
Offensive Security Using Burp Suite

José Torres

Master of Computer Science – IT Management and Information Security

Dr. Jeffrey Duffany

Department of Electrical and Computer Engineering

Polytechnic University of Puerto Rico

Abstract ⎯ Burp Suite is a tool used by most

professional web page pen tester. It has many

features to help the pen tester do his job. The tool

help students learn about different type of

vulnerabilities like web cache poisoning, SQL

injection, cross-site scripting (xss), and clickjacking

attacks.

Key Terms ⎯ ethical hacking, Burp Suite,

offensive security, web pen testing.

INTRODUCTION

Burp Suite is a collection of tightly integrated

tools that allow effective security testing of

modern-day web applications [1]. Burp Suite is

written in Java Language so basically the tool is

cross-platform, Kali Linux already have Burp Suite

installed on their OS image. There are two version

of the tool: Community version which is free, and

the professional version which cost $399 per year,

per user. The main differences between the free and

the pro version are:

• Burp Scanner

• The ability to save and restore your work

• Engagement tools, such as Target Analyzer,

Content Discovery, and Task Scheduler

All other tools like intercepting traffic, brute

forcing, etc., are available on the free version but

work cannot be saved. However, the community

version is great to start learning.

Burp Suite was used to test, evaluate its

different feature, and the advantages on using Burp.

1. WEB CACHE POISONING USING BURP

SUITE

Web cache poisoning is an advanced technique

whereby an attacker exploits the behavior of a web

server and cache so that a harmful HTTP response

is served to other users. This technique involves

two phases, the attacker must work out how to elicit

a response from the back-end server that

inadvertently contains dangerous payload. Once

successful, the attacker must be sure that their

response4 is cached and subsequently served to the

intended victims [2].

Web ache sit between the user and the server,

were they save and serve copies of certain

responses (see Figure 1.1).

Figure 1.1 View of Three Users Fetching the Same

Resource One After The Other [2].

1.2 Lab: Web Cache Poisoning With an

Unkeyed Header

A lab from portswigger.com academy web

poisoning section called “Lab: Web cache

poisoning with an unkeyed header” was used.

Solution for completing the lab using [2]:

• With Burp running, load the website's home

page.

• In Burp, go to "Proxy" > "HTTP history" and

study the requests and responses that you

generated. Find the GET request for the home

page and send it to Burp Repeater. The result

view is shown in Figure 1.2.

Figure 1.2

Get Request Page

• Add a cache-buster query parameter, such as

“?cb=1234”. See Figure 1.3.

Figure 1.3

Editing Cache-buster Query

• Add the X-Forwarded-Host header with an

arbitrary hostname, such as “example.com”,

and send the request. See Figure 1.4.

Figure 1.4

Adding “example.com” on X-Forwarded-Host

• Observe that the “X-Forwarded-Host” header

has been used to dynamically generate an

absolute URL for importing a JavaScript file

stored at “/resources/js/tracking.js”.

• Replay the request and observe that the

response contains the header “X-Cache: hit”.

This tells us that the response came from the

cache.

• Go to the exploit server and change the file

name to match the path used by the vulnerable

response: “/resources/js/tracking.js”.

• In the body, enter the payload

“alert(document.cookie)” and store the exploit.

• Open the “GET” request for the home page in

Burp Repeater and remove the cache buster.

• Add the following header, remembering to

enter your own exploit server ID: “X-

Forwarded-Host: your-exploit-server-id.web-

security-academy.net”.

• Send your malicious request. Keep replaying

the request until you see your exploit server

URL being reflected in the response (see

Figure 1.5) and “X-Cache: hit” in the headers.

Figure 1.5

Server URL Response Page

• To simulate the victim, load the poisoned URL

in your browser and make sure that the

“alert()” is triggered. Note that you have to

perform this test before the cache expires. The

cache on this lab expires every 30 seconds.

• If the lab is still not solved, the victim did not

access the page while the cache was poisoned.

Keep sending the request every few seconds to

re-poison the cache until the victim is affected

and the lab is solved. Confirmation page is

shown in Figure 1.6.

Figure 1.6

Confirmation page

 1.3 Web Cache Poisoning With an

Unkeyed Cookie

Another lab from the web poisoning section

was used, but this time it is for unkeyed cookie.

Solution for completing the lab using [3]:

• With Burp running, load the website's home

page.

• In Burp, go to "Proxy" > "HTTP history" and

study the requests and responses that you

generated. Notice that the first response you

received sets the cookie “fehost=prod-cache-

01” as shown in Figure 1.7.

Figure 1.7

View of First Response

• Reload the home page and observe that the

value from the “fehost” cookie is reflected

inside a double-quoted JavaScript object in the

response.

• Send this request to Burp Repeater and add a

cache-buster query parameter.

• Change the value of the cookie to an arbitrary

string and resend the request. Confirm that this

string is reflected in the response.

• Place a suitable XSS payload in the fehost

cookie, for example: “fehost=someString"-

alert(1)- someString”. See example n Figure

1.8.

Figure 1.8

The String “HelloBadBunny” and the Payload

• Replay the request until you see the payload in

the response and “X-Cache: hit” in the headers.

• Load the URL in your browser and confirm the

“alert()” fires.

• Go back Burp Repeater, remove the cache

buster, and replay the request to keep the cache

poisoned until the victim visits the site and the

lab is solved. Confirmation is viewed in Figure

1.9.

Figure 1.9

Confirmation of the Lab Completed

2. SQL INJECTION USING BURP SUITE

SQL Injection it is a vulnerability that allow

hackers to use queries of the application that makes

to its database. The attacker can get the data that is

not normally retrieve like data obliging to other

users or access credential for the application. In

many cases, an attacker can modify or delete this

data, causing persistent changes to the application's

content or behavior. In some situations, an attacker

can escalate an SQL injection attack to compromise

the underlying server or other back-end

infrastructure or perform a denial-of-service attack

[4].

2.1 Impact of a Successful SQL Injection Attack

A successful attempt of sql injection can result

in unauthorized access to data such as passwords

and other personal data like credit cards etc. Many

high-profile data breaches in recent years have been

the result of SQL injection attacks, leading to

reputational damage and regulatory fines [4].

2.2 Lab: SQL Injection Vulnerability in

WHERE Clause Allowing Retrieval of Hidden

Data

This lab contains a vulnerability that in any

category of products can display interesting

information from tables. To solve this lab, the

following is needed using [4]:

• Use Burp Suite to intercept and modify the

request that sets the product category filter.

• Modify the “category” parameter, giving it the

value '+OR+1=1--. See Figure 2.1 for an

example.

Figure 2.1

Example of a Sql Injection Query

• Submit the request and verify that the response

now contains additional items. See Figure 2.2.

Figure 2.2

Confirmation Page of the Lab Completed

2.3 Lab: SQL Injection UNION Attack,

Retrieving Data From Other Tables

This lab contains an SQL injection

vulnerability in the product category filter. The

results from the query are returned in the

application's response, so a UNION attack to

retrieve data from other tables can be used. To

solve the lab, follow these instructions [4]:

• Use Burp Suite to intercept and modify the

request that sets the product category filter.

• Determine the number of columns that are

being returned by the query and which columns

contain text data. Verify that the query is

returning two columns, both of which contain

text, using a payload like the following in the

category parameter (see Figure 2.2):

'+UNION+SELECT+'abc','def'--.

Figure 2.2

Screenshot of the Parameter

• Verify that the application's response contains

usernames and passwords. See Figure 2.3 for

confirmation page view.

Figure 2.3

Confirmation Page of this lab

3. CROSS-SITE SCRIPTING (XSS) USING

BURP SUITE

Cross-site scripting (also known as XSS) is a

web security vulnerability that allows an attacker to

compromise the interactions that users have with a

vulnerable application. It allows an attacker to

circumvent the same origin policy, which is

designed to segregate different websites from each

other. Cross-site scripting vulnerabilities normally

allow an attacker to masquerade as a victim user, to

carry out any actions that the user can perform, and

to access any of the user's data. If the victim user

has privileged access within the application, then

the attacker might be able to gain full control over

all the application's functionality and data [5].

3.1 How Does XSS Work?

XSS works, basically, by manipulating a web

site that returns a malicious JavaScript to users and

the code get executed in the victim’s browser so

that the attacker compromises their interaction with

the application.

There are three types of XSS attacks:

• Reflected XSS

• Stored XSS

• DOM-based XSS

Reflected XSS is the simplest variety of cross-

site scripting. It arises when an application receives

data in an HTTP request and includes that data

within the immediate response in an unsafe way

[5].

Stored XSS (also known as persistent or

second order XSS) arises when an application

receives data from an untrusted source and includes

that data within its later HTTP responses in an

unsafe way. The data in question might be

submitted to the application via HTTP requests; for

example, comments on a blog post, user nicknames

in a chat room, or contact details on a customer

order. In other cases, the data might arrive from

other untrusted sources; for example, a webmail

application displaying messages received over

SMTP, a marketing application displaying social

media posts, or a network monitoring application

displaying packet data from network traffic [5].

DOM-based XSS (also known as DOM XSS)

arises when an application contains some client-

side JavaScript that processes data from an

untrusted source in an unsafe way, usually by

writing the data back to the DOM.

3.2 Lab: Reflected XSS Into HTML Context

With Nothing Encoded

This lab contains a simple reflected cross-site

scripting vulnerability in the search functionality.

To solve this lab [5]:

• Copy and paste the following into the search

box: <script>alert(1)</script> as shown in

Figure 3.1.

Figure 3.1

Writing on the Search Parameter the Javascript Alert Box

• Click "Search". The screen will show

confirmation as in Figure 3.2.

Figure 3.2

Lab Confirmation Screen

3.3 Lab: Reflected XSS Into a JavaScript String

With Single Quote and Backslash Escaped

This lab contains a reflected cross-site scripting

vulnerability in the search query tracking

functionality. The reflection occurs inside a

JavaScript string with single quotes and

backslashes escaped.

To solve this lab using [5]:

• Submit a random alphanumeric string in the

search box, then use Burp Suite to intercept the

search request and send it to Burp Repeater.

• Observe that the random string has been

reflected inside a JavaScript string.

• Try sending the payload test'payload and

observe that the single quote gets backslash-

escaped, preventing from breaking out of the

string.

• Replace your input with the following payload

to break out of the script block and inject a new

script: </script><script>alert(1)</script>. See

Figure 3.3.

Figure 3.3

Injecting Script

• Verify the technique worked by right clicking,

selecting "Copy URL", and pasting the URL in

your browser. When you load the page it

should trigger an alert. See Figure 3.4.

Figure 3.4

Lab Confirmation Screen

4. CLICKJACKING USING BURP SUITE

Clickjacking is an interface-based attack in

which a user is tricked into clicking on actionable

content on a hidden website by clicking on some

other content in a decoy website. An example for

clickjacking would be that A web user accesses a

decoy website (for example a link provided by an

email) and clicks on a button to win a prize.

Unknowingly, they have been deceived by an

attacker into pressing an alternative hidden button

and this results in the payment of an account on

another site. This is an example of a clickjacking

attack. The technique depends upon the

incorporation of an invisible, actionable web page

(or multiple pages) containing a button or hidden

link, that could be within an iframe. The iframe is

overlaid on top of the user's anticipated decoy web

page content. This attack differs from a CSRF

attack in that the user is required to perform an

action such as a button click whereas a CSRF attack

depends upon forging an entire request without the

user's knowledge or input [6].

4.1 Lab: Basic Clickjacking With CSRF Token

Protection

This lab contains login functionality and a

delete account button that is protected by a CSRF

token. A user will be clicking on "click" on a decoy

website and the goal of the lab is to entice the user

into deleting their account [6].

To solve this lab using [6]:

• Login to the account on the target website.

Login page is in Figure 4.1.

Figure 4.1

Loging in on the Target Website

• Use the following HTML template and provide

the details as follows:

o Replace $url with the URL for the target

website account page in the iframe.

o Substitute suitable values in pixels for the

$height_value and $width_value variables

of the iframe (we suggest 700px and 500px

respectively).

o Substitute suitable values in pixels for the

$top_value and $side_value variables of the

decoy web content so that the "delete

account" button and the "click me" decoy

action align (we suggest 300px and 60px

respectively).

o Set the opacity value $opacity to ensure

that the target iframe is transparent.

Initially, use an opacity of 0.1 so that you

can align the iframe actions and adjust the

position values as necessary. For the

submitted attack a value of 0.0001 will

work. See Figure 4.2.

Figure 4.2

CSS Template for the Payload

• Go to the exploit server, paste your exploit

HTML into the "Body text" box, and click

"Store".

• Click "View stored response".

• Hover over "Test me" and ensure the cursor

changes to a hand indicating that the div

element is positioned correctly. If not, adjust

the position of the div element by modifying

the top and left properties of the style sheet.

Result is shown in Figure 4.3.

Figure 4.3

View of Display

• Once you have the div element lined up

correctly, change "Test me" to "Click me" and

click "Store".

• Now click on "deliver exploit to victim" and

the lab should be solved. Lab confirmation is

shown in Figure 4.4.

Figure 4.4

Lab Confirmation.

4.2 Lab: Clickjacking with form input data

prefilled from a URL parameter

This lab extends the basic clickjacking

example in Lab: Basic clickjacking with CSRF

token protection. The goal of the lab is to change

the email address of the user by prepopulating a

form using a URL parameter and enticing the user

to click on a "update email" button without the

user's knowledge.

To solve this lab using [6]:

• Login to the account on the target website.

• Use the following HTML template and provide

the details as follows:

o Replace $url with the URL for the target

website change email page in the iframe.

o Substitute suitable values in pixels for the

$height_value and $width_value variables

of the iframe (we suggest 700px and 500px

respectively).

o Substitute suitable values in pixels for the

$top_value and $side_value variables of the

decoy web content so that the "update

email" button and the "Test me" decoy

action align (we suggest 400px and 80px

respectively).

o Set the opacity value $opacity to ensure

that the target iframe is transparent.

Initially, use an opacity of 0.1 so that you

can align the iframe actions and adjust the

position values, as necessary. For the

submitted attack a value of 0.0001 will

work. Figure 4.5 shows CSS template.

Figure 4.5

CSS Template

• Go to the exploit server, paste your exploit

HTML into the "Body text" box, and click

"Store".

• Click "View exploit". Result is shown in

Figure 4.6.

Figure 4.6

View Exploit

• Hover over "Test me" and ensure the cursor

changes to a hand indicating that the div

element is positioned correctly. If not, adjust

the position of the div element by modifying

the top and left properties of the style sheet.

• Once you have the div element lined up

correctly, change "Test me" to "Click me" and

click "Store".

• Now click on "deliver exploit to victim" and

the lab should be solved. Lab confirmation

page is shown n Figure 4.7.

Figure 4.7

Lab Confirmation Page

5. ACCESS CONTROL VULNERABILITIES

AND PRIVILEGE ESCALATION USING

BURPSUITE

Access control (or authorization) is the

application of constraints on who (or what) can

perform attempted actions or access resources that

they have requested. In the context of web

applications, access control is dependent on

authentication and session management [7]:

• Authentication identifies the user and confirms

that they are who they say they are.

• Session management identifies which

subsequent HTTP requests are being made by

that same user.

• Access control determines whether the user is

allowed to carry out the action that they are

attempting to perform.

Broken access controls are a commonly

encountered and often critical security

vulnerability. Access control design decisions have

to be made by humans and the potential for errors is

high.

Some types of access control vulnerabilities

Definitions:

Vertical access controls: Mechanisms that

restrict access functionality that is not available to

other users.

Horizontal access controls: Mechanism that

restrict access to resources to the users that can

access those resources.

Context-dependent access controls: Restrict

access to functionality and resources based upon

the state of the application [7].

5.1 Lab: User Role Controlled by Request

Parameter

This lab has an admin panel at /admin, which

identifies administrators using a forgeable cookie.

To solve this lab:

• Browse to /admin and observe that you cannot

access the admin panel (see Figure 5.1).

Figure 5.1

Cannot Access Admin Panel

• Browse to the login page.

• In Burp Proxy, turn interception on and enable

response interception.

• Complete and submit the login page and

forward the resulting request in Burp.

• Observe (see Figure 5.2) that the response sets

the cookie Admin=false. Change it to

Admin=true.

Figure 5.2

Changing Admin to True

• Load the admin panel and delete “carlos”.

Figure 5.3

Lab Comfirmation

SUMMARY AND CONCLUSION

Burp Suite, a collection of integrated tools used

by most of web pen tester is a great tool to start pen

testing. Their website portswigger is great place to

start learning and practicing legally like web cache

poisoning, sql injection, cross-site scripting (XSS),

clickjacking, and access control vulnerabilities and

privilege escalation attacks. As you can see on this

articles Burp Suite mainly is used for intercepting a

website in order to analyze its traffic, but it can be

used to scan websites (pro version only), used

payloads like brute forcing (community version

works but the pro version is a lot faster), etc.

Because there are too many labs, some were not

covered, but the most important were selected and

common vulnerabilities using Burp Suite could be

demonstrated. The labs chosen for this investigation

have the necessary information to start on Burp

Suite and ethical hacking.

REFERENCES

[1] A. Mahajan, Burp Suite Essentials, Birmingham, United

Kingdom: Packt Publishing 2014.

[2] Port Swigger Academy, “Web Cache Poisoning Lab 1:

Web cache poisoning with an unkeyed header,”

PortSwigger.net, n.d. [Online]. Available:

https://portswigger.net/web-security/web-cache-

poisoning/exploiting-design-flaws/lab-web-cache-

poisoning-with-an-unkeyed-header.

[3] Port Swigger Academy, “Web Cache Poisoning Lab 2:

Web cache poisoning with an unkeyed cookie,”

PortSwigger.net, n.d. [Online]. Available:

https://portswigger.net/web-security/web-cache-

poisoning/exploiting-design-flaws/lab-web-cache-

poisoning-with-an-unkeyed-cookie.

[4] Port Swigger Academy, “SQL Injection.” PortSwigger.net,

n.d. [Online]. Available: https://portswigger.net/web-

security/sql-injection.

[5] Port Swigger Academy, “Cross-site scripting.”

PortSwigger.net, n.d. [Online]. Available:

https://portswigger.net/web-security/cross-site-scripting.

[6] Port Swigger Academy, “Clickjacking (UI redressing).”

PortSwigger.net, n.d. [Online]. Available:

https://portswigger.net/web-security/clickjacking.

[7] Port Swigger Academy, “Access control vulnerabilities

and privilege escalation.” PortSwigger.net, n.d. [Online].

Available: https://portswigger.net/web-security/access-

control.

