Zur Kurzanzeige

dc.rights.licenseAll rights reserveden_US
dc.contributor.advisorDuffany, Jeffrey
dc.contributor.authorLedain Gentillon, Reginald
dc.date.accessioned2022-10-28T14:56:18Z
dc.date.available2022-10-28T14:56:18Z
dc.date.issued2022
dc.identifier.citationLedain Gentillon, R. & Duffany, J. (2022). At-Risk Students Prediction Using Machine Learning. Politechne, 21(2), 28-32.en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12475/1748
dc.descriptionVolumen 21, Número 2, 2022en_US
dc.description.abstractThis article intends to discover how machine learning can be used to predict at-risk students during the school year. Different algorithms were tested within a common framework to compare their accuracy and their interpretability. Using some education expert knowledge, we examined each model relevance in relation to the most important features they used. Attendance, language proficiency and interim test completion were found to be very deterministic in the models prediction capabilities; not a surprise but a validation of the adequacy of the technology for this difficult task.en_US
dc.language.isoenen_US
dc.publisherPolytechnic University of Puerto Ricoen_US
dc.relation.ispartofRevista Politechne;
dc.relation.ispartofseriesRevista Politechne: Ingeniería;
dc.relation.haspartSan Juanen_US
dc.subject.lcshMachine learningen_US
dc.subject.lcshPrediction of scholastic successen_US
dc.subject.lcshPolytechnic University of Puerto Rico--Graduate students--Researchen_US
dc.titleAt-Risk Students Prediction Using Machine Learningen_US
dc.typeArticleen_US
dc.rights.holderEsta Junta Editorial y la Universidad Politécnica de Puerto Rico hacen constar y reconoce que los autores de los artículos, obras literarias y artísticas publicadas en esta Revista Politechnê, se reservan enteramente los derechos de autor y de publicación de los mismos para los efectos de cualquier eventualidad literaria, publicitaria o de cualquier índole.en_US


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

  • Revista Politechnê
    Revista multidisciplinaria de la Universidad Politécnica de Puerto Rico (Vol. 1 | Núm. 1 | Junio 1991 - Vol. 22 | Núm. 1 | 2024

Zur Kurzanzeige