
Development of software support tools for social work professionals

Elliot Díaz

Computer Engineering

Othoniel Rodríguez, Ph.D.

Department of Computer Engineering

Polytechnic University of Puerto Rico

Abstract  The objective of this project was to

identify the general needs of social work

professionals and use the software engineering

process to develop these much needed software

support tools. The primary needs identified were

storage and fast retrieval of data, inventory

management, schedule management, and security.

The Waterfall Model of software development was

used throughout the project. A detailed

requirements and design analysis were performed.

Microsoft’s VB.,ET programming environment

and Oracle’s MySQL database were chosen for the

project. Unified Modeling Language's (UML) use

cases, class diagrams, and relational model

diagrams were used to aid in the development

process. The process was documented following

IBM's Rational Unified Process (RUP)

documentation style. The source code was fully

documented tested. The tests performed included

configuration, performance, load, functional and

database integrity testing. All the tests were

successful in the sense that either no defects were

found or the defects found were successfully

removed.

Key Terms  Social work, software

development, software engineering, Waterfall

Model.

I�TRODUCTIO�

These Social work professionals have great

need for software support tools. There are virtually

no affordable or open-source software solutions to

handle their client’s cases. All social workers

contacted before beginning this project have stated

that they rely solely on the Microsoft’s Word and

Excel products to handle their needs. Additionally,

many social worker offices also manage small

inventories of items for their “clients”, and most

social workers use some form of appointment

handling system. The problem deepens when you

add that most social worker offices have old

computers with limited resources (processor speed,

memory size, hard disk size, etc). Following the

software engineering process a software solution

could be developed that could help social workers

keep records of their cases, inventory and

appointments, in a centralized database, and at the

same time be light-weight enough to quickly

perform its functionalities on an old computer with

limited resources.

A social work center in Dorado, PR was

selected to serve as example for this project. The

center is called CEDEM (Centro de Desarrollo

Humano de la Mujer y la Familia) and is a social

work office focused on helping women and families

in times of need.

SOFTWARE REQUIREME�TS

The Social Worker Assistance System's

(SWAS) main objective is to store all data

regarding the participants (the clients who require

the center’s assistance) that is currently only being

kept in paper. The main objective or feature is

storing the participant’s data. The data would

include: profile, background, family, situation,

services required, and social worker’s analysis.

Additionally, it should be capable of quickly

searching for a participant’s records using a variety

of fields, such as name, telephone number, and

record number. The system should also be secured

by a username/password security subsystem.

Some additional but not critical requirements

include keeping a calendar of CEDEM’s activities,

and keeping a database of CEDEM’s inventory and

how it is being managed.

SWAS requires one computer behaving as a

server which must have the MySQL database

installed and configured. A Linux server would be

the recommendation, as MySQL database is native

to Linux, but any Windows Server edition or

Windows XP Professional or above could also be

used. The server should have at least 512 MB

memory and at least 1 GB of free hard drive. The

client computers running the tool itself must be

connected through a LAN connection to the server

and would be required to have a Windows

operating system with its version being Windows

XP or above with the 2.0 .NET framework or

above. The clients should have at least 512 MB of

memory.

Some constraints that were taken into

consideration for the project include the following.

CEDEM only has available old computers with

limited memory and Windows operating systems,

so the software had to be lightweight and

compatible with Windows XP. One computer must

serve the database for the support tool and the

database must be MySQL to keep CEDEM free of

database licensing hassles. Most of CEDEM’s

employees only speak and read Spanish, so the

software’s text must be fully written in Spanish.

The data must be secured, which means the SWAS

and its database must be secured by a system of

user/password authentication. The software will be

delivered with its full code to CEDEM so that they

may contact any programmer to further enhance the

tool.

As a non-functional requirement, SWAS

should never delete entries in the database; instead

a system of expiration of entries should be used.

Each entry to the database should expire the

previous entry and insert a new entry. This could be

achieved by creating a compound primary key that

includes the date of the change. This would make

analyzing changes to the database much easier for

the DBA (database administrator), and would make

it possible to recuperate data erroneously expired.

Since the user-name is to be inserted with each

change as specified in section 5.3 (Security

Requirements), then on each database entry the

DBA could easily view which users performed

which changes. This simple requirement makes

systems auditing much easier and reliable.

System Features

As mentioned before, the system features

required for the project include: Participant Record

Management, Security System, Inventory System,

and Calendar System.

The Participant Record Management feature

was a high priority feature that refers to the ability

to store, retrieve, update, and print a participant’s

record. The functional requirements include:

• Creating a search query and fetch matching

data from the database.

• Fetching complete participant data from the

database.

• Creating a new participant record in the

database.

• Updating participant data in the database.

• Displaying participant data in forms.

• Sanitation of user inputs before storing in the

database.

• Alerting user of any errors.

• Creating/appending to log (text) file.

• Writing detailed error data to log file.

The Security System feature was also a high

priority feature that refers to the ability to create,

update, and remove SWAS users, and verify their

username and password before granting access to

the system and participant’s data. The functional

requirements include:

• Verifying the existence of a specific user-name

in the database.

• Verifying the existence of a specific

user/password combination in the database.

• Verifying that the current password is correct

when trying to change it.

• Verifying that the new password and its

confirmation are equal.

• Displaying user’s data.

• Updating the user’s data.

• Displaying a list of users.

• Displaying a list of users containing within

their data specified criteria.

• Invalidating a specific user in the database.

The Inventory System feature was a medium

priority feature that refers to the ability to create an

inventory lot, and add or remove items to or from

that lot. The feature would keep record of the

amount of items in the lot, to whom they are given

and who donates them to CEDEM. The functional

requirements include:

• Displaying a list of inventory lots.

• Verifying the size of a particular lot.

• Creating a new lot category.

• Creating a new inventory lot.

• Recording lot transaction data.

• Decreasing the amount of items in a lot.

• Increasing the amount of items in a lot.

• Displaying a list of lots containing within their

data specified criteria.

The Calendar System feature was also a

medium priority feature that refers to the ability to

schedule events at a date and time. The feature

would also remind the user when the event is near,

and if he/she tries to overlap different events. The

functional requirements include the following:

• Displaying a list of all events for a user.

• Displaying a list of the user’s current date’s

events in the main window.

• Displaying a list of events containing specific

criteria.

• Automatically refreshing the list of events.

• Alerting the user when an event is imminent.

• Writing to a text file a list of events.

• Inserting an event into the database.

• Invalidating a specific event in the database.

SOFTWARE DESIG�

This section presents the architecture as a

series of views; use case view, logical view,

process view and deployment view. These views

are based on an underlying Unified Modeling

Language (UML).

Use-Case View

This section describes the set of use cases that

represent some significant, central functionality. It

also describes the set of use cases that have a

substantial architectural coverage or that stress or

illustrate a specific, delicate point of the

architecture.

The participant record management system's

use case (Figure 1) enables a user to create and edit

participant records. At the moment of the record’s

creation the participant’s profile containing his/her

primary data must be entered, and optionally the

user may enter the participant’s family data,

background, current situation, and desired services.

These optional inputs may also be entered when

editing the participant’s record. The edit record

option would always use the record searching

feature of the application.

Figure 1

Participant Record Management Use Case

The security system's use case (Figure 2)

enables a user to create another user, edit a user’s

data, which may include changing his/her

password, and to delete another user account, which

has as a requirement the activity of searching for

the user to be removed.

Figure 2

Security System Use Case

The inventory system's use case (Figure 3)

enables the user to create an inventory lot, and

deposit or withdraw items from an inventory lot.

The lot creation function would optionally involve

creating a new type or category of inventory (e.g.

women’s clothes, toddler’s toys, etc.). Withdrawing

and depositing items to lots would involve using a

searching for a lot feature, and would both update

the quantity of items in the lot.

Figure 3

Inventory System Use Case

The calendar system's use case (Figure 4)

enables the user to create and cancel events, and to

view their current scheduled events. Of course, to

cancel an event the searching feature must be used

to first identify the event to be canceled.

Figure 4

Calendar System Use Case

Logical View

This section presents a description of the

logical view of the design. Here are described the

most important classes, and their organization in

service packages and subsystems.

SWAS’s logical view consists of three main

packages: the user interface management package,

the input and output management package, and the

database management package (See Figure 5).

The user interface management package

contains all the forms the users will actually view

and interact with. These would include the forms

for login, user creation, maintenance and deletion,

participant record creation, participant background,

family data, current situation and needed services

data, inventory lot creation, item deposit and

withdrawal, event creation and cancellation, and

calendar view. This package would also include the

simple logical code pertaining to the individual

form’s functionality.

The input and output management package

contains classes with all the functions required to

interact with the client’s file-system to export data

and write the log files.

The database management package contains

classes with all the functions required to interact

with the database server. This would include

opening and closing connections, creating and

running update, insert, and select queries in the

database and returning the responses in an

appropriate format.

Figure 5

Package Diagram

Process View

This section describes the tasks (processes and

threads) involved in the system's execution, their

interactions and configurations.

In SWAS’s case, the application will be using a

simple client/server configuration, in which the

server will store the data and the client will perform

all of the logical processes. As specified in the

Software Requirements, the client is required to be

lightweight, and is not expected to execute

strenuous operations, so the client would be

configured to process its commands on a single

thread, one process at a time. The server however

would be configured to process all the database

transactions on a multithreaded level, as to allow on

the very least 10 clients to process transactions

concurrently. The internal processes of the server

would be automatically handled by the MySQL

database.

Deployment View

This section describes the physical network

configuration, including the processes that would

run on each node.

In the Deployment diagram depicted in Figure

6, can be viewed the two types of possible

connections. The network would be a simple

client/server configuration, over an office local area

network, or alternatively over the Internet. The

interface would initiate a connection to the

Database Server through the Database Management

Package. This package would then initiate

communications with the Database Server through

a TCP/IP connection. For the connection to work

over the Internet, the Database Server would simply

require a Static IP address over the Internet. The

internal processes carried out in either an Client PC

or External Client PC would be identical.

Figure 6

Deployment Diagram

Size and Performance

The MySQL database has been reported to

having performed on benchmarks several thousands

of transactions per minute, quite more than will be

necessary for the operation of SWAS. On the other

hand, CEDEM’s best candidate for a server

computer is a Windows XP Professional machine,

which only allows 10 concurrent connections.

Seems like a small number of connections, but it

shouldn’t be a problem since they do not plan on

using the software over the Internet and the center

has less than 10 other computers available and there

are only a few employees working on the center at

any one time. The software is designed in a

minimalist fashion, only performing the functions

stipulated by the Software Requirements

Specifications. It does not have any additional

graphical requirements, and does not perform

multiple transactions concurrently on any single

client. Overall SWAS would perform far beyond

the needs specified in the Software Requirements.

Quality

The design conforms to the quality

requirements stipulated in the Software

Requirements in the following manner:

• The software’s text is to be written in Spanish.

English was used in this text to be uniform in

the written communication.

• The files to be written by the Output Layer

through the Input/Output Management Package

are to be comma delimited text files. On

machines with Microsoft Office installed, these

files are configured to be opened by Microsoft

Excel. On any machine these files can be

edited by Notepad, WordPad or any other text

editor.

• The Operational Layer applies a flexible

configuration of the data entered to the User

Interface Management Package. The only data

required for a participant record to be opened is

the main participant’s profile data, and only a

small set of the participant’s profile data is

required. The software does not require any

additional participant’s data to be entered in

any particular order.

TEST PLA�

The test plan supports as its main objectives

identifying existing project information and the

software components that should be tested, listing

the recommended Requirements for Test (high

level), recommending and describing the testing

strategies to be employed, identifying the required

resources and provide an estimate of the test efforts,

and finally listing the deliverable elements. The

following functional requirements were identified

as targets for testing: database test, functional test,

user interface test, load test, security and access

control test, and configuration test.

Database testing serves to verify that SWAS’s

user credentials can be entered and retrieved, that

the participant’s data can be entered, retrieved and

updated, that the categories can be entered and

displayed, that the inventory lots can be entered,

and updated, that the schedule can be entered, and

displayed, and that changes to the participant’s data

can be audited.

Functional testing serves to verify that users

can create a participant profile and locate it

afterwards, that users can export the participant’s

data to files that can be opened by text editors such

as Microsoft’s Word or Excel, that users can create

an inventory lot and locate it afterwards to perform

deposits and withdrawals, and that users can create

scheduled events, and the events would be

displayed in a manner that alerts the user.

User interface testing serves to verify proper

navigation through all use cases, and that each UI

panel can be easily understood.

Load testing serves to verify the response time

when loaded with 10 logged users, and when the 10

users access the database simultaneously.

Security and access control testing serves to

verify that non-authorized users cannot access the

system’s data, that users can be created and

removed from the system, that users can change

their passwords, and that a list of current user’s can

be accessed.

Configuration testing serves to verify proper

functional operation using the Operating Systems

specified in the Software Requirements: Windows

XP SP3 or Windows Vista SP2 32 and 64-bit.

Test Strategy

The test strategy presents a recommended

approach for testing the software application.

Previously was described what would be tested;

now is described how it will be tested.

The objective of the data and database integrity

testing was to ensure the database access methods

and processes function properly without data

corruption. The test involved manually invoking

each database access method and process, seeding

each with valid and invalid data (or requests for

data). It would also involve inspecting the database

to ensure the data has been populated as intended,

and reviewing the returned data to ensure that the

correct data was received. The test would be

completed when all database access methods and

processes functioned as designed without any data

corruption.

The objective of function testing was to ensure

proper application navigation, data entry,

processing and retrieval. The test involved

executing each function using valid and invalid data

to verify the expected results with valid data, an the

appropriate error with invalid data. The test would

be completed when all functions have been

executed and all the identified defects were

addressed.

The objective user interface testing was be to

verify that navigation through the target of the test

properly reflects the requirements, including

window to window, field to field and access

methods (tab key and mouse movements). Another

objective was to verify that object characteristics

such as menus, size, position, state, and focus

conform to standards. The test involved navigating

and verifying the objects in each application

window. The test would be completed when each

window was properly verified and within

acceptable standards.

The objective of load testing was to verify the

performance behavior of designated functionalities

under normal anticipated workload and worse

anticipated workload. The test would be performed

by simulating execution of developed functions

increasing the number of transactions or the number

of iterations of each transaction. It would be

performed on one and on multiple client machines.

The test would be completed when successful

completion of the functions is attained without any

failures and within expected time.

The objective of the security and access control

testing would be to verify that only users with

permission to access the application are permitted

to access them. The test would be performed by

attempting to gain access to the application with

permitted users and non-permitted users. The test

would be completed when only the users permitted

to access the application can access it.

The objective of the configuration testing was

to verify that the client application functions

correctly on the prescribed client PCs. The test

would be performed by performing several

functions that interact with the PC’s applications.

The test would be completed when the functions

combining the application and the PC’s

applications are completed without failure.

TEST RESULTS

The tests defined in SWAS's Test Plan where

performed according to the strategy indicated. All

the tests were successfully completed in terms of

the functionalities and test requirements defined. In

most cases, no defects were found, and in the cases

where defects were found, they were promptly

corrected.

The data and database integrity tests were

performed to verify the system’s security, the

participant’s data, the categories, the inventory, and

the scheduling data integrity. The tests involved

manually invoking, inserting and updating the data

including acceptable and unacceptable values. All

the tests performed were successful in the sense

that all unacceptable data triggered appropriate

error messages, protecting the integrity of the data;

whilst acceptable data was successfully inserted to

the database.

The functional tests were performed to verify

the system’s functionalities in the areas of creating

and locating a participant’s profile, exporting a

participant’s profile to an external test file, opening

the text file with Word or Excel, creating and

finding inventory lots, depositing and withdrawing

items from an inventory lot, and scheduling events.

The tests involved executing each function with

valid and invalid data to ensure that the appropriate

actions or error messages where activated by the

software. All the tests performed were successful in

the sense that all unacceptable data triggered

appropriate error messages; whilst acceptable data

was successfully inputted to the system. All the

functionalities performed as expected.

The user interface tests were performed to

verify that the system’s user interface panels could

be easily understood. The tests involved navigating

through each user interface panel verifying that

they properly reflected the requirements of the

particular use case, and that all the elements within

the panels conformed to a set of standards. The

tests performed were successful in the sense that

the user interface panels reflected properly the

functionalities they addressed. The few defects

found were related to the aesthetics of the panels

and were corrected in order to maintain a standard

look and feel throughout the application.

The load tests were performed to verify that the

system’s performance under normal and worse

possible anticipated workloads. The tests involved

opening at least 10 instances of the application in

both host and client computers and performing

various transactional functions that access the

database. The objective was to verify that the

response time was acceptable under normal and

worse possible anticipated workloads. The tests

performed were successful in the sense that, as

expected, the response time was normally under

one second for each transaction performed. The test

was performed over a wireless network with a

maximum 54Mb/s speed, which is in fact less than

the recommended LAN connection for the

software. For the purpose of this project and this

test the worse possible workload was just 10

concurrent users, but further tests are recommended

with at least 50 concurrent instances over a

100Mb/s LAN connection.

The security and access control tests were

performed to verify that non-authorized users could

not access the system, that users could be created

and eliminated from the system, that users could

change their passwords, and that a list of all the

current users could be accessed. The tests involved

creating and deleting several users, attempting to

access the system with and without proper

credentials, changing the passwords of several users

and confirming the new password by exiting and

re-entering the system, and producing and

exporting a list of users to an external format. The

tests performed were successful in the sense that

users were successfully created and removed from

the system, their data and passwords was

successfully updated and validated upon exiting

and re-entering the system, a list of current users

was created and exported to a comma-delimited

file, and finally upon attempting to access the

system with and without the proper credentials,

access was granted only with the proper credentials.

The configuration tests were performed to

verify that the client could be installed and operated

on Windows XP, Windows Vista 32-bit and

Windows Vista 64-bit. The tests involved installing

the client software on several clients with the

indicated operating systems, and performing all the

application’s functions. The tests performed were

successful in the sense that the client was installed

and configured to run on several machines with the

specified operating systems, and all the functions

were verified to be running appropriately.

CO�CLUSIO�

The problem specified at the beginning of this

article was to be solved by using the software

engineering process to develop a solution capable

of storing, updating and retrieving social work

cases, inventory data and appointment data in a

centralized database, and at the same time being

capable of performing these functionalities on a

computer with limited resources (processor speed,

memory size, hard drive size, etc). Throughout this

article is demonstrated the software engineering

process being carried out for this purpose. The

software’s requirements and a design capable of

fulfilling the requirements are here summarized.

The design’s development can be seen in the source

code, and in the database’s schema, which were not

included for practical purposes. A test plan was

developed that would verify that the software

could, in fact, fulfill all of the requirements.

Finally, all the tests performed on the software were

successful in either proving that the software

fulfilled all the requirements or brought to the

surface any deficiencies which were immediately

resolved. The only possible conclusion is that the

problem as it was defined has been completely and

successfully resolved.

REFERE�CES

[1] Connolly, T. and Begg, C., Database Systems: A Practical

Approach to Design, Implementation, and Management,

Third Edition, Addison Wesley, 2001.

[2] Horstmann, C., Object-Oriented Design and Patterns,

Second Edition, Wiley, 2005.

[3] Miller, R., “Practical UML: A Hands-On Introduction for

Developers”, http://edn.embarcadero.com/article/31863,

2009.

[4] MySQL, “MySQL 5.1 Reference Manual”,

http://dev.mysql.com/doc/refman/5.1/en/index.html, 2009.

[5] Pratt, P. and Last, M., A Guide to SQL, Eighth Edition,

Course Technology, 2008.

[6] Rational, “Rational Unified Process: Best Practices for

Software Development Teams”, Rational Software White

Paper, Rev 11/01.

[7] Rational Software Corporation, http://www.ts.mah.se/

RUP/RationalUnifiedProcess/wordtmpl/index.htm, 2009.

[8] Shneiderman, B. and Plaisant, C., Designing the User

Interface: Strategies for Effective Human-Computer

Interaction, Fifth Edition, Addison Wesley, 2009.

