
Testing, Simulating, and Profiling Designated Problems for CASL

Yael M. Camacho Bonaparte

Master of Engineering in Computer Engineering

Dr. Luis Vicente

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract Simulation is an essential step for

future implementations of more efficient and safer

reactor components. In nuclear Technology, this

translates to cost, fuel, and waste reduction, and

enhanced safety. The software Coolant Boiling in

Rod Arrays – Two Fluid (COBRA-TF) is currently

undergoing development and until now has not

been profiled to measure its performance. This

project presents profiling data and data analysis of

the code’s performance. We profiled two different

version of the software while simulating two

different input files. The profile data extracted from

the simulations provided developers a better

understanding of the code’s behavior. The results

of this project will help developers improve the

code’s performance in future versions by

identifying the most time consuming portions of the

code. The project involved activities such as testing,

simulation, running designated problems on

different programs or environments, analyzing, and

verifying the results, and providing feedback to the

development team.

Key Terms Optimization, Profiling,

Simulation, Virtual Nuclear Reactor.

BACKGROUND

Scientists have been modeling real-life

scenarios to predict system behavior of different

parameters. Modeling is a cheaper, safer, and faster

way to understand how systems. Dangerous system

conditions can be simulated in a totally safe

environment in order to determine the real-life

results.

The Consortium for Advanced Simulation of

Light Water Reactors (CASL) is a partnership

between the Department of Energy (DOE)

laboratories, such as Oak Ridge National

Laboratory, Los Alamos National Laboratory,

Idaho National Laboratory, and Sandia National

Laboratories, highly qualified educational

institutions, such as University of Michigan, North

Carolina State University, and Massachusetts

Institute of Technology, and outstanding industry

companies such as Electric Power Research

Institute, Tennessee Valley Authority, and

Westinghouse. By implementing advanced

modeling and simulation capabilities, CASL plans

to reduce costs, fuel consumption, and waste while

increasing safety.

COBRA-TF is a thermal-hydraulic sub channel

code for light water reactors transient analyses

developed by the Reactor Dynamics and Fuel

Management Group (RDFMG) and distributed to

Oak Ridge National Laboratory (ORNL) for the

CASL Project. CASL is using COBRA-TF to

develop a modeling tool called the Virtual

Environment for Reactor Applications (VERA).

This tool will simulate the performance of light

water reactors using current and advanced

modeling and simulation capabilities.

SIGNIFICANCE OF THE STUDY

Large complex programs often have pieces of

code with poor performance [1]. This can be caused

by several factors, being the coding techniques used

the most common factor. This can be improved by

using different profile tools. Profiling helps identify

the most time-consuming portion of the program.

The ability to profile COBRA-TF will provide

developers useful information about the code’s

performance. This information will allow

developers learn where COBRA-TF is spending

most of the execution time, which functions were

called by whom, and how many times each function

or routine ran. This profiling information will assist

developers to optimize COBRA-TF in future

versions.

Future optimizations of COBRA-TF will allow

the program to execute faster and more efficiently.

Scientists will benefit from these optimizations

since they will be able to run simulations faster

which mean less execution time and power

consumption.

OBJECTIVES

The objective of the project is to profile

execution of COBRA-TF in order to understand its

behavior, find out where the time is being spent,

which functions are the most time consuming ones,

analyze and visualize the results in order to provide

developers a clear performance report of the

simulations. This report will help them improve the

program’s performance in future versions.

TEST BED METHODOLOGY

A computer with Linux (OpenSUSE) installed

was used for this project. Two versions (V1.0 and

V1.1) of COBRA-TF were profiled in order to

compare and contrast the results between them.

Two input files were simulated in each version of

COBRA-TF in order to compare the results. These

are a small input file (Input I) of about 9KB and a

relatively large input file (Input II) of about 210KB.

The input files and the type of simulation

performed were provided by CASL. Table 1 shows

the configuration for each simulation.

Table 1

Test Bed Configurations

Configuration

Name

COBRA-TF

version

Input file

version

Test bed I 1.0 Input I

Test bed II 1.1 Input I

Test bed III 1.0 Input II

Test bed IV 1.1 Input II

Four simulations were profiled during this

project using the test beds shown at table 1. After

each run, the profile gprof output data were saved

in a safe location to be analyzed later on. After

collecting all the profile data, the information was

trimmed and organized in a single document, the

call graph profiles were visualized with kprof and

graphviz and the information was presented to the

developers.

Test Bed I

Test bed I was executed after compiling and

linking the code with the profile option “-pg”

enabled [4]. The simulation took about twelve

minutes to complete.

Table 2

Flat Profile from Test Bed I

Each sample counts as 0.01 seconds.

% time cumulative
seconds

self
seconds

calls name

26.71 26.28 26.28 17577861 tgas

22.20 48.12 21.84 17677 xschem

9.67 57.64 9.52 2669227 intfr

6.18 63.72 6.08 17677 temp

6.07 69.69 5.97 2669227 boiling

4.27 73.89 4.20 2651550 reduce

3.71 77.54 3.65 17677 heat

3.26 80.75 3.21 17685 post3d

2.42 83.13 2.38 9605533 prop

2.12 85.22 2.09 2651550 bacout

2.08 87.27 2.05 10664669 sat

2.08 89.32 2.05 2669227 veloc

1.57 90.86 1.54 2651550 fillro

1.09 91.93 1.07 9605533 transp

1.08 92.99 1.06 4266172 hgas

… … … … …

Table 2 shows the profile output data for the

top 99% time consuming of test bed I.

Table 3

Call Graph Profile from Test Bed I

granularity: each sample hit covers 4 byte(s) for 0.01% of 98.40 seconds

index
%

time
self children called name

[1] 100 0.00 98.40 MAIN [1]

 0.77 97.62 1/1 trans [2]

 0.00 0.01 1/1 input [36]

 0.00 0.00 1/1 init [50]

 0.00 0.00 1/1 blkdat [48]

 0.77 97.62 1/1 MAIN [1]

[2] 100 0.77 97.62 1 trans [2]

 0.00 50.89 17677/17677 outer [3]

 0.24 31.91 17677/17677 prep3d [5]

 3.21 11.34 17685/17685 post3d [10]

 0.00 0.02 6/6 edit [33]

 0.01 0.00 17707/17707 timstp [38]

 0.00 0.00 30/30 dmpit [43]

 0.00 50.89 17677/17677 trans [2]

[3] 51.7 0.00 50.89 17677 outer [3]

 21.84 29.05 17677/17677 xschem [4]

 21.84 29.05 17677/17677 outer [3]

[4] 51.7 21.84 29.05 17677 xschem [4]

 9.52 5.53 2669227/2669227 intfr [9]

 1.54 4.20 2651550/2651550 fillro [13]

 3.96 0.00 2651550/17577861 tgas [7]

 2.05 0.00 2669227/2669227 veloc [17]

 0.78 0.00 2651550/2651550 xtra1 [21]

 0.51 0.00 2651550/10664669 sat [16]

 0.11 0.15 2651550/2651550 dvdh1 [27]

 0.22 0.00 17677/17677 gssolv [28]

 0.20 0.00 2651550/5320778 gasp [24]

 0.19 0.00 2651550/2651550 dvdpv [29]

 0.08 0.00 2651550/2651550 dvdhv [31]

Since the call graph profile is extremely large

and complex, table 3 shows only the first four

entries of the output file.

Test Bed II

Test bed II took about eight minutes to

complete. It ran 33% faster than test bed I while

executing with Input I. The Central Processing Unit

(CPU) time used by test bed II was slightly bigger

than test bed I, but it ran faster overall.

Table 4

Call Graph Profile from Test Bed II

Each sample counts as 0.01 seconds.

% time cumulative

seconds

self

seconds

calls name

30.49 31.18 31.13 17577861 tgas

23.47 55.18 24.00 17677 xschem

8.68 64.06 8.88 2669227 intfr

5.31 69.49 5.43 17677 temp

5.29 74.90 5.41 2669227 boiling

3.81 78.80 3.90 17677 heat

3.61 82.49 3.69 2651550 reduce

2.94 85.50 3.01 17685 post3d

2.12 87.67 2.17 9605533 prop

1.89 89.60 1.93 10664669 sat

1.86 91.50 1.90 2651550 bacout

1.72 93.26 1.76 2669227 veloc

1.56 94.86 1.60 2651550 fillro

1.23 96.12 1.26 9605533 transp

1.12 97.27 1.15 4266172 hgas

… … … … …

Table 4 shows the profile output data for the

top 99% time consuming routines of test bed II.

Table 5

Call Graph Profile from Test Bed II

granularity: each sample hit covers 4 byte(s) for 0.01% of 98.40 seconds

index
%

time
self children called name

[1] 100 0.00 102.26 MAIN 1]

 0.69 101.56 1/1 trans [2]

 0.00 0.01 1/1 input [36]

 0.00 0.00 1/1 init [50]

 0.00 0.00 1/1 blkdat [48]

 0.69 101.56 1/1 MAIN 1]

[2] 100 0.69 101.56 1 trans [2]

 0.01 53.00 17677/17677 outer [3]

 0.21 32.73 17677/17677 prep3d [5]

 3.01 12.57 17685/17685 post3d [10]

 0.00 0.01 6/6 edit [33]

 0.00 0.01 17707/17707 timstp [38]

 0.00 0.00 30/30 dmpit [43]

 0.01 53.00 17677/17677 trans [2]

[3] 51.8 0.01 53.00 17677 outer [3]

 24.00 29.00 17677/17677 xschem [4]

 24.00 29.00 17677/17677 outer [3]

[4] 51.8 24.00 29.00 17677 xschem [4]

 8.88 6.28 2669227/2669227 intfr [9]

 1.60 3.69 2651550/2651550 fillro [13]

 4.70 0.00 2651550/17577861 tgas [7]

 1.76 0.00 2669227/2669227 veloc [17]

 0.57 0.00 2651550/2651550 xtra1 [21]

 0.48 0.00 2651550/10664669 sat [16]

 0.17 0.17 2651550/2651550 dvdh1 [27]

 0.28 0.00 17677/17677 gssolv [28]

 0.24 0.00 2651550/5320778 gasp [24]

 0.12 0.00 2651550/2651550 dvdpv [29]

 0.06 0.00 2651550/2651550 dvdhv [31]

Since the call graph profile is extremely large

and complex, table 5 shows only the first four

entries of the output.

Test Bed III

Test bed III took about five hours and thirty

minutes to complete.

Table 6

Flat Profile from Test Bed III

Each sample counts as 0.01 seconds.

%

time

cumulative

seconds

self

seconds
calls name

45.55 706.09 706.09 1122 xschem

10.83 973.08 186.99 124634943 tgas

6.86 1091.52 118.44 1122 result_chan

nel

5.92 1193.65 102.13 1122 temp

5.44 1287.61 93.96 45936 sstemp

4.27 1361.38 73.77 1122 result

3.53 1422.34 60.96 31416 intfr

2.54 1466.15 43.81 1122 heat

2.14 1503.00 36.85 10178784 boiling

2.04 1538.13 35.13 1122 gssolv

1.33 1561.04 22.91 1122 result_gap

1.04 1578.96 17.92 94462118 prop

1.02 1596.46 17.92 91613230 sat

… … … … …

Table 6 shows the profile output data for the

top 99% time consuming routines of test bed III.

Table 7

Call Graph Profile from Test Bed III

granularity: each sample hit covers 4 byte(s) for 0.01% of 98.40 seconds

index %

time

self children called name

[1] 100 0.00 1725.80 MAIN [1]

 2.29 1629.19 1/1 trans [2]

 0.00 94.32 1/1 input [14]

 0.00 0.00 1/1 blkdat [50]

 0.00 0.00 1/1 init [52]

 2.29 1629.19 1/1 MAIN [1]

[2] 94.5 2.29 1629.19 1 trans [2]

 0.00 1011.35 1122/1122 outer [3]

 3.16 309.39 1122/1122 prep3d [5]

 0.02 243.09 1123/1123 edit [7]

 16.11 46.08 1122/1122 post3d [20]

 0.00 0.00 1124/1124 timstp [45]

 0.00 0.00 2/2 dmpit [48]

 0.00 1011.35 1122/1122 trans [2]

[3] 58.6 0.00 1011.35 1122 outer [3]

 786.09 225.26 1122/1122 xschem [4]

 786.09 225.26 1122/1122 outer [3]

[4] 58.6 786.09 225.26 1122 xschem [4]

 60.96 57.00 31416/31416 intfr [11]

 35.13 0.00 1122/1122 gssolv [22]

 12.44 13.57 9815256/9815256 fillro [23]

 15.32 0.00 31416/31416 vdrift [26]

 14.73 0.00 9815256/9815256 tgas [9]

 10.69 0.00 31416/31416 veloc [30]

 1.88 0.00 9815256/91613230 sat [25]

 0.56 0.53 9815256/9815256 dvdhl [36]

 0.95 0.00 9815256/9815256 xtra1 [37]

 0.88 0.00 9815256/20357569 gasp [34]

 0.40 0.00 9815256/9815256 dvdpv [41]

 0.23 0.00 9815256/9815256 dvdhv [43]

Since the call graph profile is extremely large

and complex, table 7 shows only the first four

entries of the output file.

Test Bed IV

Test bed IV took about two hours and thirty

minutes to complete. Test bed IV ran 55% faster

than test bed III. The Central Processing Unit

(CPU) time used by test bed IV was slightly smaller

than test bed III. Note the improvement in running

time although both test bed used similar CPU time.

Table 8

Call Graph Profile from Test Bed IV

Each sample counts as 0.01 seconds.

%

time

cumulative

seconds

self

seconds
calls name

45.48 765.52 765.52 1122 xschem

11.08 952.09 186.57 124634943 tgas

6.59 1063.09 111.00 1122 result_chan

nel

5.84 1161.36 98.27 45936 sstemp

5.81 1259.22 97.86 1122 temp

4.23 1330.38 71.16 1122 result

3.52 1389.56 59.18 31416 intfr

2.54 1432.25 42.69 1122 heat

2.07 1457.11 34.86 10178784 boiling

2.04 1501.37 34.26 1122 gssolv

1.23 1522.04 20.67 1122 result_gap

1.01 1539.00 16.96 94462118 prop

1.00 1555.83 16.83 91613230 sat

… … … … …

Table 8 shows the profile output data for the

top 99% time consuming routines of test bed IV.

Table 9

Call Graph Profile from Test Bed IV

granularity: each sample hit covers 4 byte(s) for 0.01% of 98.40 seconds

index
%

time
self children called name

[1] 100 0.00 1683.15 MAIN [1]

 2.18 1582.39 1/1 trans [2]

 0.00 98.57 1/1 input [14]

 0.01 0.00 1/1 blkdat [45]

 0.00 0.00 1/1 init [53]

 2.18 1582.39 1/1 MAIN [1]

[2] 94.1 2.18 1582.39 1 trans [2]

 0.00 987.61 1122/1122 outer [4]

 2.92 300.16 1122/1122 prep3d [5]

 0.00 230.20 1123/1123 edit [7]

 15.70 45.80 1122/1122 post3d [20]

 0.00 0.00 1124/1124 timstp [47]

 0.00 0.00 2/2 dmpit [50]

 765.52 222.09 1122/1122 outer [4]

[3] 58.7 765.52 222.09 1122 xschem [3]

 59.18 56.16 31416/31416 intfr [11]

 0.00 987.61 1122/1122 trans [2]

[4] 58.7 0.00 987.61 1122 outer [4]

 765.52 222.09 1122/1122 xschem [3]

Since the call graph profile is extremely large

and complex, figure 9 shows only the first four

entries of the output file.

RESULTS

COBRA-TF V1.0 and V1.1 were profiled

simulating two different input files. For the purpose

of this project the difference between V1.0 and

V1.1 is limited to memory management

improvements; any other specific detail is out of the

scope of this project.

Test beds I and II provided information about

simulations of input I from both versions of

COBRA-TF. Comparing the information shown in

table 2 and table 4, we can observe that CPU times

used by test bed I and II were similar, 98.40 and

102.26 respectively. As shown in table 10, test bed

II used about 4% more CPU time than test bed I,

although it ran about 33% faster. This suggests that

the performance gained between COBRA-TF V1.0

and V1.1 was probably due to better memory

management.

Table 10

Contrast between Test Bed I and II

Configuration
CPU Time

(s)

Time

(min)

Test bed I 98.40 12

Test bed II
102.26 (3.7%

more)
8 (33% faster)

Figure 1

Self-Seconds Comparison between Test Bed I and II

The data were also presented to developers in

bar plots, comparing the top 99% time-consuming

routines between the two versions of COBRA-RF,

as shown in Figure 1.

Test beds III and IV provided information

about both simulations with input II. After

analyzing the information shown in Figure 6 and

Figure 8, we noticed that test bed IV used about

2.5% less CPU time than test bed III. During these

particular simulations, we noted a large difference

in the actual running time, 5.5 hours versus 2.5

hours (55% faster), as shown in table 11. Again,

since the CPU time used on both simulations is

similar, the improvement in performance seems to

be accounted to memory handling improvements.

Table 11

Contrast between Test Bed III and IV

Configuration
CPU Time

(s)

Time

(hrs)

Test bed III 1725.80 5.5

Test bed IV 1683.15 (2.5%

less)

2.5 (55% faster)

Figure 2

Self-Seconds Comparison between Test Bed III and IV

The data were also presented to developers in a

bar plots, comparing the top 99% time-consuming

routines between the two versions of COBRA-TF,

as shown in Figure 2.

After analyzing the overall data regardless of

which version of COBRA-TF was used and which

input file was simulated, we found that most of the

CPU time is being used by only two routines: tgas

and xschem. “tgas” is a small routine that calculates

vapor temperatures and specific heat capacity of

vapors. “xschem” is a routine that linearizes the

momentum, continuity, and energy equation.

During the four simulations, the CPU times spent in

these two routines were 48.91%, 53.96%, 56.38%,

and 56.56 respectively. In average, the total CPU

time spent on these two routines was about 53.95%.

It is likely to obtain better performance by

implementing these two functions.

These two routines behave in an entirely

different way but are the top two time consuming

routines. Tgas is a remarkably small routine that

runs extremely fast. The cause for the high CPU

time used by this routine is that it is called about

124.6 million times in simulation IV as shown in

Figure 8. Since it is a small and fast routine it is not

optimal to implement the routine itself to obtain

better performance. It may be better to optimize

other functions that call this routine in order to

reduce the calls count. By calling it less, the overall

code’s performance may improve. On the other

hand, the xschem routine is not called too many

times. This routine is still between the top two CPU

time consuming routines. This can be due to the

circumstance that it has many sub-routine calls, as

shown in Figure 1. CPU time improvement may be

obtained by implementing the sub-routines that are

called by it.

FUTURE WORK

This project can be implemented in various

ways, the most prominent being to extend the

profiling techniques to memory usage. There are

many tools available to profile memory usage

during execution, such as valgrind and mprof,

which can measure memory usage and detect

memory leaks during execution. Tracing memory

leaks facilitates the removal of memory

request/release errors in C++ programs [7]. Also,

they are used to study the dynamic memory

allocation behavior of programs [5]. Memory

profiling may lead to substantially improvement of

the overall performance of COBRA-TF since only a

small portion of the actual time spent executing was

CPU time.

ACKNOWLEDGMENTS

The project was supported by the Research

Alliance in Math and Science program (RAMS).

RAMS is sponsored by the Office of Advanced

Scientific Computing Research, U.S. Department of

Energy. The work was performed at the Oak Ridge

National Laboratory, which is managed by UT-

Battelle, LLC under Contract No. De-AC05-

00OR22725. This work has been authored by a

contractor of the U.S. Government, accordingly, the

U.S. Government retains a nonexclusive, royalty-

free license to publish or reproduce the published

form of this contribution, or allow others to do so,

for U.S. Government purposes.

Special thanks to my mentor John Turner

(ORNL) for all his guidance and support during this

project.

REFERENCES

[1] Felanson, J, et al., “GNU grpof: the GNU profiler”, Free

Software Foundation Inc., 1988.

[2] Knuth, D, “An Empirical Study of FORTRAN Programs”,

Software: Practice and Experience, 1971.

[3] Graham, S, et al., “An Execution Profiler for Modular

Programs”, Software: Practice and Experience, 1983.

[4] Graham, S, et al., “Gprof: A Call Graph Execution

Profiler”, ACM Sigplan Notices, 1982.

[5] Zorn, B, et al., “A Memory Allocation Profiler for C and

Lisp Programs”, Proceedings of the Summer USENIX

Conference, 1988.

[6] Pettis, K, et al., “Profile Guided Code Positioning”, ACM

Sigplan Notices, 1990.

[7] Beaty, S., “A technique for tracing memory leaks in C++”,

ACM Sigplan, 1994.

[8] Shende, S, “Profiling and Tracing in Linux”, Proceedings

of the Extreme Linux Workshop, 1999.

[9] Serrano, M, et al., “Understanding Memory Allocation of

Scheme Programs”, 2000.

[10] Avramova, M, et al., “Improvements and Applications of

COBRA-TF for Stand-alone and Coupled LWR Safety

Analyses”, Proceedings: PHYSOR, 2006.

[11] Bradley, B, et al., “Automatic Memory Leak Detection”,

U.S. Patent No. 20-130-054-923, 2013.

[12] Reactor Dynamics and Fuel Management Group,

www.mne.psu.edu/rdfmg, last accessed, July 2013.

[13] Consortium for Advanced Simulations of LWRs,

www.cals.gov, last accessed, July 2013.

[14] Oak Ridge National Laboratory, www.ornl.gov, last

accessed, June 2013.

[15] Kprof, www.kprof.sourceforge.net, last accessed, June

2013.

