POLYTECHNIC
UNIVERSITY

Abstract

Abstract - A database table with millions of rows could take a long
time to retrieve, insert, update, and delete data. The evaluation in
this paper consists of create indexes, apply normalization process,
and create surrogate key to improve the performance of retrieving
data. Explain the differences between multiple types of indexes
and which scenarios we can use for each of them. To evaluate the
improvements, one table was created in SQL server with 45
million rows. The analysis describes the resources and I/0
statistics used by Microsoft SQL Server Management Studio. For
non-indexed tables 1s categorized sequentially searched and
indexed table that are compared as B-tree index.

Introduction

The tables indexes are compared with the index card 1n a
traditional library where we can see a lot shelve with books. But
database indexes will affect another transaction as Insert, Update
and Delete. Those different scenarios will be discussed and
evaluated 1n this paper. In this paper will be discussed a different
type of index, how to create the index in SQL server, the benefits
of each index and demonstration of the performance improvement
using index. In the normalization section 1t discusses the rules, and
finally the composite key can affect the database performance,
creating a surrogate key can bring a benefit but also a drawback.

Background

Indexes are the means to providing an efficient access path
between the user and the data, by providing this path, the user can
ask for data and the database will know where to go to retrieve
[1]. Creating and maintaining an index file 1s a major i1ssue in
database, by using an appropriate indexing mechanism, the query
processing algorithms may not have to search the entire database
[2]. An index contains keys built from one or more columns in the
table or view [3]. These keys are stored 1n a structure (B-tree) that
enables SQL Server to find the row or rows associated with the
key values quickly and efficiently [3]. Clustered Index 1s created
with a column or combination of columns and are stored in orders
to obtain a fast retrieval of the rows. The common type of Index
are Cluster/Non-cluster index, column store index , XML indexes
and spatial index. The variations are primary key, unique index,
filtered 1ndexes and, partitioned 1ndexes. The database
normalization has multiples benefits. When the normalization
rules are applied the benefits are, avoid anomalies 1n the data,
reduce large table into smaller tables avoiding data redundancy,
maintain the data integrity reducing multiples entries and updates,
the Insert and Update operations will be more quickly. With less
data then maximize the storage capacity.

During a database operations (Select, Insert, Delete and, Update)
could be take long respond. In this project will be evaluated each
operation with creation of tables index and tables normalizations
to compare which of them affect the time response and resources
consumption for each operation.

Performance Evaluation in SOL Server

Author: Simonely Hidalgo Lorenzo
Advisor: Dr. Nelliud Torres Batista
Electrical & Computer Engineering and Computer Science Department

Methodology

To evaluate the queries results performance, two tools provided by
Microsoft SQL Server Management Studio were used. The first
tool 1s “Estimate Execution Plan” tool found in the Query menu
tab where we are focus 1n the IO Cost and CPU Cost sections.

Query | Project Debug Tools Window Help

Connec tion

Open Server in Object Explorer Alt+Fa
*@ Specify Values for Template Parameters... Ctrl+Shift+M
P Execute F5
Cancel Executing Query Alt+Break
Parse Ctrl+F5
Display Estimated Execution Plan Ctrl+L
Intelli5ense Enabled Ctrl+B, Ctrl+|
Trace Query in SQL Server Profiler Ctrl+Alt+P
Analyze Query in Database Engine Tuning Advisor
Design Query in Editor... Ctrl+Shift+Q
Include Actual Execution Plan Ctrl=M
Include Live Query Statistics
Include Client Statistics Shift+Alt+5
Reset Client Statistics

B SOQLCMD Mode

LR EE DR S

Results To

E Query Options.. |

The second 1s “IO statistics”, for obtain those statistics values in
the output 1t needs to be turned on (Set Statistics 10 on) left figure
below before to execute of the SQL Statement. The two values
from I/O statistics results that we are using to measure the
performance are scan counts and logical reads see right figure
below. Scan count is number of seeks or scans started after
reaching the leaf level in any direction to retrieve all the values to
construct the final dataset for the output. The logical reads are
number of pages read from the data cache.

lable "PRODUCT'. Scan count 13, logical reads 1923853,
—set statistics io on
S0L Server Execution Times:

g8t statistlics time on
' CPU time = 9669 ms, elapsed time = 9927 ms.

To demonstrate the index improvements one table was created
named PRODUCT with 45 million rows in SQL server, one of the
columns created is Id and has integer values. The same query
statement for SELECT, INSERT, DELETE and UPDATE was
performed with non-index and index column.

To evaluate the resources consumed 1n normalized and
denormalized scenarios I used “Display Estimate Execution Plan”
tool, IO Statistics and the execution of the system stored
procedures “sp spaceused” to obtain the space used during the
normalization and denormalized tables.

b’..ﬂ.t'}. Sp_spaceuse d INVENTORY

9 % -
EE Results E Messages

name MOWS reserved data index_size unused

1 | INVENTORY 44535813 3372112KB 3371632KB 16 KB 464 KB

To perform the evaluation of the normalization rules one table
denormalized was created, after applying the normalization rules
four additional tables were created to decomposing into smaller
relational schema with desirable properties. Both scenarios were
evaluated for the same SQL statements.

INVENTORY D * CUSTOMER o= BRANCH
o LastMame T Name
BranchMame Name Country
LastMName ¥ Membership City
EName 7 Branch_Mame_fk
Membership
CProductMumber é}

CType 8

CName INVENTORY

_ oo CATEGORY

CPrice % ProductMumber @ ID

Country RentDate Type

City |d_category_fk Mame

CSaleDate 7 Branch_name_Customer_fk Price
Membership_Custorner_fk

Results and Discussion

Index Results

The results of the SELECT statement where the index has not
been created 1s showed below 1n the left side. In this scenario the
search will do a sequential table scan until reach the 1d desired,
also the I/O cost for this execution 1s 1414.37 and CPU cost 15
10.2043. Comparing this result with a clustered index in the right
figure. We can prove the improvement using the same SQL query.
The results show the I/O cost of 0.003125 and the CPU Cost
0.0001581.

Scan rows from a table. Scanning a particular range of rows from a clustered index.

Physical Operation Table Scan Physical Operation Clustered Index Seek
Logical Operation Table Scan Logical Operation Clustered Index Seek
Estimated Execution Mode Row Estimated Execution Mode Row
Storage RowStore Storage RowStore
Estimated 1/O Cost 141437 Estimated Operator Cost 0.0032831 (100%)
Estimated Operator Cost 1424.57 (100%) [Estimated I/0 Cost 0.003125

[Estimated Subtree Cost 0.0032831
Estimated CPU Cost 0.0001581
Estimated Number of Executions 1
Estimated Number of Rows 1

Estimated Number of Rows 1.00004

: - Estimated Number of R to be Read 1

Estimated Number of Rows to be Read 55659500 Eamated Mumer of Rowsta be Re :
Estimated Row Size 158

Estimated Row Size L=l Ordered True
Ordered False Node ID 0
Node ID 1 ' |

Estimated CPU Cost 10.2043
[Estimated Subtree Cost 142457
Estimated Number of Executions 1

Object

Predicate [Development].[dbo].[PRODUCT].[Clusteredindex-Id)
[Development].[dbc).[PRODUCT].[Id]=(1203165434) Output List

Object [Development].[dbo].[PRODUCT].Id
[Development).[dbo).[PRODUCT] Seek Predicates

Output List Seek Keys[1]: Prefix: [Development].[dbo].[PRODUCT].Id = Scalar
[Development).[dbe].[PRODUCT].Id Operator (CONVERT_IMPLICIT(bigint,[@1],0))

No index Results Index Results
In the below table we show the execution time for each SQL

statement with non index and indexed column.
SQL Time Statistics

SQL Number of Execution Time (ms)
Statement Rows No Index Index
SELECT 1 Q0277 72
INSERT Q763855 39864 628594
DELETE Q763855 47616 83215
UPDATE Q763855 45486 52184
Normalization

we can see the space reduction, for denormalized table named
“INVENTORY D” the are found in table below. The consume
was 5.3 GB and the sum of the four tables created during the
normalization was 3.5 GB so the reduction in space was 2.8 GB

fOI' q 3 3 % . Space Used During Normalization
Table Name Total Data Total Suimn
Rows Space Space of
(kb) Used tables
(kb) used
(Gb)
Category 3000791 206376 206384
Inventory 44535813 | 3321736 | 3321744)
Branch 15 8 16 32
Customer 391795 20152 20168

Inventory D | 4453583 5326576 | 5326552 5.3

The 1/O statistic results that measure the query performance for
SQL are shown 1n tables 6 and 7 where we can see the scan count
and the logical read that SQL used during the query execution and
shown why denormalized tables was faster than normalized. But
for the Insert, Update and Delete in the normalized tables are
faster than denormalized.

Normalization Time Statistics

SQL Number of Execution Time (ms)
Statement Rows Denormalized | Normalized
SELECT 8.451,155 104,610 115,720
INSERT 8451276 33,520 27315
DELETE 8,451,397 19,350 14,250
Normalization SQL I/0 Statistics (Logical Reads)
Number Logical Reads
SQL Statement of Rows | Denormalized | Normalized
SELECT 8.451.155 065,822 1,028,578
INSERT 8.451.276 9,268,718 8,940,630
DELETE 8451 397 8,940 749 9,232 6063

Conclusions

We saw the Indexing, normalization and their behavior in the
database performance. Each of one have their benefits and
drawbacks. we need to be clear of how the data will be consumed
if 1t for transactional or analytical purpose. For example, the
improvement was noticed significantly when the cluster index was
created 1n term of execution time for one simple query executed
was 9 seconds faster but inserting was slower. So probably some
of cons doesn’t apply to your application. In the data warehouse
the normalization makes the data retrieve slow but 1n a
transactional system where need to maintain the integrity of the
data, make insert, delete, and update then the normalization 1s
beneficial. Using the SQL tools provided by Microsoft SQL
Server Management Studio was useful to evaluate which SQL
Statements have better performance according with the
applications or business needs.

Future Work

Perform the analysis in each types of index to evaluate the
performance and resources consumed in each of them, collect the
result in a transactional database and in a Datawarehouse database
to evaluate the behaviors in a dedicate business rules.

Acknowledgements

I would like to express my sincere gratitude to Dr. Nelliud Torres
Batista for their assistance at every stage of the research project
and Isabel Batteria for the format review of the papers.

References

[1] J. Strate and T. Krueger, Expert Performance Indexing for
SOL Server 2012. New York: Apress, 2012. [Online].
Available:
https://www.apress.com/gp/book/9781430237419

[2] B. Thuraisingham, Database and Applications Security,
Boca Raton, FL: Taylor & Francis Group, 2005.

[3] Microsoft, “Clustered and nonclustered indexes described,”
December 14, 2020 [Online]. Available:
https://docs.microsoft.com/en-us/sql/relational-
databases/indexes/clustered-and-nonclustered-indexes-

described?view=sql-server-verl5

	Slide Number 1

