
Abstract Conclusions

Acknowledgements

Databases are essential since are designed to stored and

organized data that can be easily managed and accessed. They are

crucial to many organizations, companies, and are used in many

aspects of our lives. The relational database, based on the

relational model, and represented in a tabular way, is one of the

most used. Relational database management systems are used to

maintain them. One of the most known languages for querying

and maintaining relational databases is the Structured Query

Language. On this paper article, the researcher explored different

optimization tools in MS Azure SQL Server Database that could

bring information that could help students and developers to

optimize their queries and improve performance.

Methodology

The tools were very helpful in demonstrating how queries, as

developers, impacts the performance; in showing valuable

information to detect inefficiencies and to have better practices

and participation on this task. Both presented Plan Diagrams, Plan

Trees (that gave attention by highlighting discrepancies, high cost,

or aspect that required attention), Top Operations, among other

features.

The first tool seems to be effective in showing how a query

could improve performance. It also gives more information

respecting the structure and the columns on the Table I/O, and has

extra columns regarding the page server reads. It seems to work

on giving results as well. The second tool, besides the example

used in the previous section along with other queries, did not

presented results on the table I/O. Also, the first tool gave an

Index Analysis, that help the tools of performance by updating

statistics directly. This could be investigated in detailed in a future

investigation.

The study demonstrates that SQL performance tuning can

make use of variety of techniques and tools together. The tools for

query tunning are complex, and mostly show through processes

and statistics that need to be studied.

This article has the intention to explore different SQL

optimization tools for analyze and optimize queries, that might be

useful to other professionals, using the Microsoft Azure SQL

Database the SQL language. Management systems brings some

tools, but there are other external and describe as more robust

tools that could be used to address the optimization of queries. The

tools that will be used are SentryOne Plan Explorer [1] and

dbForge Studio Query Profiler [2].

Introduction

Background

The data management is crucial in any field of study. As in

many other things, the world of informatics thrives on the

collaboration, the share of knowledge and in the support and

integration of other resources.

On this study the researcher aims to the path of automatic

query optimization without leaving important considerations.

Attempts to find working tools that complement and improve

databases; thus the applications, that could be integrated in the

developer practices.

Problem

The focus of this study in the relational database and

RDBMS, which has tabular data concept, based on the relational

model. Most relational database management systems use the

Structured. Query Language (SQL) to access the database, a set-

oriented query standardized language. SQL knowledge and skills

are prevalent among the field of software engineering, computer

science, and information systems [4].

Query optimization is one of the factors that affect application

performance. The query optimizer is responsible for the process of

cautiously choosing a suitable query plan from a space of possible

execution plans. The query optimization module only considers

query plans that can be implemented by the DBMS access

algorithms (implements relational algebra operations or

combinations) and that apply to the specific query, as well as to

the specific physical database design [11]. In terms of cost-based

queries, you have a reasonable plans before you can fine-tune.

Currently, exist some SQL optimization tools that helps optimize

SQL queries, and help you see in depth the execution plans. The

database administrators or users should examine the plans, and

other return cost and time execution.

Considerations on SQL Optimization Tools in MS Azure SQL Server Database using SQL language

Author: Arlene Rodríguez-Ortiz

Advisor: Dr. Duffany

Electrical and Computer Engineering and Computer Science Department

I would like to acknowledge Dr. Jefferey Duffany for guiding me

through this process. I would also like to thank all the professors

in the Computer Science & Computer Engineering Department for

their teaching. I am grateful for each person who with their study

and work help and influence others to continue growing in the

field of science and as a society.

• Diagram presented detailed information where can be seen the

most expensive operations and optimize the SQL code

accordingly.

• The plan tree showed the difference highlighted between the

Estimation and Actual rows. This is important because it could

indicate a problem with statistics for one or more

tables/indexes in the query that could be updated.

• It also included the Index Analysis, which is divided by nodes.

It shows table column information: density, last statistics

updates, an option to update statistics, Avg Length, Estimated

Size, Predict etc.

Second Tool: dbForge Studio Query Profiler Results

Second tool: Using dbForge Studio Query Profiler. Aspect of

analysis were examined by executing the example query, before

the index, with the live query profiling mode. The example query

was executed, after the index, to see the structure, information,

and the results.

Figure 2: dbForge query profiler: Plan Tree, shows the result of the 

example query on the live query profiling mode. 

The results were presented on this format: Plan Diagram, Plan

Tree (Figure 2), Top Operations, Table I/O, Plan XML. The plan

tree table shows the Actual Rows, in the diagram “Act Rows”,

fields found in an Actual Plan.

However, the Table I/O which contains the columns of the

metrics (Logical Reads, Scan Count) that were necessary, did not

bring any information. Due to this lack of information, different

result in those fields could not be compared and analyzed. In other

cases, some results were contemplated, since is part of the

structure. But after trying several queries it did not show. This

could be due to there is not a full Actual Plan available.

• The Plan diagram presented, as well, detailed information

where can be analyze the most expensive operation or could be

useful to investigate why the query optimizer chose one plan to

another.

• Additionally, even though there was not part of the query

profiler and not an automatic tool for query reformulation there

was very useful tool, a query builder by Devart dbForge, that

helped build complex SQL queries through visual interface

without manual. It simplifies the development of SQL queries

and could help students and users who often create database

queries.

Future Work
It would be relevant to keep using these tools and give more

documentation on real scenarios, that could help other studies in

demonstrate the possibilities of these tools and utilize them in

other spaces, like the academic area. Furthermore, innovation,

automation, and precision in the management of plan execution,

and education on this matter. For future work it would be

interesting to see more accessible tools, more compatible with

different environments, and keep using and testing this research

results to tried on other investigations.

[1] SolarW inds World Wide, "Plan Explorer," [Online]. Available: 

https://www.sentryone.com/plan-explorer?hsCtaTracking=40dc738e-8792-

49e1-b2cb-0d3be75bdc75%7Cefa15c6f-a7e2-446a-9879-676bd6629789. 

[Accessed 10 May 2021].

[2] Devart, "SQL Query Plan Tool," [Online]. Available: 

https://www.devart.com/dbforge/sql/studio/sql-query-profiler.html. [Accessed 

30 April 2021].

[3] T. Taipulus and V. Seppanen, "SQL Education: A Systematic Mapping 

Study and Future Research Agenda," 2020. [Online]. Available: 

https://www.researchgate.net/publication/342759889_SQL_Education_A_Sy

stematic_Mapping_Study_and_Future_Research_Agenda. [Accessed 04 

April 2021] 

[4] R. Elmasri and S. Navathe, "Fundamentals of database systems," 2007. 

[Online]. Available: https://www.auhd.site/upfiles/elibrary/Azal2020-01-22-

12-28-11-76901.pdf. [Accessed 09 April 2021].

[5] S. Chaudhuri, "An Overview of Query Optimization in Relational 

Systems," 1998. [Online]. [Accessed 22 04 2021].

[6] E. F. Codd, "A Relational Model of Data for Large Shared Data Banks," 

1970. [Online]. Available:https://www.seas.upenn.edu/~zives/03f/cis550/

codd.pdf. [Accessed 30 April 2021].

For the experimental evaluation, real life examples of tables,

views, and procedures were created. The database objects recollect

diverse of operators and complexity to test against the

optimization tools. As mentioned, testing data records on every

table were created.

The tools were created in terms of what it brings for query

analyze and/or in terms of help improved performance. Also, other

tools that would help to build or add to the query, were considered.

One of the criteria was that the tools must be compatible with MS

Azure cloud database. Also, that tool presented additional

functionalities apart from those that the SSMS brings.

As an example, to see analysis and have information to

measure performance, the same specific query was executed,

before and after creating a suggested index, that could help in the

performance. The objective was to see what, and which

information will be presented in both tools.

To evaluate performance, it was considered the following data

metric columns: Duration, CPU, and Reads. To evaluate

performance, you must consider all the aspects mentioned together

in the execution. The columns were obtain executing Actual plans.

The Actual plan shows the real steps of calculation, unlike the

estimated execution plan that is based on the statistics that could

be outdated, and are stored in the plan cache without the need of

execution. To obtain these metrics Actual Plan will be needed.

The findings are the following by tool:

First tool : SentryOne Plan Explorer Results

Figure 1: SentryOne Plan Explorer Table I/O results of the query 

example execution, before the index, on the Actual plan execution

The tool included: Table I/O, (presented in the Figure 1), Plan

Diagram, Query Columns, Plan Tree, Join Diagram, Top

Operations, and Index Analysis.

After creating the index, the same query was executed on the

Plan Explorer, different results were presented in the total of

Logical Reads. The tool presented a way to measure, and some

improvement, even though the Duration and CPU remained the

same. It helps in the way that it shows that the index reduces the

total of logical reads. You would want to have the least number of

reads for faster response and better performance; in this context

where the Duration and CPU remains the same.

Results and Discussion

Results and Discussion

References


