
Implementing DNSSEC under the .pr ccTLD

Luis Alberto Medina Ramos
Computer Engineering
Jeffrey Duffany, Ph.D
Department of Electrical & Computer Engineering and Computer Science
Polytechnic University of Puerto Rico

Abstract  When the Internet was developed it was

not designed with security in consideration. It

currently relies on the Domain Name System

protocol for name resolution which is home to

many types of exploits. The Internet Engineering

Task Force developed a set of extensions to address

these security concerns that resulted in the Domain

Name System Security Extensions protocol

DNSSEC. Users of this protocol will benefit from

authentication and data integrity in a medium

which has been historically insecure. Here we

implement DNSSEC under the .pr country code top-

level domain. To do so, we acquired the domain

name luis.est.pr and a Virtual Private Server from

HostGator.com with full root access. A PHP:

Hypertext Preprocessor script was developed to aid

in the process of periodic zone maintenance

required by the protocol. Our resulting

configuration was validated with three online tools

used to test a successful DNSSEC environment.

Key Terms  BIND, DNS, DNSSEC, Security.

BACKGROUND

The Internet has come a long way since its

origins in the 1960s. To reach another computer on

a network you need to know its unique number

identifier called an IP address. There is one

problem though, human beings are not as efficient

at remembering number as computers are. To

overcome this limitation, unique computer

hostnames were assigned and mapped to their

corresponding IP addresses. This way a hostname

could be translated into an IP address which

computers understand before a connection is

established. Every hostname to IP mapping was

listed as an entry in a HOSTS.TXT file shared

across every user of the early Internet. As the

Internet grew, also grew the size of the

HOSTS.TXT file to the point where it became

unpractical to continue distribution of such a large

file. Because of its size and with so many new users

rapidly joining the Internet, there were times when

someone wasn't even finished downloading the file

when there were already new entries being added to

it giving rise to data accuracy issues. Another

solution was needed and it came in the form of the

Domain Name System (DNS). The DNS is

basically a distributed database of host information

that uses a tree or hierarchical name structure

similar to the Unix filesystem and it translates

hostnames like www.pupr.edu into their

corresponding IP address [1]. At the top of the tree

is the root node followed by the Top-Level

Domains (TLDs), then the Second-Level Domains

(SLD) and any number of lower levels, each

separated with a dot [2]. Each node in the tree has a

text label, which identifies the node relative to its

parent such as google.com, facebook.com,

yahoo.com, etc. Programs called nameservers

contain information about some segments of the

DNS database in zone files and make that

information available to clients [1].

Data flows through the DNS following these

steps. First, a zone file is created on the master

DNS server. As stated earlier, this file contains all

the DNS related information of the zone it will

serve. Let's say this example zone is pupr.edu. Once

the zone file is created it is very common for

records to be dynamically added, deleted, or

updated. These changes are automatically pushed

into the master server which will then transfer the

zone file to its slave servers to aid in the name

resolution process. Up to this point, a zone

administrator is responsible for these

configurations. Now a caching forwarder is able to

query either the master or any of the slaves for a

DNS record. With everything in place, when you

type in your browser “pupr.edu” a program called a

resolver will ask for the IP address of that domain

on the DNS structure. It may ask a root DNS

server, a recursive DNS, a caching forwarder, the

master, or any of the slaves but it is entitled to give

you an answer. And here is the thing: any answer.

Unfortunately, the DNS protocol was not

designed with security in consideration and as a

result it has several vulnerabilities that are exploited

by malicious attackers. For example, when a

computer asks a DNS server for the IP address of a

hostname it will blindly accept any answer it

receives as long as it is correctly formatted. Figure

1 illustrates this case showing that something has

intercepted the traffic in the network between the

computer and the correct server providing an

incorrect answer [3].

Figure 1

DNS Wrong Answer

Another common DNS exploit takes advantage

of how quickly an answer is provided. Again, when

a computer asks a DNS server for the IP address of

a hostname it does not care where that answer

comes from. Because of this, a strategically placed

malicious DNS server could answer quicker than

the correct server [3]. The computer will take this

answer as valid. Figure 2 illustrates this scenario.

Figure 2
Quicker Wrong Answer

 To address some of these vulnerabilities a set

of extensions to DNS were developed by the

Internet Engineering Task Force. These set of

extensions are called the DNSSEC protocol and

provide a way to verify data integrity and

authenticity [4]. RFCs 4033, 4034, 4035 define the

protocol and are colloquially called DNSSEC.bis

[4]-[6]. In a correctly configured DNSSEC

environment the exploits mentioned above simply

cannot happen. We saw in the first case that

something in the network could have been

intercepting or redirecting traffic which resulted in

a wrong answer provided to the resolver. This is not

possible with DNSSEC because it uses a set of

public/private cryptographic keys to ensure that a

DNS answer has not been tampered with along the

way. Any attempt to spoof or corrupt any response

will be immediately detected and a bogus response

will be returned instead [2]. The second exploit that

we presented showed that a malicious DNS server

responded faster with incorrect information.

DNSSEC introduces a mechanism called the

“Chain of Trust” which ensures that when you get a

DNS response it is coming from an authorized

server and not someone else. By taking advantage

of the hierarchical structure of the DNS, the Chain

of Trust can verify the authenticity of each node

that answers a query. Of course additional

information needs to be sent along in order to do

this. That piece of information is called a signature.

A DNSSEC aware nameserver will compare each

answer against a list of known good signatures. If a

signature mismatch is detected, an error will be

returned. This works fine except that we run into

the problem of scalability of the early Internet.

Maintaining a list of known good signatures for

every DNSSEC aware nameserver does not scale.

A very elegant and simple solution could be

achieved by starting validation with the top node of

the DNS which is none other than the root zone. On

July 16th, 2010 the root zone was officially signed

allowing every domain on the Internet to implement

DNSSEC in a more efficient scalable way [7]. Now

instead of a list of known good signatures, only the

root zone signature was needed for the Chain of

Trust validation. This is not to say that DNSSEC

did not existed prior to the root being signed.

Without a root signature to start validation from the

top, small “islands of security” (fragments of the

DNS tree) could enable DNSSEC with a

mechanism called DNSSEC Lookaside Validation

(DLV). With a fully functional signed root zone we

will not elaborate on DLV.

Here is an example of how the Chain of Trust

validates traffic. A DNSSEC aware resolver wants

to know the IP address of the domain pupr.edu and

it has the root zone's signature. It will ask a root

server and will verify that the signature matches the

one it has stored. The root answers with the address

and signature of the .edu domain. Finally, it will

ask the .edu server for the IP address of pupr.edu

and will verify that the signature provided by the

root matches the one answering as the .edu server.

If it does, we now know that the IP address of

pupr.edu could have only came from an

authenticated server.

Puerto Rico has its own place in the DNS

structure. It resides within a section called the

Country Code Top Level Domains (ccTLD) and it

has its own two letter identifier (.pr) assigned by

the Internet Assigned Numbers Authority (IANA)

[8]. This project consists of implementing DNSSEC

under the .pr ccTLD.

PROCEDURE

 First we needed to register a .pr domain name.

The Gauss Research Laboratory, Inc. is the

company that manages the .pr ccTLD (NIC.PR) and

is offering free domain names with the .est.pr

extension to students. Upon evaluating the available

extensions listed at their website (www.nic.pr) it

was an obvious decision to choose and register the

domain luis.est.pr for this project. Second, we

needed a dedicated server to act as the authoritative

nameserver for the zone luis.est.pr in which

DNSSEC will be implemented. For this we turned

to HostGator.com and considered the products they

offered. Although a dedicated server would be

ideal, they are much too expensive for our budget

starting at $139.00 monthly. Instead we settled for

an alternative solution that works just as well, a

fully managed Virtual Private Server with CentOS,

1.13 GHz CPU, 768 RAM, and 30 GB of space for

$39.95 a month. The package also came with two

fixed public IP addresses: 198.57.133.93, and

198.57.137.204. We used the first one for the VPS.

Next we installed the most widely used nameserver

software in production, the Internet Systems

Consortium's BIND. With the VPS up and running

and with BIND installed we proceeded to create the

zone file for luis.est.pr. It contained "A record"

entries for the domain's nameservers ns1.luis.est.pr

with IP address 198.133.57.93 and ns2.luis.est.pr

with IP address 198.133.137.204.

To make the zone file accessible we needed the

.pr nameservers to point to it. This was done by

creating the ns1.luis.est.pr and ns2.luis.est.pr entries

in the DNS section of our account at NIC.PR. In

about 24 hours the information was replicated

through the DNS and the nameservers

ns1.luis.est.pr and ns2.luis.est.pr answered

authoritatively for the domain luis.est.pr.

With correctly configured DNS servers hosting

the zone file for luis.est.pr we are now ready to

implement DNSSEC following the guide described

on [2]. There are four steps that must be completed

for a successful DNSSEC implementation.

1) Generate a cryptographic key pair.

2) Add keys to zone file.

3) Sign the zone.

4) Edit BIND's configuration file.

Here we present the details of each step for the

domain luis.est.pr. DNSSEC uses two

cryptographic keys to provide authenticity and data

integrity to the DNS. The first one is the Zone

Signing Key (ZSK) and it is used to sign all the

records in the zone file. The second key is called

the Key Signing Key (KSK) and it is used to sign

only the key records of the zone. The ZSK will sign

everything including itself and the KSK. The KSK

will only sign itself and the ZSK. To generate the

ZSK we first changed to our working directory

/var/named/run-root/var/ and executed the

following command in a single line:

dnssec-keygen -a DSA -b 768 -n zone

luis.est.pr

The dnssec-keygen command creates a 768 bit

key with the Digital Signature Algorithm. It

produces two files Kluis.est.pr.+003+18204.key

and Kluis.est.pr.+003+18204.private. As the name

implies, the private file should be kept securely and

offline. To generate the KSK we executed the

following command:

dnssec-keygen -a DSA -b 768 -f KSK -n

zone luis.est.pr

This completes the first step. Now we need to

add the generated keys to the zone file which can be

done in a number of ways but we chose to use the

cat command. The cat command will append the

contents of the .key files to the end of the luis.est.pr

zone file. These are the commands we executed:

cat Kluis.est.pr.+003+18024.key >>

include.luis.est.pr

cat Kluis.est.pr.+003+33510.key >>

include.luis.est.pr

Continuing with the third step it is now ok to

sign the zone. Signing the zone means attaching

digital signatures to the existing DNS records of the

zone file. To sign the luis.est.pr zone we executed

the following command on a single line:

dnssec-signzone -o luis.est.pr -t -g

-k Kluis.est.pr.+003+33510.key luis.est.pr

Kluis.est.pr.+003+18024.key

The dnssec-signzone creates a new file with the

.signed extension. This new zone file contains the

DNSSEC signatures. The -g flag generates a file

named dsset-luis.est.pr that contains a Delegation

Signer (DS) record. This file was sent to the .pr

ccTLD to include it in the est.pr zone file. Once the

DNS administrator of the .pr ccTLD updates the

est.pr zone with our DS record we would have

successfully joined the DNSSEC Chain of Trust.

The last step in order to make DNSSEC work

is to tell BIND to serve the luis.est.pr.signed zone

file instead of the regular one. To do that we edited

BIND's configuration file (named.conf) and added

the lines marked in red:

options {
 dnssec-enable yes;
};
zone "luis.est.pr" {
 type master;
 file "luis.est.pr.signed";
};

All that is left to do is to restart the nameserver

with this command:

service named restart

DNSSEC has now been successfully

implemented for the domain name luis.est.pr.

Although everything is in place and we have a

working configuration, DNSSEC introduces a time

factor that is not present in regular DNS. Zone

signatures have a default expiration date of 30 days.

If the zone is not resigned before the expiration date

is met then DNSSEC will stop working and bogus

answers will start to show. To avoid this problem a

PHP-CLI automated script was developed and

configured to run daily as a Cron job and increment

the SOA record serial number. Since our VPS came

with Crontab preinstalled we only needed to put our

script on the /etc/cron.daily directory for it to

execute every day. At the end of execution it calls a

second script that we created that resigns the zone

luis.est.pr.

Every time the zone resign script is executed,

the dnssec-signzone command will not have the -g

flag because we have already provided the .pr

ccTLD with our DS record.

RESULTS

 The goal of this design project was to

implement DNSSEC under the .pr ccTLD. We used

three different tools to validate our configuration:

an online DNSSEC checker from Surf Net [9], a

web browser add-on developed by CZ.NIC [10],

and the dig (domain information groper) command

querying the open DNSSEC validating resolvers

from OARC [11]. Figure 3 below displays the

results of Surf Net's Live DNSSEC Checker.

Figure 3

Surf Net's Online DNSSEC Checker Results for luis.est.pr

This online tool queries the SOA record of

luis.est.pr and verifies that the DNSSEC Chain of

Trust is valid from the root node down to

luis.est.pr. You can see that both nameservers

respond with secure which means that DNSSEC is

working properly. The second tool used for

validating our setup was the DNSSEC Validator

add-on for Mozilla Firefox displayed in Figure 4.

The results can be appreciated next.

Figure 4

CZ.NIC's DNSSEC Validator Browser Add-On

To the left of the URL, the add-on displays a

key icon over a green background if DNSSEC is

working correctly which can be clearly seen on

Figure 6 next to luis.est.pr on the address bar. For

this validator to work as expected it is necessary to

change its settings and configure it to use CZ.NIC's

open DNSSEC resolvers. The third mechanism

used to validate our DNSSEC configuration was to

query directly the open DNSSEC resolvers from the

Domain Name System Operations Analysis and

Research Center (DNS-OARC). Here is the dig

command output of said query.

medina@medina-pc ~ $ dig +dnssec

@149.20.64.20 luis.est.pr

; <<>> DiG 9.8.1-P1 <<>> +dnssec

@149.20.64.20 luis.est.pr

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status:

NOERROR, id: 55417

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2,

AUTHORITY: 3, ADDITIONAL: 5

The dig command response has been shortened

for brevity but the important fact to notice here is

the ad flag – short for Authenticated Data –

displayed on the header section of the answer

shows that DNSSEC is working correctly.

We are proud to discover that this is the first

domain to adopt DNSSEC under the .pr ccTLD

which had DNSSEC available since 2006 even

before the root zone was signed. This implies that

to the time of this writing not even the Government

of Puerto Rico has taken benefit of the security

improvements that DNSSEC offers. In an insecure

environment such as the Internet, DNSSEC

provides the much needed aspects of authentication

and data integrity desired by any service or web site

such as online government agencies that want to

provide users with a more secure channel of

communication of directory lookups [12]. In fact,

on August 22, 2008, the U.S. Department of

Homeland Security mandated that every domain

under the .gov zone should deploy DNSSEC by

2009 [13]. According to the NIST’s Information

Technology Laboratory up to April 26, 2013 only

82% of the U.S. Government domains have

successfully implemented DNSSEC as depicted by

Figure 5 below [14].

Figure 5

U.S. Government DNSSEC Deployment

The road to a successful DNSSEC

implementation is not without a few problems that

must be overcome. With regular DNS once you

configure the nameserver software you can mostly

set it and forget it because it is a onetime task. On

the other hand, DNSSEC signatures have a default

expiration date of 30 days after which if the zone is

not resigned stale and bogus data will be served and

no validation will occur. To avoid this situation we

developed a script that runs daily and automatically

resigns the zone. However, before resigning the

zone it is crucial to increment the zone's serial

number in the SOA record. Ignoring to do so will

not propagate the new signatures to the secondary

nameservers. To overcome this, a PHP script was

created to read the current serial number and

increment it by one before calling the zone

resigning script. Of course there was also the

prerequisite of acquiring an affordable fully

managed server in which to host the zone file but

that was solved by turning to virtual private servers

that offer the same functionality.

An improvement to our configuration and a

recommendation as future work would be to use

NSEC3 instead of NSEC. You might have noticed

that we did not mention NSEC on this report. That

is because it is the default option when signing a

zone. NSEC stands for Next Secure and it is a

resource record used by DNSSEC to provide

authenticated denial of existence of a record. This

might expose a vulnerability in which an attacker

can "walk the zone" by following the chain of

NSEC records and thus listing the whole zone

contents. NSEC3 provides the same denial of

existence but does not allow such vulnerability

[15]. Also because of our VPS underwhelming

specifications we could not generate larger keys. It

is recommended to generate keys of larger size (e.g.

2048 bits) and choose a stronger algorithm such as

RSASHA256.

SUMMARY

 We have showed the benefits that a DNSSEC

environment can bring to any online infrastructure.

However, we also recognize that understanding and

subsequently implementing the protocol could

impose a learning curve that may be deemed too

steep for some to even care. After many years of

hard work, the Internet community has taken the

necessary steps to increase network security by

signing the root zone. With this work we hope to

have demystified misconceptions about the

hardships of adopting DNSSEC by establishing a

self sustained implementation from the ground up.

REFERENCES

[1] Albitz, P, et al., "How Does DNS Work?", DNS and BIND,

2006. 13-25

[2] Aitchison, R, "DNSSEC", Pro DNS and BIND, 2005. 283-

328.

[3] Davies, K, “DNS Cache Poisoning Vulnerability

Explanation and Remedies”, Internet Assigned Numbers

Authority, 2 Mar. 2013,

<http://www.iana.org/about/presentations/davies-

viareggio-entropyvuln-081002.pdf>

[4] Larson, M, et al. “DNS Security Introduction and

Requirements.”, The Internet Society, 10 Mar. 2013,

<http://tools.ietf.org/html/rfc4033>

[5] Larson, M, et al. “Resource Records for the DNS Security

Extensions.”, The Internet Society, 19 Mar. 2013,

<http://tools.ietf.org/html/rfc4034>

[6] Larson, M, et al. “Protocol Modifications for the DNS

Security Extensions.”, The Internet Society, 21 Mar. 2013,

<http://tools.ietf.org/html/rfc4035>

[7] “Status Update, 2010-07-16”, Root DNSSEC, Internet

Corporation For Assigned Names and Numbers &

VeriSign, 3 Abr. 2013, <http://www.root-

dnssec.org/2010/07/16/status-update-2010-07-16>

[8] “IANA — Root Zone Database.”, Internet Assigned

Numbers Authority, 5 Apr. 2013,

<http://www.iana.org/domains/root/db/>

[9] “DNSSEC Checker Version 1.0.16”, SURF NET, 12 Apr.

2013, <http://www.dnssecmonitor.org>

[10] “DNSSE Validator”, CZ.NIC, 22 Apr. 2013,

<http://www.dnssec-validator.cz>

[11] “OARC's Open DNSSEC Validating Resolver”, Domain

Name System Operations Analysis and Research Center,

23 Apr. 2013, <https://www.dns-

oarc.net/oarc/services/odvr>

[12] “DNSSEC – What Is It and Why Is It Important? |

ICANN.”, Internet Corporation For Assigned Names and

Numbers, 23 Apr. 2013,

<http://www.icann.org/en/about/learning/factsheets/dnssec

-qaa-09oct08-en.htm>

[13] Evans, K, “Memorandum for Chief Information Officers”,

Executive Office of the President of the United States, 25

Apr. 2013, <http://georgewbush-

whitehouse.archives.gov/omb/memoranda/fy2008/m08-

23.pdf >

[14] “Estimating USG IPv6 and DNSSEC External Service

Deployment Status”, NIST Information Technology

Laboratory, Advanced Network Technologies Division, 26

Apr. 2013, <http://fedv6-deployment.antd.nist.gov/snap-

all.html>

[15] Blacka, D, et al. "DNS Security (DNSSEC) Hashed

Authenticated Denial of Existence", The Internet

Engineering Task Force Trust, 4 May. 2013,

<http://tools.ietf.org/html/rfc5155>

