelism (MPI), and GPGPU 

parallelism (CUDA), Figure 1. 

 
Figure 1 

Supercomputer, LittleFE® Cluster Arrangement 

LittleFe® began as an idea by Paul Gray 

(University of Northern Iowa), Dave Joiner (Kean 

University), Tom Murphy (Contra Costa College), 

and Charlie Peck (Earlham College) in 2005. While 

they had been teaching computational science 

education, they realized that their curricula 

depended on local computing resources that were 

not always present. 

Higher heat density and increase heat 

dissipation is a major concern related to electronic 

cooling of this device. Also, heat dissipation 

techniques are of prime concern to remove the 

waste heat produced by electronic components to 

keep them within adequate operating temperature. 

Heat dissipation techniques include air cooling 

fans, heat sinks, and other forms as liquid cooling. 

Also, the high thermal stresses in the solder 

joints of the electronic components mounted on 

circuit boards resulting from temperature variations 

are major causes of failures. Therefore, thermal 

control has become increasing important in the 

design and operation of electronic equipment. 

This paper presents a thermal analysis of 

forced-air cooling to determine if it is adequate or 

not, and if not, suggest alternatives to obtain an 

adequate thermal environment. 

FLOW MODEL 

Figure 2 shows a sample of a LittleFE® cluster 

installed in the computer. It can be seen that most 

of the electronic components are so closed together 

i.e. the spacing between them is so small compare 

to its size, that an analysis with spaced heat sources 

is not justified.  

For simplicity, a forced internal turbulent flow 

in a rectangular duct with a heated surface will be 

made. 



 
Figure 2 

Front View of a LittleFE® Cluster Board 

In general, both the velocity and temperature 

fields develop simultaneously [1], [2]. This flow 

situation is shown on Figure 3. 

 
Figure 3 

Two – Dimensional Flow in a Plane Duct 

ASSUMPTIONS 

It will be assumed that the flow enters the duct 

through a “shaped” unheated inlet section and that 

the velocity and temperature are uniform across the 

inlet plane as illustrated in Figure 4. 

 
Figure 4 

Assumed Inlet Plane Conditions 

The air is assumed to be an ideal gas with 

constant properties. The flow in the development 

region initially consists essentially of a boundary 

layer on each wall with a constant velocity, uniform 

temperature core between these two boundary 

layers. 

These boundary layers grow until they meet on 

the center line of the duct, [3]. Following this, there 

is a region where the flow near the center line 

adjusts in the outer part of a boundary layer to a 

fully developed flow. However the changes in this 

second region are relative small and only the first 

boundary region will be considered here. The 

analysis presented in this paper is based on the use 

of the integral equation method. 

TEMPERATURE DISTRIBUTION 

As the boundary layers grow on the wall, the 

velocity near the wall is decreased and, as a 

consequence, the velocity in the core region, u1, 

increases. Because the velocity in the inlet plane is 

uniform, the velocity on the inlet plane must be 

equal to the mean velocity, ̅ , in the duct. 

Continuity therefore requires, assuming that the 

density is constant, that:  
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whereW is the width of the duct. 

In spite of the non-symmetrical distribution of 

the components in the plate, it is assuming that the 

flow is symmetrical about the center line of the duct 

and that the velocity is uniform in the core region 

between the two boundary layers as shown in 

Figure 5, (1) can be written as: 
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Let 1 be the boundary layer displacement 

thickness and 2 the boundary layer momentum 

thickness, Figure 5, then: 
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and: 
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Figure 5 

Boundary Layer Displacement Thickness 1 and Boundary 

Layer Momentum Thickness 2. 

Now, (2) can be written in term of the 

displacement thickness as: 

  (     )   ̅                                             (5) 

The right-hand of (5) is a constant, therefore:  
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This equation relates the gradient of the 

velocity in the core region to the rate of growth of 

the boundary layer displacement thickness. The 

momentum thickness, 2, is related to the 

displacement thickness by the so called form factor, 

H, which is defined by:  

  
  
  

 

Equation (6) can therefore be written as: 
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Very approximate relations for the variations 

of the wall shear stress in terms of H are given by, 

[4]: 
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whereCf is the local shearing stress coefficient, 

andτw is the wall shearing stress, and: 
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These two equations effectively constitute the 

turbulence model.To approximate the shear stress 

distribution, the integral momentum equation is 

used [4], written as: 
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Equation (10) is equally applicable to laminar and 

turbulent flow. For the present purpose, using (3) 

and (4), (10) can be conveniently written as: 

   

  
   (   )

 

  

   

  
  

  

 
                              (11) 

Equations (8), (9), (10), and (12) can be 

simultaneously solved to give the variation of 2, H, 

and u1 with z. The solutions can be used to obtain 

the heat transfer rate, giving: 

     

  
  

  

    
          (12) 

it being note that the temperature in the core region 

between boundary layer will be equal to the 

temperature on the inlet plane, i.e., Ti. Equation 

(12) was derived using the assumption that Pr(i.e. 

the Prandtl Number) is equal to 1. The solution 

applies until the boundary layer reaches the center 

line of the duct, i.e. when  

 = ½W           (13) 

Assuming a power law distribution [3] in the 

boundary layer, this is: 
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wheren is an integer constant, then using (4), it 

follows that: 
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i.e., that: 
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Similarly, using the definition of the 

displacement thickness it follows that: 
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i.e., that: 
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Dividing (17) by (16),we obtain: 

  
   

 
 

solving for n, we obtain: 

   
 

   
 

substituting this expression into (16) then gives: 
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For any value of H, (18) allows  to be found 

provided the value of 2 has been determined. 

Equation (13) can then be used to determine if the 

boundary layer has reached the center line. 

It is convenient to write the above equations in 

dimensionless form before obtaining the solution. 

For this purpose, the following variables are 

defined: 
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Equations (7), (8), (9), and (11) can be written 

in terms of (19) – (22) as: 
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where: 

    
   

 
 

Equation (13) indicates that the solution must 

ended when  

 = 0.5                          

and (18) gives: 
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Equation (12) gives the heat transfer rate as: 

    
  
   

       
    

an approximate correction to account for the fact 

that Pr is not equal to 1 having been applied. Then, 
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The mean temperature Tm, across any section 

in the duct is given by: 
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i.e., since T is equal to Ti outside the boundary 

layer: 
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Assuming that: 
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Equation (23) gives: 

     

     
 

  

(   )(   )
           (24) 

Therefore, since: 
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Equation (24) allows (Tm – Ti)/(Tw – Ti) to be 

found, and therefore, the temperature distribution. 

PROCEDURE 

The velocity profile and the temperature 

distribution was obtained by measuring the speed 

and temperature at discrete points at the exit of the 

flow field using a uniform space grid at the ambient 

temperature of the room, as shown on Figure 6. The 

intersection of each horizontal line with a vertical 

line represents a nodal point where the 

temperatures were measured. 

 
Figure 6 

Two – dimensional Grid for Temperature Distribution 

 

 

RESULTS AND DISCUSSION 

Table 1 shows the actual Temperature Profile. 

As shown in Figure 2, two parallel aluminum plates 

have a cluster between them, i.e. a heat generating 

source. Also the cluster is above the bottom of the 

computer housing, leaving an empty space with no 

sources of heat, but radiation.  

As pointed out by Incropera (2011), radiation 

heat transfer is negligible for polished metals 

because of their very low emissivity and for bodies 

surrounded by surface by about the same 

temperature. The radiation heat transfer is 

disregarded for two reasons. First, the forced 

convection heat transfer is usually much larger than 

that due to radiation in cooling of electronic 

devices. Second, the electronic components and 

circuit boards in convection – cooled systems are 

mounted so closed to each other that a component 

is almost entirely surrounded by other components 

at about the same temperature. 

Table 1 

Actual Temperature Profile (°C) at Tamb = 24°C 

 1 2 3 4 5 

A 27 28 28 28 27 

B 27 29 29 29 27 

C 27 28 28 29 27 

Table 2 shows the results of a Matlab Code 

implementing the above procedure. The values of 

du1/dz are relative small in the entrance region and 

results obtained, assuming H is constant, agree 

quite closely with those obtained allowing for 

variations in H.  

Table 2 

Theoretical Values for the Temperature Profile Variables 

Mean Temperature Tm (°C) 

A B C D E 

26.50 26.48 26.46 26.45 26.44 

Boundary Layer Thickness (cm) 

0 0.024 0.041 0.054 0.068 

Dimensionless Parameter  (Adimensional) 

0 0.037 0.064 0.084 0.105 

Dimensionless Parameter 2 (Adimensional) 

0 0.0044 0.0076 0.0099 0.0125 

Reynolds Number (Adimensional) 

3099 3444 4133 5166 5166 



A careful examination of the equations reveals 

that the independent variables are the Reynolds 

Number (Re) and the geometric variables. The 

independent geometric variables are the 

dimensionless parameter  the ratio of  to W, the 

dimensionless parameter 2 the ratio of 2 to W, 

and the width of the ductW.  

In order to decide what value of n to use in (24) 

experiments indicates that for flow over a flat plate 

H = 1.4, [3]. For the air at 300 K (average 

temperature measured) the kinematic viscosity  is 

approximately 15.68 × 10 – 6 m2/s (Incropera,. 

1996). The actual duct size measures 54 cm. 

The Reynolds Number distribution, as 

expected, shows turbulent flow, i.e. Re > 2300.  

This turbulent flow is caused by the non-

symmetrical distribution of the components in the 

cluster plate, which is between the two parallel 

plates.  

The center line parameter  indicates the limit 

if the boundary layer reaches the center of the duct, 

in this case  = 2.70 cm. As indicated by the 

dimensional parameter , with a maximum value of 

0.105, the boundary layer never reaches the center 

of the duct, i.e. < 0.5. The maximum calculated 

value of the boundary layer thickness is 0.068 cm 

which also confirms the boundary layer never 

reaches the center of the duct, i.e. A< 2.70 cm. 

The temperature difference ratio, i.e. (24), 

compares the difference between the mean 

temperature Tm, the temperature at the wall Tw with 

the temperature of the inlet planeTi = 26.5°C. 

Results shows theoretical ratios are very small 

indicating very close temperature values. The 

Theoretical Temperature Profile is shown in Figure 

7.  

The Mean Temperature Profile is quasi-linear 

and for turbulent flow (i.e. Re > 2300) confirms the 

temperature in the core region is equal to the 

temperature on the inlet plane, which is the actual 

temperature outside the boundary layer. 

 

Figure 7 

Theoretical Temperature Profile 

Inconsistencies with the Theoretical 

Temperature Profile and the Actual Temperature 

Profiles are shown in Figures 8, 9, and 10. These 

inconsistencies is due to actual configuration of the 

system under consideration and the assumption 

made during the analysis, two parallel plates 

without a plate in between as a source of heat and 

turbulence. 

 
Figure 8 

Temperature Distributionin Horizontal Plane A 

 

Figure 9 

Temperature Distribution in Horizontal Plane B 



 

Figure 10 

Temperature Distribution in Horizontal Plane C 

CONCLUSION AND RECOMMENDATIONS 

In spite of the inconsistencies of the theoretical 

and actual temperature distributions, the thermal 

analysis done can help determine if the thermal 

environment in the equipment is adequate or not. 

As shown on Table 1, the maximum 

temperature achieved by the air is 29°C and a 

temperature difference between the exit and inlet 

air of 5C°. This is a heat transfer rate equal to 5 

kJ/kgair. Avram Bar-Cohen from University of 

Minnesota, Abhay A. Watwe and Ravi S. Prasher 

from Intel Corporation at Chandler, Arizona had 

established, based on reliability and performance 

considerations, a standard limit range of 65° to 

85°C in commercial applications (non-military 

electronic systems), thus having allowable 

temperature rise above the ambient 45°C. 

Therefore, the system is considered operating 

at an adequate thermal environment and no changes 

are recommended. A natural convection cooling 

environment is not recommended due to the 

computer housing configuration of the installed 

components. However, a natural convection study 

is recommended to confirm this. 

REFERENCES 

[1] Deissler, R. G., “Turbulent Heat Transfer and Friction in 

the Entrance Regions of Smooth Passages”, Trans, ASME, 

Vol. 77, 1955, pp. 1211 – 1234  

[2] Deissler, R.G., “Analysis of Turbulent Heat Transfer and 

Flow in the Entrance Regions of Smooth Passages”, 

NACA TN, 3016, 1953. 

[3] Oosthuizen, Patrick H., & Naylor, David, “Convective 

Heat Transfer Analysis”, First Edition, 1999. 

[4] Schlichting, H., “Boundary Layer Theory”, 7
th
 Edition, 

1979. 


