
Abstract Conclusions

Acknowledgements

Abstract - A database table with millions of rows could take a long
time to retrieve, insert, update, and delete data. The evaluation in
this paper consists of create indexes, apply normalization process,
and create surrogate key to improve the performance of retrieving
data. Explain the differences between multiple types of indexes
and which scenarios we can use for each of them. To evaluate the
improvements, one table was created in SQL server with 45
million rows. The analysis describes the resources and I/O
statistics used by Microsoft SQL Server Management Studio. For
non-indexed tables is categorized sequentially searched and
indexed table that are compared as B-tree index.

References

Methodology Results and Discussion

We saw the Indexing, normalization and their behavior in the
database performance. Each of one have their benefits and
drawbacks. we need to be clear of how the data will be consumed
if it for transactional or analytical purpose. For example, the
improvement was noticed significantly when the cluster index was
created in term of execution time for one simple query executed
was 9 seconds faster but inserting was slower. So probably some
of cons doesn’t apply to your application. In the data warehouse
the normalization makes the data retrieve slow but in a
transactional system where need to maintain the integrity of the
data, make insert, delete, and update then the normalization is
beneficial. Using the SQL tools provided by Microsoft SQL
Server Management Studio was useful to evaluate which SQL
Statements have better performance according with the
applications or business needs.

The tables indexes are compared with the index card in a
traditional library where we can see a lot shelve with books. But
database indexes will affect another transaction as Insert, Update
and Delete. Those different scenarios will be discussed and
evaluated in this paper. In this paper will be discussed a different
type of index, how to create the index in SQL server, the benefits
of each index and demonstration of the performance improvement
using index. In the normalization section it discusses the rules, and
finally the composite key can affect the database performance,
creating a surrogate key can bring a benefit but also a drawback.

Introduction

Background

During a database operations (Select, Insert, Delete and, Update)
could be take long respond. In this project will be evaluated each
operation with creation of tables index and tables normalizations
to compare which of them affect the time response and resources
consumption for each operation.

Problem

Indexes are the means to providing an efficient access path
between the user and the data, by providing this path, the user can
ask for data and the database will know where to go to retrieve
[1]. Creating and maintaining an index file is a major issue in
database, by using an appropriate indexing mechanism, the query
processing algorithms may not have to search the entire database
[2]. An index contains keys built from one or more columns in the
table or view [3]. These keys are stored in a structure (B-tree) that
enables SQL Server to find the row or rows associated with the
key values quickly and efficiently [3]. Clustered Index is created
with a column or combination of columns and are stored in orders
to obtain a fast retrieval of the rows. The common type of Index
are Cluster/Non-cluster index, column store index , XML indexes
and spatial index. The variations are primary key, unique index,
filtered indexes and, partitioned indexes. The database
normalization has multiples benefits. When the normalization
rules are applied the benefits are, avoid anomalies in the data,
reduce large table into smaller tables avoiding data redundancy,
maintain the data integrity reducing multiples entries and updates,
the Insert and Update operations will be more quickly. With less
data then maximize the storage capacity.

Performance Evaluation in SQL Server
Author: Simonely Hidalgo Lorenzo
Advisor: Dr. Nelliud Torres Batista

Electrical & Computer Engineering and Computer Science Department

I would like to express my sincere gratitude to Dr. Nelliud Torres 
Batista for their assistance at every stage of the research project 
and Isabel Batteria for the format review of the papers.

Index Results
The results of the SELECT statement where the index has not
been created is showed below in the left side. In this scenario the
search will do a sequential table scan until reach the id desired,
also the I/O cost for this execution is 1414.37 and CPU cost is
10.2043. Comparing this result with a clustered index in the right
figure. We can prove the improvement using the same SQL query.
The results show the I/O cost of 0.003125 and the CPU Cost
0.0001581.

No index Results Index Results

In the below table we show the execution time for each SQL
statement with non index and indexed column.

Normalization
we can see the space reduction, for denormalized table named
“INVENTORY_D” the are found in table below. The consume
was 5.3 GB and the sum of the four tables created during the
normalization was 3.5 GB so the reduction in space was 2.8 GB
for a 33%.

The I/O statistic results that measure the query performance for
SQL are shown in tables 6 and 7 where we can see the scan count
and the logical read that SQL used during the query execution and
shown why denormalized tables was faster than normalized. But
for the Insert, Update and Delete in the normalized tables are
faster than denormalized.

Future Work

Perform the analysis in each types of index to evaluate the
performance and resources consumed in each of them, collect the
result in a transactional database and in a Datawarehouse database
to evaluate the behaviors in a dedicate business rules.

[1] J. Strate and T. Krueger, Expert Performance Indexing for
SQL Server 2012. New York: Apress, 2012. [Online].
Available:
https://www.apress.com/gp/book/9781430237419

[2] B. Thuraisingham, Database and Applications Security,
Boca Raton, FL: Taylor & Francis Group, 2005.

[3] Microsoft, “Clustered and nonclustered indexes described,”
December 14, 2020 [Online]. Available:
https://docs.microsoft.com/en-us/sql/relational-
databases/indexes/clustered-and-nonclustered-indexes-
described?view=sql-server-ver15

To evaluate the queries results performance, two tools provided by
Microsoft SQL Server Management Studio were used. The first
tool is “Estimate Execution Plan” tool found in the Query menu
tab where we are focus in the IO Cost and CPU Cost sections.

The second is “IO statistics”, for obtain those statistics values in
the output it needs to be turned on (Set Statistics IO on) left figure
below before to execute of the SQL Statement. The two values
from I/O statistics results that we are using to measure the
performance are scan counts and logical reads see right figure
below. Scan count is number of seeks or scans started after
reaching the leaf level in any direction to retrieve all the values to
construct the final dataset for the output. The logical reads are
number of pages read from the data cache.

To demonstrate the index improvements one table was created
named PRODUCT with 45 million rows in SQL server, one of the
columns created is Id and has integer values. The same query
statement for SELECT, INSERT, DELETE and UPDATE was
performed with non-index and index column.
To evaluate the resources consumed in normalized and
denormalized scenarios I used “Display Estimate Execution Plan”
tool, IO Statistics and the execution of the system stored
procedures “sp_spaceused” to obtain the space used during the
normalization and denormalized tables.

To perform the evaluation of the normalization rules one table
denormalized was created, after applying the normalization rules
four additional tables were created to decomposing into smaller
relational schema with desirable properties. Both scenarios were
evaluated for the same SQL statements.


	Slide Number 1

