
 
 Audio Fingerprinting with Robustness to Pitch Scaling and Time Stretching 

 
Yesenia Díaz Millet 
Computer Engineering 
Jeffrey Duffany, Ph.D. 
Electrical & Computer Engineering and Computer Science Department 
Polytechnic University of Puerto Rico 

Abstract  Current audio fingerprinting systems 
are becoming increasingly robust against noise and 
filter distortions, however songs that have been 
pitch scaled and time stretched are still likely to 
pass undetected. This research focuses on 
expanding an existing landmark-based 
fingerprinting method to identify songs that have 
been pitch scaled and time stretched to escape 
current systems while still sounding natural to the 
human ear. Two feature extraction methods have 
been explored with the purpose of resolving each 
task individually. The constant Q spectrogram was 
used for feature extraction, instead of a 
conventional spectrogram, to identify songs that 
have been pitch scaled. Mel-frequency Cepstral 
Coefficients were used as features for the other 
task. The goal is to verify whether or not low-level 
spectral based features alone are capable of 
handling such transformations in a song instead of 
needing to use mid-level or high-level musical 
features as is the case with other Song ID methods. 

Key Terms  Audio Fingerprinting, Feature 
Extraction, Music Information Retrieval, Music 
Similarity. 

INTRODUCTION 

Technology advances over the years have 
changed the way people gather and obtain 
information.  The evolution of the Internet has 
made it possible for people to share files with 
others across the world.  Different industries have 
taken advantage of this in order to make their 
businesses boom.  One such industry is the music 
industry which has increased the amount of music 
available in digital form.  Video and audio sharing 
sites also make it possible for anyone to upload and 
share their own multimedia content.  This brings 

about different motivations for music similarity 
systems such as royalty rights management, 
personal database organization, music preference 
list creation, and playlist generation, among others. 

This research focuses more on audio 
identification for personal use as well as for royalty 
rights management and could even be useful for 
copyright infringement detection.  Because anyone 
with an account can easily upload their content to 
video or audio sharing sites, it is important to be 
able to identify the type of content to make sure 
that it does not violate others copyrights.  Such sites 
have ways for other users to report offending 
content but with the increase of users and content 
that is uploaded, they need to rely on more 
automated processes.  One solution suggested over 
the years has been the addition of digital 
watermarks to the content which makes identifying 
it easy provided that the watermark has not been 
tampered with.  Another solution suggested has 
been audio fingerprinting.  This uses the audio 
content itself without having to add an undetectable 
signature and it can be more robust when audio has 
been tampered with.  Both methods require a 
database to compare the query audio against but 
they each have their benefits and drawbacks.  
Gomes et al. [1] explains how both audio 
watermarking and fingerprinting work and what 
type of applications they are useful for. 

It is public knowledge that such automated 
systems for identifying content exist.  Some users 
will try to avoid detections by such systems by 
filtering or compressing the audio and even go as 
far as trying to alter the pitch and tempo of the 
audio.  Such modifications could alter the signature 
in watermarking systems so that the offending 
audio goes undetected and they can alter the quality 
of the audio so much that even the most robust 



audio fingerprinting systems cannot detect it.  But 
how much alteration should be detectable?  As 
Lebossé, Brun, and Pailles [2] stated in their paper 
“the fingerprint has to be robust against alterations 
as long as important perceptual properties of the 
original signal are not significantly altered”.  This 
means that alterations that make the signal 
unrecognizable to the human ear need not be 
detected especially if they are irreversible. 

As this research expands on an already existing 
audio fingerprinting system which is robust to noise 
addition and filtering alterations, the focus is 
mostly on songs that have had the pitch or tempo 
altered.  The motivation behind this is that people 
are still able to recognize a song even if the pitch or 
tempo has been altered.  This is especially true 
when listeners do not have a music background and 
are unable to remember the exact pitch or speed of 
the song.  Even broadcast music is often altered, 
although minimally, in such a way so that radio 
stations are able to play more songs in a given 
amount of time.  Therefore making an audio 
fingerprinting system robust to pitch scaling and 
tempo stretching is useful for the purpose of simply 
identifying a song for personal use as well as for 
royalty rights management. 

AUDIO FINGERPRINTING 

A fingerprint is usually used as a unique 
identifier of a person.  This idea has been around 
for a while but it is not limited to using a person’s 
fingerprints to identify them.  Multimedia 
fingerprinting takes from this idea in order to 
identify multimedia content, such as audio, images, 
or video, from a fingerprint.  As stated by Haitsma 
& Kalker [3], the main objective of multimedia 
fingerprinting is “an efficient mechanism to 
establish the perceptual equality of two multimedia 
objects: not by comparing the (typically large) 
objects themselves, but by comparing the 
associated fingerprints (small by design).” In the 
case of audio fingerprinting, a fingerprint is defined 
as “a compact content-based signature that 
summarizes an audio recording” [4]. 

Audio fingerprinting is one of the most specific 
tasks in MIR research.  It aims to identify an exact 
song from a query, preferably small, against a 
database of known songs.    Using a fingerprint 
brings about some advantages over using the entire 
audio content.  Some of these advantages are 
reduced memory storage requirements, efficient 
comparison, and efficient searching.  Based on the 
review by Cano et. al [4], the characteristics of a 
fingerprint can be summarized as follows: 
• Perceptual digest of the recording – It must 

retain enough information to be distinguishable 
among a large database. 

• Invariant to distortions – must be robust 
against distortions.  Depending on the usage of 
the system this constraint can be relaxed in 
order to detect intentional manipulations. 

• Compact – the fingerprint obtained must be 
small. 

• Easy computation – the fingerprint calculation 
should not be overly time-consuming. 

Some of these characteristics conflict with others 
which is why it is important to determine what is an 
acceptable trade off in order to find a good balance 
among them. 

Most fingerprinting methods use a hash 
function.  However, this hash function is not the 
same as a cryptographic hash.  In order for a 
cryptographic hash function to be effective, it must 
be resistant to collisions.  This means that no two 
objects should hash to the same value, even if the 
two objects are perceptually similar.  Conversely, 
for fingerprinting systems it is important that 
perceptually similar objects have the same hash 
value.  In the case of audio, it can be said that two 
objects are perceptually similar if they sound alike. 

TOOLS AND ALGORITHM USED 

This work uses as its base Dan Ellis’s Robust 
Landmark-Based Audio Fingerprinting [5].  The 
algorithm is Ellis’s own interpretation of the 
Shazam algorithm as described by Wang [6], which 
is robust against filtering and distortions, and 
implemented in the Matlab environment.  Other 



resources used include a constant Q spectrogram 
[7] and an MFCC [8] implementation by Dan Ellis. 
This section will provide a description of the main 
algorithm used as well as a description of the 
implementation of the constant Q transform and 
MFCCs and what they were used for in this work. 

Landmark-Based Audio Fingerprinting 

The landmark-based [5] approach relies on 
spectrogram peaks just like the Shazam [6] 
algorithm it is based on.  Using only the maximum 
peaks results in a reduction of a complicated 
spectrogram to a sparse set of coordinates which 
Wang calls “constellation maps”.  Pairs of spectral 
peaks within these constellation maps form 
landmarks and they should be the same for 
matching segments of audio.  Frequencies are 
paired when they are close enough to each other 
depending on a threshold.   

Before generating a spectrogram, a song is first 
re-sampled to 8000 Hz. The spectrogram uses a 
64ms window and a 32ms overlap which results in 
a 512 point Fast Fourier Transform (FFT) thus 
providing good spectral resolution for music.  The 
frequencies with the highest energy amplitudes are 
taken then paired into landmarks.  Some of these 
frequencies will become “seeds” or “anchor 
points”, that is to say that some frequencies will 
form more than one landmark pairs with nearing 
frequencies.   

Each landmark pair is represented as a four-
tuple containing information about two frequency 
and two time offset points, which are the rows and 
column values of the spectrogram as calculated in 
Matlab.  This information is saved as start time 
(T1), start frequency (F1), end frequency (F2), and 
time difference (DT).  The start time is the time 
column of the seed frequency point, start frequency 
is the frequency bin of the seed point, end 
frequency is the closest frequency point which 
forms a pair with the seed, and the time difference 
is the difference between the time corresponding to 
the end frequency and the start frequency. As 
shown in Figure 1.   

 
Figure 1 

Example of Landmarks within a Spectrogram 

Each landmark is then converted to a 20 bit 
hash value.  Since each song has multiple 
landmarks they also have multiple sub hash values, 
one for each unique landmark.  Each landmark is 
converted to the hash value by XORing the values 
of F1, frequency difference (DF), and DT.  The 
first 8 bits of the hash are composed of F1, the next 
6 bits are composed of DF, and finally the last 6 
bits are composed of DT.  The hash is then used to 
store the song ID and start time of a specific 
landmark in a type of inverted index hash table.  In 
order to find a match, landmarks are extracted from 
the query song and converted to unique hashes.  
The song ID and start time is obtained for every sub 
hash found within the table. The most repeated 
song ID with the most popular time offset from the 
beginning of the audio file until the seed point is 
found to be the match to the query.  Twenty songs 
are taken which are the closest matches to the query 
and are each quantified by modalDTcount, 
modalDT, and hashCount.  The value of modalDT 
is the most common time offset in the current song, 
modalDTcount is the count of how many landmark 
hashes between query and reference song have the 
same time offset, and hashCount is the count of the 
hashes with a specific song ID. 

The Constant Q Transform 

For this research, the Constant Q Transform 
was used as a replacement for the conventional 
spectrogram to help identify songs which have been 
pitch scaled.  Fenet et al. also use the constant Q 



transform in their audio fingerprint method [9] 
which is also based on Wang’s algorithm [6].  The 
reason for this is that the constant Q transform 
provides a log frequency representation of the 
sound which “gives a constant pattern for the 
spectral components.” [10] This makes it more 
straightforward to identify fundamental frequencies 
as well as makes it easier to identify the 
instrumentation within a song. 

The conventional spectrogram gives a linear 
frequency representation in which there is a 
constant separation between frequency bins.  In this 
representation a change in pitch is equivalent to a 
multiplicative change in frequency which will 
cause frequencies to be stretched or compressed.  
However, frequency bins are spaced 
logarithmically in the constant Q spectrogram 
therefore the frequency change becomes additive 
resulting in a vertical shift.  This means that in the 
conventional spectrogram a change of pitch by a 
factor of K results in the frequency bins changing to 
f*K while this change in the constant Q domain 
results in f + K. 

Table 1 contains a comparison of variables in 
the calculation of the discrete Fourier transform 
(DFT) and the constant Q transform. [10] In the 
constant Q domain the separation of the frequency 
bins depends on the number of bins b per octave 
chosen, where an octave is a series of 8 notes 
equivalent to 12 semitones in the musical scale.  
The frequency of the bins will vary from a 
minimum frequency fmin to an upper frequency 
which must be below the Nyquist frequency.   

Table 1 
Comparison of Variables Between DFT and CQT 

 Constant Q DFT 

Frequency fk = (21/b)kfmin k * Δf 

Window variable = N[k] = (SR*Q)/fk constant = N 
Resolution 
Δf 

Variable = fk/Q 
constant = 
SR/N 

fk/Δfk constant = Q = 1/(21/b- 1) variable = k 
Cycles in 
Window 

constant = Q = 1/(21/b- 1) variable = k 

   

Mel-frequency Cepstral Coefficients 

Mel-frequency Cepstral Coefficients (MFCC) 
is a widely used feature in speech recognition.  The 
MFCC has also gained usage in music classification 
systems because they are believed to encode 
timbral information which is the quality which what 
different types of sounds are produced from.  In 
2000 Beth Logan examined the effectiveness of 
MFCC features for music modeling. [11] This work 
demonstrates that the usage of MFCC is not 
harmful for representing a musical piece.   

Li and Chan [12] also experiment with the 
usage of MFCC for music modeling by using such 
features in music genre classification.  The 
objective is to determine whether MFCC are 
invariant to changes in key and tempo.  Their 
experiments show that while MFCCs are not 
invariant to key, they seem to be invariant to tempo 
which is valuable for this research. 

MFCC features represent a spectral envelope 
of the analyzed signal.  They attempt to capture the 
most perceptually important parts of the signal and 
are calculated as follows [11, 13]: 
• Convert to Frames – Audio is segmented into 

small frames. A window size of 20 to 40ms is 
typically used. 

• Calculate the frequency spectrum – The 
Fourier Transform is used to convert each 
frame from time domain into frequency 
domain.  

• Take the Log of the amplitude spectrum – The 
perceived loudness of a signal does not follow 
the linear scale.  It is approximately 
logarithmic.  

• Mel-scaling and smoothing – The signal is 
passed through a mel filter bank to emphasize 
the perceptually meaningful frequencies.  

• Compute the Discrete Cosine Transform of the 
logarithm – The DCT decorrelates the 
components of the Mel-spectral vectors and 
converts the frequency domain into a time 
domain signal.  

 



METHODS 

While the Shazam algorithm is robust against 
filtering and some distortions, it is not robust 
against pitch-scaling or time stretching.  Each 
problem was attacked individually in order to 
explore the effects of using the two different feature 
extraction methods discussed in the previous 
section.  The indexing hash of the existing method 
was also modified to better represent the features 
extracted from each task. 

Increasing Robustness to Pitch-Scaling 

The constant Q transform with 36 bins per 
octave, or 3 bins per semitone, was used as the 
method for feature extraction in order to increase 
robustness to pitch-scaling.  As with the original 
algorithm, pairs of spectral peaks are taken as 
landmarks but this time using the constant Q 
spectrogram instead of the FFT.  Figure 2 shows a 
comparison of the landmarks obtained with the 
conventional spectrogram (above) vs. the constant 
Q spectrogram (below).  On the conventional 
spectrogram, the landmark on the right is shrunken 
as the song’s pitch is lowered; therefore the 
frequency difference is different for both 
landmarks.  However, on the constant Q 
spectrogram the landmarks both have the same 
frequency difference despite the landmark having 
shifted down as the song’s pitch is lowered. 

 
Figure 2 

Comparison of the Spectrograms 
The images on the left are the original query audio and the 
images on the right have the pitch lowered by 4 semitones.  

The four-tuple representation of the landmark 
is preserved with the constant Q transform 
information.  In this representation two songs that 
are identical except in the pitch should have the 
same value for DF for matching landmarks.  
Despite this advantage, the value of F1 is still 
different with the pitch scaling.  For this reason it is 
necessary to change the definition of the hash 
function.   

In the original hash representation the most 
significant bits are comprised of F1 which is the 
seed or reference frequency of the landmark.  This 
presented a problem in identification when the 
song’s pitch was changed because the frequencies 
are also changed in this situation.  Nevertheless it is 
still important to maintain the information of this 
frequency so that two landmarks are not confused 
as being the same for having the same frequency 
difference DF.  A relatively effective solution to 
this problem was to move the reference frequency 
to the least significant bits of the hash value.  The 
resolution of F1 was also lowered in order to fit 
into the last 5 bits of the hash.  This was done by 
dividing by a power of 2 to shift the bits to the 
right.  Fenet et al. also divide this frequency, by a 
value of 6, in order to obtain a sub-resolved version 
of F1 that is invariant with the common pitch-
shifting ratios of less than 5%. [9]   Even with these 
changes the new hash value is still calculated with 
the same information of the landmarks but with the 
values rearranged.  A comparison of the calculation 
of the hash function for each method is shown in 
Table 2. 

Table 2 
Comparison of the Original and Altered Hash Calculation 

Original Hash Function  Altered Hash Function  
 
H =  
F1*2^12 + DF*2^6 +DT 
 
F1 – reference frequency 8 
bits 
DF – frequency difference 6 
bits 
DT – time difference 6 bits 

 
H = 
DF*(2^14)+DT*(2^6)+F1hat 
 
F1hat = F1/8 reference 
frequency 5 bits 
DF – frequency difference 6 
bits 
DT – time difference 6 bits 

 



While these changes helped increase 
robustness against pitch-scaling, they were only 
effective up to a change of 1 semitone in either 
direction which is about a 6% change in pitch.  The 
query was “multiplied” by varying its pitch shift in 
order to increase robustness when the pitch change 
is more significant.  This is achieved in the 
following steps: 
• Get all the hash values between those that have 

the frequency bits as all 0 or all 1. 
• Find the difference between the original hash 

and those with altered frequency. 
• Group the hash values by their difference, 

discarding those which do not have the same 
amount of sub-hashes as the original hash. 

• Find all the songs that match the original and 
pitch shifted query. 

Figure 3 demonstrates a simplified example of 
this process.  In this example the hash is only 8 bits 
long for demonstration purposes.  In this example 
the first step will be obtaining all values between 
XXXXXX00 to XXXXXX11 which for 125 these 
are the values between 01111100 and 01111111 
(124 ~ 127).  The same is done for all the sub-hash 
values in the song hash.  After the hash values are 
grouped by their difference we are left with two 
possible queries to find matches for, which results 
in the query being multiplied by two. 

 
Figure 3 

A Simplified Example 

Multiplying the query is an attempt at 
obtaining all the possible matches based on the 
different pitch changes which can be done to the 
query audio.  This final addition further helps in 
increasing the accuracy of the search when the 
query song has been pitch scaled. It is part of the 
process of redefining the identification of a match. 

With these changes in place, it was also 
necessary to increase the amount of landmarks 
obtained for each song.  There are two important 
factors that influence the number of landmarks, the 
density of landmarks and the spreading width of the 
masking skirt from each found peak.  These factors 
affect the number of local maxima found which are 
then paired into peaks.  The larger the value of the 
density and the smaller the value of the spreading 
width, the more landmarks are found.  This results 
in more robust matching but with a greater load on 
the database. 

Increasing Robustness to Time-Stretching 

The initial proposition for resolving this 
problem was to use the same hash function as was 
modified for increased robustness to pitch-scaling.  
In this situation, the value of DT have a 
multiplicative change, as opposed to an additive 
change as is the case of F1, so increasing the query 
presents a bigger problem.  We can try following 
the same steps as above but applying these changes: 
• Get all the values between those that have the 

middle, or time difference (DT), bits as all 0 or 
all 1. 

• Find the ratio between the original hash and 
those with altered DT. 

Even with these considerations, this 
implementation did not yield encouraging results 
when the tempo of the query songs was changed.  
On the other hand using the MFCC did provide 
favorable results when the song was time stretched. 

With the MFCC as radically different features 
from the landmarks, it was also necessary to 
redefine the hash.  The redefinition of this hash is 
loosely based on the method proposed by Haitsma 
& Kalker [3] which is a process similar to 
calculating MFCC and delta MFCC features but 
with the extra step of determining whether a ‘1’ or 
‘0’ bit is assigned depending on the sign of the 
energy difference.  In order to be able to use the 
same indexing table, the hash was redefined the 
following way: 



• The MFCC are calculated with a 64 ms 
window and 50% overlap returning 20 cepstra 
coefficients for each frame. 

• A 20 bit hash is taken from the cepstra of each 
frame as follows: 
 Positive values are changed to 1. 
 All other values are 0. 
 The binary string is converted to an integer 

which is the hash value. 

Using the MFCC as a feature does seem to 
increase robustness against time stretching attack.  
It is important to be cautious when using these 
features because MFCCs are not very robust against 
additive noise although some modifications have 
been suggested by researchers in order to increase 
this robustness. 

Redefining the Match 

In the original landmark-based approach, a 
match is obtained when there is a song found which 
has the most amounts of hash values equal to that 
of the query song.  This means that the hash values 
that match have to be exactly the same, however 
the hash of altered songs will be different. 

Since the pitch-scaling and time-stretching 
problems were both dealt with separately, each 
approach defines a match differently.  In the first 
approach, the query was multiplied to account for 
the possible differences in pitch.  On the other 
hand, the second approach using the MFCC did not 
require such a redefinition of the match because 
MFCC values would not change drastically when 
the query was time-stretched. 

The original algorithm returns 20 possible 
matches to the query song.  These songs are ranked 
based on how many landmarks match between the 
query and the reference.  When the query is 
multiplied, there are 20 possible matches for every 
query considered.  Returning to the hypothetical 
simplified example, there would be 40 possible 
matches for the query song since there are two 
possible queries.  These 40 songs are then sorted by 
the modalDTcount and the song with the highest 
count is the accepted match to the query song. 

In an attempt to combine both methods for 
simplicity in running the tests, the MFCC hash was 
also included among the multiplied queries.  This 
results in an increased accuracy in identification 
when the query is either pitch-scaled or time-
stretched.  However this combination required two 
different hash tables in order to take into account 
the differences in features extracted and so both 
methods are still being treated as separate and only 
joined for the identification step. 

RESULTS 

Testing has been done using the Magnatagtune 
database [14] which contains a variety of songs 
from different musical genres.  The songs come 
divided into multiple clips so the clips pertaining to 
the same song were pasted together in order to 
make up the search database.  The clips, which are 
seconds long, were used as queries in order to 
ensure that the algorithm could in fact work with 
short queries.   

For initial testing, 584 songs were used as the 
search dataset and 50 clips were used as query.  The 
query clips were altered using Sound eXchange 
(SoX).  The altered queries were tested with the 
original landmark-based approach and the altered 
approach.  Table 3 contains a summary of the 
experimental results using the original code with 
the default parameters. Tables 4 and 5 contain a 
summary of the results of the experiments using the 
same parameters for the density and spreading 
width.  This is to ensure that the amount of 
landmarks taken is not a factor that influences the 
comparison of the results.  

After each test run, the top 20 possible matches 
are saved in separate files for each of the query 
songs tested.  If the correct song is identified as the 
first match of the list, then it is considered to be a 
“perfect match”.  If the correct song is not the first 
on the list but it is contained within the list of the 
top 20 songs, then it counted as being “within top 
20”.  The “within top 20” column does not account 
for “perfect matches”, therefore two dashes “--” 
were used when there was no count for “within top 



20”.  Finally, if the correct song is not within the 
list of the top 20 possible matches then it is counted 
as an “incorrect match” or a false positive. 

Table 3 
Results with the Original Code Using the Default Parameters 

for Density and Spreading Width 

 Perfect 
Match 

Within 
Top 20 

Incorrect 
Match 

Unaltered query 100% -- 0% 
Pitch raised 4 
semitones 6% 10% 84% 
Pitch raised 3 
semitones 12% 12% 76% 
Pitch raised 2 
semitones 14% 14% 72% 
Pitch raised 1 
semitone 32% 16% 52% 
Pitch lowered 1 
semitone 34% 20% 46% 
Pitch lowered 2 
semitones 14% 16% 70% 
Pitch lowered 3 
semitones 10% 16% 74% 
Pitch lowered 4 
semitones 10% 8% 82% 
Pitch lowered 10 
semitones 0% 10% 90% 
Tempo Change  
20 % 32% 44% 24% 
Tempo Change 
15% 38% 40% 22% 
Tempo Change 
10% 68% 30% 2% 
Tempo Change  
-10% 68% 24% 8% 
Tempo Change 
 -15% 52% 28% 20% 
Tempo Change  
-20% 30% 38% 32% 
Speed Change 
5% 4% 6% 90% 
Speed Change  
-5% 4% 8% 44% 

The results on Tables 4 and 5 show that an 
improved accuracy was achieved with the 
modifications performed on the landmark-based 
algorithm.  The pitch was changed up to 4 
semitones in either direction because a larger 
change is easily recognizable by the human ear 
even without the original song for comparison.  
Even a change higher than 2 semitones is easily 
recognizable by the human ear but we still wanted 
to test the limits of the algorithm.  The tempo was 
changed up to 20% for the same reason, to keep the 
query within the limits of the alterations being 
recognizable by the human ear. 

The use of the CQT and the modified hash with 
the multiplied query allowed for identification of 
98% of the queries when the query song’s pitch was 
lowered down to 4 semitones.  Even lowering the 

pitch down to 10 semitones still achieves a correct 
identification of 76%.  Accuracy is much lower 
when the query’s pitch has been raised but the 
results are still an improvement over the original 
algorithm.  This decrease in accuracy when the 
pitch is raised is probably due to F1 being limited 
to 5 bits which means larger frequency bins may be 
lost in the process if they cannot be properly 
represented in 5 bits. 

The use of the MFCC as a feature also 
increases the identification when the query song’s 
tempo has been altered although the unaltered 
algorithm does a good job with an increase in the 
amount of landmarks taken.  The identification is 
100% when the tempo is altered up to 15% and 
only drops to 98% when the tempo is altered up to 
20%.  Despite this good identification rate, the 
MFCC features alone are not enough to make the 
identification robust against noise and they are also 
not robust to pitch changes.  

Table 4 
Results with the Original Code Using Density of 20 and 

Spreading Width of 15 

 Perfect 
Match 

Within 
Top 20 

Incorrect 
Match 

Unaltered query 100% -- 0 
Pitch raised 4 
semitones 8% 28% 64% 
Pitch raised 3 
semitones 4% 36% 60% 
Pitch raised 2 
semitones 26% 18% 56% 
Pitch raised 1 
semitone 40% 14% 46% 
Pitch lowered 1 
semitone 42% 12% 46% 
Pitch lowered 2 
semitones 24% 20% 56% 
Pitch lowered 3 
semitones 14% 22% 64% 
Pitch lowered 4 
semitones 8% 26% 66% 
Pitch lowered 10 
semitones 2% 20% 78% 
Tempo Change  
20 % 70% 20% 10% 
Tempo Change 
15% 94% 4% 2% 
Tempo Change 
10% 100% -- 0% 
Tempo Change 
 -10% 100% -- 0% 
Tempo Change 
 -15% 86% 6% 8% 
Tempo Change 
-20% 72% 14% 14% 
Speed Change 
5% 4% 38% 58% 
Speed Change 
 -5% 4% 40% 56% 



Table 5 
Results with the Altered Code Using a Density of 20 and 

Spreading Width of 15 

 Perfect 
Match 

Within 
Top 20 

Incorrect 
Match 

Unaltered query 100% -- 0% 
Pitch raised 4 
semitones 18% 24% 58% 
Pitch raised 3 
semitones 14% 32% 54% 
Pitch raised 2 
semitones 70% 4% 22% 
Pitch raised 1 
semitone 98% -- 2% 
Pitch lowered 1 
semitone 100% -- 0% 
Pitch lowered 2 
semitones 100% -- 0% 
Pitch lowered 3 
semitones 100% -- 0% 
Pitch lowered 4 
semitones 98% -- 2% 
Pitch lowered 
10 semitones 76% -- 24% 
Tempo Change 
20 % 98% 2% 0% 
Tempo Change 
15% 100% -- 0% 
Tempo Change 
10% 100% -- 0% 
Tempo Change 
 -10% 100% -- 0% 
Tempo Change 
 -15% 100% -- 0% 
Tempo Change 
 -20% 98% 2% 0% 
Speed Change 
5% 74% 14% 12% 
Speed Change 
 -5% 74% 14% 12% 

A small speed change was also performed on 
the queries to verify how well the altered methods 
performed in this case.  Correct identification 
increased from 4% to about 70% with the 
alterations.  However the identification was done 
thanks to the alterations for better pitch 
identification and the usage of MFCC features did 
not help improve identification in the case of a 
speed change. 

CONCLUSION 

  The modifications done to the algorithm 
considerably improved identification when the 
targeted modifications were performed on the query 
audio.  While the modifications done for increasing 
robustness to pitch scaling work when the query’s 
pitch has been lowered, the system loses accuracy 
as the pitch is raised.  However, the modifications 
accomplish their purpose as songs that have the 

pitch altered too much become noticeable to the 
human ear thus completely distorting the song in a 
negative way.  The use of MFCC features also 
proved to be effective for identifying queries that 
have been time stretched.  This further 
demonstrates the invariance of MFCC features 
against tempo transformations.   

Because the methods are not truly combined 
the accuracy is lost when the query has had the 
speed altered which means both a change in pitch 
and tempo.  Running both methods at the same time 
with two hash tables also increases the time it takes 
to calculate the features as both the constant Q 
spectrogram and MFCC are more computationally 
expensive than calculation of a conventional 
spectrogram.  Still, identification time is within 5 
seconds in the Matlab environment and so is an 
acceptable trade off for the increased accuracy.  
Despite this, it is important to find a way to more 
efficiently combine both methods in order to 
increase speed and accuracy when a song’s speed is 
changed. 

ACKNOWLEDGEMENTS 

The author would like to acknowledge Dr. Juan 
Torres for his contribution and guidance during the 
development of this work. The author would also 
like to offer thanks to Dr. Jeffrey Duffay and Prof. 
Arturo Geigel who contributed ideas and 
encouragement to continue with this research. 
Special thanks to Dr. Alfredo Cruz for the 
fellowship opportunity under contract/grant number 
NRC 27-10-511. 

REFERENCES 
[1] Gomes, L. d., Cano, P., Gómez, E., Bonnet, M., & Batlle, 

E. (2003). Audio Watermarking and Fingerprinting: For 
Which Applications? Journal of New Music Research , 32 
(1), 65-81. 

[2] Lebossé, J., Brun, L., & Pailles, J. C. (2006). A Robust 
Audio Fingerprint for Digital Rights Management. 

[3] Haitsma, J., & Kalker, T. (2002). A Highly Robust Audio 
Fingerprinting System. In Proc. ISMIR (Vol. 2, pp. 13-17). 



[4] Cano, P., Batlle, E., Kalker, T., & Haitsma, J. (2005). A 
Review of Audio Fingerprinting. The Journal of VLSI 
Signal Processing , 41, 271-284. 

[5] Ellis, D. (2009). Robust Landmark-Based Audio 
Fingerprinting. Retrieved from Laboratory for the 
Recognition and Organization of Speech and Audio - 
LabROSA: 
http://labrosa.ee.columbia.edu/matlab/fingerprint/ 

[6] Wang, A. (2003). An industrial strength audio search 
algorithm. In Proc. Int. Conf. on Music Info. Retrieval 
ISMIR (Vol. 3). 

[7] Ellis, D. (2004). Spectrograms: Constant-Q (Log-
frequency) and conventional (linear). Retrieved from 
Laboratory for the Recognition and Organization of 
Speech and Audio - LabROSA: http://labrosa.ee. columbia. 
edu/matlab/sgram/ 

[8] Ellis, D. (2005). PLP and RASTA (and MFCC, and 
inversion) in Matlab. Retrieved from Laboratory for the 
Recognition and Organization of Speech and Audio - 
LabROSA: http://www.ee.Columbia.edu/~dpwe /resources 
/matlab/rastamat 

[9] Fenet, S., Richard, G., & Grenier, Y. (2011). A Scalable 
Audio Fingerprint Method With Robustness to Pitch-
Shifting. In Proceedings of the 12th International 
Conference on Music Information Retrieval (ISMIR). 

[10] Brown, J. (1991). Calculation of a constant Q spectral 
transform. The Journal of the Acoustical Society of 
America , 89, 425. 

[11] Logan, B. (2000). Mel frequency cepstral coefficients for 
music modeling. In International Symposium on Music 
Information Retrieval (Vol. 28, p. 5).  

[12] Li, T., & Chan, A. (2011). Genre classification and the 
invariance of mfcc features to key and tempo. Advances in 
Multimedia Modeling , 6523, 317-327. 

[13] Bala, A. (2010). Voice Command Recognition System 
Based on MFCC and DTW. International Journal of 
Engineering Science and Technology, 12, 7335-7342. 

[14] Law, E., & Von Ahn, L. (2009, April). Input-agreement: a 
new mechanism for collecting data using human 
computation games. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems (pp. 
1197-1206). ACM.  

 

 


