
R: Color Package

Eurípides Rivera Negrón

Computer Engineering

Jeffrey L. Duffany, Ph.D.

Computer Engineering Department

Polytechnic University of Puerto Rico

Abstract R is a software language mostly used of

statistical and mathematical purporses. R

capabilities are extended by user’s submitted

packages. The gColor Package provides R

Language a method to solve Systems of Inequation

(represented as a matrix) in files created by the

Discrete Mathematics and Theoretical Computer

Science (SIMACS). The advantange of the gColor

Package is the import fo DIMACS files which

supports compress (binary) and uncompress

(ASCII) format, currently not available in R

Language,and the conversion of the data imported

from vertices and edges into a an adjacency matrix;

allowing users to import graphs from other systems

and use it as a matrix object. This document is

divided in four sections. The Introduction provides

and overviedw of the problem and the justification

to the development of this project. The R Language

brings an introduction to R. The system of

Inequation explains briefly what is it and how can

be representd in R. The gColor Package explains

the structure of the package. How the package was

build and integrated with R is explained in section

Building the Package.

Key Terms ASCII, CRAN, DIMACS,

Dynamic Link Library (DLL).

INTRODUCTION

R is a language used for mathematics purposes,

mostly in the statistics environment. The purpose

of the Color Package is to provide the necessary

mechanisms to solve Systems of Inequations [1].

Although the package was created to solve binary

symmetric square matrix, it did not provide a

method to import data from other systems (like

DIMACS).

The first version of the Color Package was

composed by the methods ineq() and test(). The

ineq() function contains the code to solve System of

Inequation using an argument of n x n binary

matrix. The test() method was developed to create

an n x n binary symmetric square matrix to test the

ineq() functions. This first version was good for

test purposes, but did not have all the requirements

to be used and solve graphs created by other

systems.

The new update to the Color Package provides

two new methods that brings the users to import

DIMACS standard format files (binary and ASCII).

This two new functions, that allow the user to

import DIMACS standard format ASCII files and

DIMACS standard format binary files [7]

respectively without any effort are the methods:

importDIMACSAscii() and importDIMCASCBin().

The value returned will be a n x n binary matrix

which can be solved using the ineq() function.

R LANGUAGE

R is a computer programming language is

mostly used for statistical computing and graphics.

It is an implementation of the S programming

language with lexical scoping semantics inspired by

Sheme. Ross Ihaka and Robert Gentleman at the

University of Auckland, New Zealand invented it.

Now R Development Core Team are the developers

[2] and maintainers of the suite. R source code is

available for everyone under the terms of GNU

General Public License.

The suite of software integrated in R brings

data manipulation, calculation and graphical

display in one environment. Also, R is platform

independent. The same code can be executed in a

Windows or a Linux environment without problem.

Among other things R language has: [3]

 An effective data handling and storage facility.

 A suite of operators for calculations on arrays,

in particular matrices.

 A large, coherent, integrated collection of

intermediate tools for data analysis.

 Graphical facilities for data analysis and

display either directly at the computer or on

hardcopy.

 A well developed, simple and effective

programming language (called ‘S’) which

includes conditionals, loops, user defined

recursive functions and input and output

facilities.

R is mostly related with statistics and other

practitioners requiring an environment for statistical

computation and software development, but it is

preferred to think of it as an environment within

which many classical and modern statistical

techniques have been implemented. Most of these

techniques have been developed by R users and

have been supplied as packages.

Packages

The capabilities of R is extended through user-

submitted packages, which allow specialized

statistical techniques, graphical devices, as

integration with other systems or language like

C++, Java, MySQL, and Oracle [4]. A core set of

packages are included in R and many others can be

downloaded or installed directly from the

Comprehensive R Archive Network (CRAN).

Other unpublished beta packages can be obtained

from R-Forge, which offers a central platform for

the development of R packages and other related

projects [2].

Examples

R language is easy to learn because is like you

are speaking to the machine. Also it provides some

powerful functions to solve math problems. Figure

1 [2] shows the basic syntax of the language and

sage of the command-line interface. Figure 2 [2]

show an example of graphics created in R.

Figure 1

Basic syntax and usage of R

Figure 2

Graphs produced by plot.lm() function in R

SYSTEM OF INEQUATIONS

An inequation is a statement that two objects or

expressions are not the same, or do not represent

the same value [5]. A representation of an

inequation is presented in equation (1).

xi ≠ xj (1)

A system of inequation can be represented by a

binary symmetric square matrix, with a zero

representing a compatibility and a one an

incompatibility [1]. The matrix A in equation (2)

[1] is a representation of the system of inequations

xi ≠ xj. The necessary code to create the equation

(2) in R is presented in Figure 3.

 (2)

Figure 3

Xi ≠ Xj inequation in R

For every system of n inequations there is at

least one optimal solution of minimum cardinality

k* and exactly one trivial solution s(n)={1,2,3…n}

[1]. The optimal solution and trivial solution of

equation (2) are the same, s*=s(n)={1,2}.

Algorithm to solve System of Inequation

Figure 4 [1] presents an algorithm to solve

systems of inequations using a decision function

f(A) = max (A2). The solution of the algorithm

will be represented as a vector s. The algorithm

inititialize the solution vector to the trivial solution

s(n)={1,2,3,…n}. Then it steps through a series fo

feasible solutions. Each time the dimension of the

matrix is reduced by one the number of equivalence

classes in the solution vector s is also reduced by

one. The solution vector is updated by talking all

variables that currently have solution value j and

assigning a new solution value i. For further

information of how the algorithm works, please

refer to the document “Systems of Inequations” by

Duffany, J. L. The representation of the algorithm

in R Language is provided in the gColor Package

inside ineq() function (Figure 5).

Figure 4

Algorithm with f(A) = max(A2) and solution vector s

Figure 5

Color Package ineq() function

COLOR PACKAGE

The gColor Package is a suite of functions that

brings to R users the benefit to import binary

symmetric matrix from DIMACS standard format

files [7], process the data imported, and get the

system of inequations solution. The suite is

composed by four public functions, four private

functions, and a library coded in C. The four public

functions are the methods which the users can call,

used and integrate with their code. The four private

functions are used internally by the package in the

methods importDIMACSAscii() and

importDIMACSBin(). The library is also used

internally by the import methods and it purpose is

to convert the DIMACS binary files into ASCII file

before the data is imported. In the following

section will be described each method.

A diagram of the gColor Package is presented

in Figure 6. The private functions they are

accessed only from the import functions; as these

private functions are important for the package,

they have been created hidden, making them secure

and difficult to reach and modify. In the Color

Library there are also five important methods that

are set private; the reason is that they are in charge

to make the conversion.

Figure 6

Color Package Diagram

Public Functions

The public functions inside the package are:

ineq(), test(), importDIMACSAscii(), and

importDIMACSBin(). As mention, these are the

functions that the users will be able to use in order

to solve Systems of Inequations. The purpose and

usage of each method is described below:

 test(): The purpose of this function is to

quickly create a system of inequation to test the

ineq() function. The method expects two

arguments, the size of the matrix to be created

and the optimal solution cardinality of the

coloring of the graph represented by the

matrix. The return of the function is a matrix.

Figure 7 five an example of how to create a

binary matrix 10 x 10 with the optimal solution

cardinality of 3 using this function.

Figure 7

10 x 10 binary matrix with an optimal solution of 3

 ineq(): This function returns a vector with the

trivial and optimal solution of a system of

inequation. The code of the function (Figure 5)

is based in the algorithm to solve symmetric

binary matrix. An example of how to use the

ineq() function is presented in Figure 8.

Figure 8

The solution of a symmetric binary matrix with cardinality 3

 Color Package

R Code

Color Package

Color Library

ineq(matrix)
P

u
b
li

c
F

u
n
ct

io
n

s
P

ri
v

at
e

F
u
n

ct
io

n
s

test()

importDIMACSBin()

importDIMACSAscii()

readDIMACSFile(filename)

getDIMACSParamet

ers(data)

fillDIMACSMatrixEdges(matrix,data,

edgesParam,matrixSize)

convertDIMACSFromBin2Ascii()

read_file_to_convert()

read_graph_DIMACS_bin(infile)

get_params()

get_edge(i,j)

write_graph_DIMACS_ascii(outfile)

checkDIMACSMatrix(matrix,matrixS

ize,paramEdges,fillCounter)

 importDIMACSAscii(): This function imports

a DIMACS Graph Coloring Instance Ascii file

which should have a .col as extension [6]. The

method will be expecting a filename as an

argument, but in case it is not provided, a

popup window will be shown to allow the user

to browse the file. After the file has been

selected or provided, the method will import

the data to the memory, and using the internal

functions of the package, it creates an empty

(value 0) symmetric matrix. Once the matrix

has been created, it will assign a 1 in the

location matrix(x,y) if that location was found

in the DIMACS Graph Coloring Instance file

(the locations in the file are the edges). The

value returned will be a symmetric binary

matrix that represents that Graphic Coloring

Instance. Figure 9 gives an example of how

can be used the importDIMACSAscii()

function (the david.col [6] file was used for the

example).

Figure 9

Usage of importDIMACSAscii()

 importDIMACSBin(): This function imports

a DIMACS Graph Coloring Instance binary

file which commonly have a .col.b extension.

The process starts writing a file that contain the

path and the filename that will be converted.

Once the file is written, the function calls the

method convertDIMACSFromBin2Ascii()

inside the library to convert the binary

information to ASCII. After the data have

been converted, it uses the same internal

methods as importDIMACSAscii() to create

the matrix and import the data. Figure 10 gives

an example of how to use this method (the file

used in the example was DSJC125.5.col.b [6]).

Figure 10

Usage of importDIMACSBin()

Private Functions

As many systems packages, the Color Package

of R Language has internal functions used only by

some method of the package. The purpose of these

internal methods is to reuse code without

duplicating it. The internal functions of the

package are listed and describe below.

 readDIMACSFile(): This method reads the

DIMACS Graph Coloring Instance ASCII file.

It is used by importDIMACSAscii() and

importDIMACSBin() functions. This is the

main method of the import process, because is

the one which open the file, reads the data,

creates the matrix, call the function to fill the

edges, call the function to validate the data,

close the file and return the matrix with the

data imported. Also, it’s the only function that

accesses the other two internal methods.

 getDIMACSParameters(): This function look

over the data imported for the graph

parameters. The parameters are specified with

a “p” at the beginning of the line. These

parameters are the number of vertices and the

number of edges that the graph contains. The

value returned is a vector of two, which

contains the size in the first position and the

quantity of edges in the second position. If the

parameters are not found, it returns a vector of

size 0.

 fillDIMACSMatrixEdges(): As the name

said, this function run over the data imported

and fill the edges in the matrix assigning a 1.

The method should receive the matrix, the data,

the quantity of Edges from the parameter and

the size of the matrix from the parameter. Once

it finished to import the edges into the matrix it

call the function checkDIMACSMatrix() to

validate the data imported. After the data is

verified, it returns the matrix.

 checkDIMACSMatrix(): This function

verifies if the matrix accomplish with the

DIMACS standard. If it found something

wrong, like if the matrix is not symmetric, or

the quantity of edges in the parameter doesn’t

match the edges imported, it will show a

warning. The function expects the following

arguments: the matrix, the matrix size, the

edges of the parameter, the quantity of edges

imported. After it verifies the data, it returns

the matrix.

The Color Library

To convert a DIMACS Graph Color Instance

binary file into DIMACS Graph Color Instance

ASCII file [6], so it can be imported to R

Language, the Color Package uses a library that

was coded in C Language. This library is compiled

when the package is installed in R, bringing the

advantage to be compiled depending in which

environment has been installed.

A DIMACS Graph Color Instance binary file

[6] actually is composed of ASCII and binary. The

file consists in three sections, which the first 2

sections are ASCII and the last section is the binary

code. These sections are [7]:

 The first line: this section tells let know the

program or system that will used the file how

many characters contains the Preamble.

 Preamble: is a section where the creator of the

file can include information about the graph.

The lines of information are tagged at the

beginning with a “c” to let the user know that

is a comment. Also, this section contains a line

which let the user know the number of vertices

and the edges in the graph (the format is “p

type num_vertices num_edges [7]).

 Binary block: this section contains the lower

triangular part of the vertex-vertex adjacency

matrix of the graph. Each row is stored as

sequence of bits, where the j’th bit is 1 if the

edge (i, j) is in the graph, otherwise the bit is 0

[7].

The reason of the Color Library is that

DIMACS Graph Color Instance binary file contains

mixed data type (ASCII and binary), and the import

of mixed data files in R is really complex. As C

Language can manage better files, making an

external library was a better solution to import the

files. The only problem found in use an external

library was that a string data type cannot be pass as

a parameter to the method that convert the file

because of an incompatibility from R Language to

C Language. The solution to this problem was to

export the filename to be converted to a text file,

which will be read from the library, get the file

name, and convert it. In the future, this approach

will allow the users to convert batch of files instead

of one file at a time.

The Color library consists of six methods. Five

of the methods are private, used internal by the

package, and one is the public method used by R, to

convert the binary file to ASCII. What the library

does is:

1. Get the name of the file to convert

2. Open the file to convert

3. Read the first line of the DIMACS binary file

4. Read the preamble of the DIMACS binary file

5. Get the number of vertices and edges

6. Put in memory the conversion of the binary

block

7. Close the file to convert

8. Create a new DIMACS Graph Color Instance

file in ASCII format.

Once the library was created, I use the method

.C to call the method inside the library [10]. This

method permits to use a method inside a library that

was created with C Language. Previously, a

loading of the package need to be made. For test

purposes I used the dyn.load method, which load

the library to R and make it available. After the

package was build, the dyn.load was deleted,

because the package will load the library

automatically.

With the Color Library, the import of

DIMACS Graph Color Instance binary files makes

the Color Package unique and on top of other

packages (like igraph [8]) that import DIMACS

files, because this package manages DIMACS

Graph Color Instance binary files.

BUILDING THE PACKAGE

R provides several shell scripts in order to

build the package, but these shell scripts only works

in Linux/Unix environment. In order to build a

package in a Windows environment, it is necessary

to install the R Tools [8].

After you have the necessary scripts installed,

you need to create the package structure. The basic

structure consists of one directory which should

have the name of the package, a file

‘DESCRIPTION’ and the sub-directories ‘R’,

‘data’, ‘demo’, ‘exec’, ‘inst’, ‘man’, ‘po’, ‘src’, and

‘tests’ (some of which can be missing) [9]. The

Color Package structure is shown in Figure 11.

Figure 11

Color Package Structure

The DESCRIPTION file is required and it

contains information related to the package, like

package name, the version, the creation date, the

author, the license, and others. The NAMESPACE

file tells R to create the color library (a DLL or a

SO file, depends of the environment) and to load it

using the command useDynLib(). Also it permits

to declare which functions will be available to the

users using the command export().

Each of the sub-directories has a specific

purpose. The following list describes each sub-

directory and what it contains.

 inst: inside this directory are located all the pdf

files that will be included in the package as

references. When the package is build, these

files will be move to the root of the package.

 man: this directory contains the manuals of

each public method. The building process

validates that each method have a manual.

Each manual file should contains the name, the

title, a description, the usage, the description of

the arguments (if the method have

arguments/parameters), the value returned and

an example. The file supports Latex and the

format to create it can be found in the Writing

R Extensions manual.

 R: this directory has all the R code that

constitutes the package.

 src: inside this directory is located the C Code

which will be converted automatically to a

DLL or SO file. The file of this name and the

name used in the useDynLib() command

should be the same.

After all the components were completed and

verified, in order to create the package we use the

command “R CMD build color”. The previous

command creates the package as a .tar.gz file,

which can be used by a Unix/Linux environment

(the color library will be a .so file). In order to

create the package for a Windows environment the

command to be used is “R CMD build --binary --

use-zip color”; this will create a .zip file with a

color library as a DLL file.

One best practice is to check the package

before it is submitted to CRAN. This process will

tell you as a warning any incompatible or error

found. To make a check, the command to be used

is: “R CMD check color”. After the check ran, and

no warning was found, I was able to submit the

sources of the package to CRAN.

Once the package is created, it can be installed

and loaded by any other user. In order to install in

a Windows environment, use the “Install Packages

from local zip file” located in the top menu inside

Packages. After you install it, to make it usable,

use the “Load package…” command inside the

Packages menu, select color from the list and click

OK button.

CONCLUSION

The gColor Package will bring R a method to

import DIMACS Graph Color Instance binary files,

which does not exist. This will provide other users

to import this type of files to their methods.

Another useful method is the validation of the files;

this will allow verifying the DIMACS standards in

the files imported. Also, the gColor Package brings

a solution to solve System of Inequations, another

attribute that make the package special and useful.

ACKNOWLEDGEMENT

I want to thank Prof. Jeffrey L. Duffany for

bring me this opportunity and help me during the

project.

REFERENCES

[1] Duffany, J.L., Systems of Inequations, 4th LACCEI

Conference, Mayaguez, PR, June 21-23, 2006.

[2] “Wikipedia – R”, http://en.wikipedia.org/wiki/R_Project

[3] Venables, W. N. and Smith, D. M., “Introduction to R”, An

Introduction to R, Version 2.9.1, Jun 26, 2009 http://cran.

cnr.berkeley.edu/doc/manuals/R-intro.pdf

[4] “R Packages”, http://cran.cnr.berkeley.edu/web/packages/

[5] “Wikipedia – Inequation”, http://en.wikipedia.org/wiki

/Inequation

[6] “DIMACS Graph Coloring Instances”, http://mat.gsia.

cmu.edu/COLOR/instances.html

[7] “DIMACS standard format”, http://mat.gsia.cmu.edu/

COLOR/format/README.binformat

[8] Ripley, B and Murdoch, D, “R Tools home page”,

http://www.murdoch-sutherland.com/Rtools/

[9] R Development Core Team, Writing R Extensions,

http://cran.r-project.org/doc/manuals/R-exts.pdf

[10] R Development Core Team, R Internals, http://cran.r-

project.org/doc/manuals/R-ints.pdf

http://en.wikipedia.org/wiki/R_Project
http://cran.cnr.berkeley.edu/web/packages/
http://en.wikipedia.org/wiki%20/Inequation
http://en.wikipedia.org/wiki%20/Inequation
http://mat.gsia.cmu.edu/%20COLOR/format/README.binformat
http://mat.gsia.cmu.edu/%20COLOR/format/README.binformat
http://www.murdoch-sutherland.com/Rtools/
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-ints.pdf
http://cran.r-project.org/doc/manuals/R-ints.pdf

