
Implementing USB Attacks with Microcontrollers

Alejandro Rodríguez Ocasio

Master in Computer Science

Advisor: Jeffrey Duffany, Ph.D.

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract ⎯ The USB specification has become one

of the most prominent standards for

interconnection between devices and peripherals.

Its main objective is to provide ease of use and

increase compatibility by implementing standard

specifications. USB peripherals are self-

configuring and are considered Plug and Play

(PnP) devices. This simplifies their usage by

minimizing the interaction required for their

configuration. But host devices must provide a

minimum level of trust, which can be exploited by

malicious devices. By exploiting this trust, an

attacker may masquerade as a trusted USB device

such as a keyboard, a flash storage, or an ethernet

adapter.

Implementing these attacks can be easily

achieved by using commercially available tools or

a combination of open-source software and low-

cost components. In this article we will discuss

different types of USB attacks and explore how

tools capable of automating such attacks can be

implemented by using a low-cost reprogrammable

microcontroller.

Key Terms ⎯ Bash Bunny, Human Interface

Device (HID) Attacks, Penetration Testing Tools,

Raspberry Pi, Universal Serial Bus (USB) Attacks.

INTRODUCTION

As technology advances, a wider variety of

digital devices are being constantly introduced.

Most of these require some level of interaction by

either a user or another device. Typical interactions

include communication between a host PC and

peripherals such as keyboards, mice, flash storage,

and ethernet adapters. A variety of interfaces have

existed in the past to facilitate interaction between

devices and peripherals. Some of the most common

included parallel ports, serial ports, PS/2

connectors, DIN connectors, and game ports among

many others. Some of these were proprietary and

most required dedicated expansion cards and

specific configurations. This could become

cumbersome, as host devices were required to

support a wide variety of interfaces to increase

compatibility with peripherals.

The introduction of the Universal Serial Port

(USB) specification published in 1996 helped

mitigate compatibility and configuration issues. Its

main objective is to improve and simplify the

interface between devices and peripherals. The

USB specification establishes standard cables,

connectors, and protocols. And it supports the

management of up to 127 devices on a host. These

devices are considered Plug and Play (PnP). This

means that the configuration of the devices occurs

automatically when plugged into a host and

typically do not require any interaction with a user.

The standard has gained widespread adoption,

replacing a variety of older interfaces. USB

interfaces are present in most modern devices,

providing a ubiquity that greatly improves

compatibility and ease of use.

To facilitate PnP functionality and achieve

higher compatibility, a host will typically trust any

device plugged into a USB interface. USB

interfaces present many advantages, but they

compromise security in favor of simplicity and

ease-of-use. This introduces a serious vulnerability

that can be easily exploited by malicious devices.

USB attacks currently remain as one of the top

threat vectors, and the level of damage they can

achieve can be devastating. Performing these

attacks can be relatively simple once physical

access is gained into a host. Though, securing an

infrastructure against USB attacks can be difficult

and is often overlooked.

In this article we will discuss the different

categories of USB attacks that can be performed

through malicious devices. We will also provide

insight into how tools that exploit these

vulnerabilities can be easily implemented using a

combination of low-cost components and open-

source software. Specifically, we will demonstrate

how we can replicate most of the functionality of

the Bash Bunny [1], a commercially available

penetration testing tool for automating USB attacks.

USB PROTOCOL

USB interfaces facilitate communication

between host systems and I/O devices and

optionally serve the purpose of supplying the

electricity to the device. USB devices rely on

microcontrollers with embedded CPUs to control

the interaction with the host. Occasionally, they

include bootloaders that allow updating the

device’s firmware.

Devices can provide one or more functions (i.e.

keyboard, video recorder, Ethernet adapter), each of

which corresponds to a logical address on the bus

known as endpoint. Each endpoint forms a pipe,

which is a logical communication channel. Pipes

are divided into two types: message and stream.

Message pipes are used for control transfers, which

consist of configuration and control information.

Stream pipes are used for interrupt, bulk, or

isochronous transfers. Interrupt transfers consist of

small quantities of time-sensitive data., while bulk

transfers consist of large quantities of time-

insensitive data. Isochronous transfers consist of

timing real-time data at predetermined transfer rates

requiring timing coordination.

When a USB device is connected to a host, a

process known as enumeration is initiated. This

process consists of detecting the device,

determining the device’s speed, determining the

device’s descriptors, and loading the required

drivers.

During the enumeration process, the host

attempts to detect the device by monitoring voltage

fluctuations on the data lines. Once detected, the

host attempts to determine the device’s speed. The

device is then reset, and the speed of the host is

matched to proceed to read the device’s descriptors

that identify the device. The device is reset again

and given a unique logical address. The host will

then proceed to retrieve configuration descriptors

that include the interface and endpoint. With this

information, the host determines and loads the

associated driver that will allow it to control the

device. Identification of the corresponding driver is

typically performed by matching the device’s USB

class, vendor ID, and product ID.

USB ATTACKS

A study performed by Honeywell reveals that

USB attacks have been and remain one of the main

attack vectors in the industry [2]. Many attacks

have been developed that aim to exploit the

vulnerabilities of USB interfaces. Executing these

attacks will typically consist of simply plugging the

malicious device into a USB port of an unprotected

system. Once this occurs, the possibilities available

to the attacker are endless and the results can be

devastating. These include data exfiltration and

destruction, installation of backdoors, deactivation

of services, and even deactivation or destruction of

the host. Most of these attacks are hard to detect

and are typically executed covertly without a user’s

knowledge.

Researchers from the Ben-Gurion University of

the Negev in Israel have identified 29 different

types of USB attacks [3][4]. They divided the

attacks into four main categories, which we will

proceed to describe.

Reprogrammable Microcontroller USB Device

Attacks in this category consist of USB devices

with programmable microcontrollers that provide

the capability of emulating different types USB

peripherals. Typical attack vectors employed by

these devices include Human Interface Device

(HID) peripherals, ethernet adapters, serial devices,

and storage devices. Once connected to the host,

these behave as a regular USB peripheral but

provide a level of control on the machine

equivalent to that of a real user. For example, a

device posing as a HID keyboard has the capability

of simulating a real user on a keyboard, while a

device posing as an ethernet adapter has the

capability of manipulating network traffic.

Devices under this category can be either

bought or built for a relatively low cost. Popular

commercially available products under this

category include the Bash Bunny [1] and the

Rubber Ducky [5], while do-it-yourself (DIY)

alternatives include URFUKED [6], USBdriveby

[7], TURNIPSCHOOL [8], and USBHarpoon [9].

Specifications for DIY devices are typically

maintained by the open-source community. These

usually rely on low-cost components, making use

of commercially available programmable

microprocessors such as Arduino [10], Teensy [11],

and Raspberry Pi [12].

USB Peripheral with Reprogrammed Firmware

These attacks rely on reprogramming the

drivers or firmware of a common USB peripherals

so that they may execute malicious scripts when

plugged into the host. Carrying out these attacks

usually involves a high level of technical

complexity, making their implementation more

challenging than other types of attacks. On the

other hand, a clear advantage offered by these

attacks is being nearly undetectable as they do not

require hardware modifications and the required

software is concealed within the firmware of a

seemingly normal peripheral. Devices under this

category are commonly known BadUSB [13] and

become reprogrammed for malicious purposes

through infected hosts. Possible attacks with these

devices include HID attacks, DNS overrides,

password protection bypassing, and data

exfiltration through hidden partitions.

Software Exploits through Unmodified USB

Peripherals

Instead of depending on custom hardware or

firmware, these attacks rely on exploiting software

and USB protocol vulnerabilities through

unmodified USB peripherals. Stuxnet [14] is a

popular example of these attacks. It used a regular

USB storage device to execute a script contained

within the device by exploiting how Windows

automatically managed .LNK files when a USB

storage device is plugged. The Fanny malware, on

the other hand, takes advantage of how operating

systems handle data on USB storage devices by

hiding it in seemingly corrupted sectors that are

ignored by the system. Though not all attacks in

this category originate from the device. The Device

Firmware Update (DFU) exploit, for example, can

be used to infect USB devices plugged into an

infected host to convert them into a BadUSB [13].

USB Electrical Attack

USB electrical attacks take advantage of the

lack of protection in USB power and data lines

present in most devices. These attacks consist of

devices composed of electrical hardware

components which generate an electrical surge to

cause irreparable damage to a host. One of the most

popular commercially available devices in this

category is the USB Killer [15]. When this device

is connected to a host, it collects power from the

USB power lines until it reaches -240V. It then

proceeds to discharge it through the USB data lines,

repeating the process until the host is destroyed.

DEVICE IMPLEMENTATION

We will be focusing on the implementation of

a penetration testing tool that falls into the attack

category of reprogrammable microcontroller USB

devices discussed in the previous section. The USB

device can replicate most of the functionality of the

commercially available Bash Bunny [1] from Hak5.

Homologous to the Bash Bunny, the device can

perform multiple attack vectors, which include

ethernet adapters, serial devices, mass storage

devices, and HID keyboards. The functionality of

the Rubber Ducky [5], a commercial tool developed

by Hak5 to perform HID attacks, can also be

emulated in the device.

Like the Bash Bunny, the device is Debian-

based Linux machine. This means that most

payloads or attack scripts that have been designed

for the Bash Bunny can be used on our device with

minimal modifications. Ducky Script is also

supported to facilitate HID attacks. Hak5 maintains

libraries of payloads for the Bash Bunny [16] and

the Rubber Ducky [17] that can easily be adapted to

the device.

Our implementation will be based on Alex

Jensen’s article titled “Poor Man’s Bash Bunny”

[18]. The added hardware in the device, which

includes 4 dip switches and two push buttons, allow

us to select and execute different payloads. This

implementation provides for 16 different boot

modes. Each boot mode allows for execution of one

payload when the device boots and an additional

payload for each button that executes when they are

pressed, resulting in a total of 48 possible payloads.

Hardware Components

A variety of reprogrammable microcontrollers

and components may be used to achieve the same

results. Every hardware component required is

commercially available at a relatively low-cost. The

following section describes the hardware

components specific to our implementation, while

Figure 1 details how these components interact.

• Raspberry Pi Zero W: Compact low-cost

single-board computer. Contains most of the

hardware components required for

implementing our penetration testing tool.

Includes a 1GHz single core CPU, 512MB of

RAM, an 802.11 b/g/n wireless LAN adapter, a

USB interface, and the 40 I/O pins [19].

• Micros SD card: Main boot device for the

Raspberry Pi. Contains the operating system,

source code, and payload scripts required to

automate USB attacks.

• DIP switch (x4): Boot mode selector,

providing 16 possible options. Different

payloads may be configured for each boot

mode.

• Tactile push button (x2): Provides user

interaction that allow executing payloads on-

demand based on the selected boot mode.

• RGB LED light: The light allows our device

to communicate with the user. These may

indicate, for example, when a script is being

executed and if the execution was a success or

a failure.

• 330 resistor (x3): Limits the current flowing

through the LEDs to prevent them from

burning out.

• Raspberry Pi Zero USB stem: Provides the

USB interface connector for host devices.

Alternatively, a micro-USB cable may be used

instead.

Figure 1

Device Schematic

Software Components

The software components required are freely

available and/or open-source. The required scripts

can be categorized within three main purposes:

device setup, payload launcher service, and payload

tools.

• Operating System - Raspbian Stretch Lite:

Minimal version of Raspbian, a computer

operating system based on Debian Stretch.

Raspbian is Raspberry Pi Foundation’s official

operating system.

• Device Setup: Consists of a single bash script

executed only for first-time setup. This

includes installation of required dependencies,

setup of the payload launcher service, and

setup of requirements for each attack vector.

The dwc2 USB drivers and the LibComposite

kernel module are enabled in this step to allow

configuration of the USB gadgets that will be

used as attack vectors. Figure 2 demonstrates

how the modules can be enabled.

Figure 2

Bash Commands to Enable USB Gadget Configuration

• Payload Launcher Service: Consists of a

single Python script that launches the boot

payload corresponding to the selected boot

mode. The script is kept running in the

background to detect when a button is pressed

to execute additional payloads based on the

boot mode.

• Payload Tools: Set of scripts used by the

payloads that enable performing attacks on a

host. These facilitate setup of attack vectors,

management of the device’ s LED lights,

interpreting and executing Ducky Script for

performing HID attacks, synchronizing

payloads with the host, and signaling the

completion of tasks on the host.

ATTACK IMPLEMENTATION

We will be implementing attack vectors

through the Gadget API included in the Linux

distribution. The API allows us to configure a USB

On-The-Go (OTG) device with one or more

functions, facilitating the emulation of almost any

type of USB device. USB OTG devices provide

greater flexibility, allowing devices to act as

master, slave, or a combination of both. We will

also make use of the LibComposite kernel module,

which allows greater control over the configuration

of gadgets.

The USB device descriptors must be set before

establishing the functionality required for the

implementation of any attack vector. Figure 3

demonstrates a basic template for configuring the

USB device descriptors. Even though we are using

generic identifiers, we can observe that spoofing

valid vendors and products is as simple as

specifying the corresponding IDs. These IDs can be

easily obtained through publicly available lists [20].

Figure 3

Template for Configuration USB Device Descriptors

HID Attack Vector

Devices masquerading as HID can easily

emulate user input. These attacks are highly

versatile, as they allow for the replication of mostly

any action that a user can perform through a HID

device. Most attacks in this category rely on batch

scripts and typically aim to emulate HID keyboards

due to the range of input options they provide.

Figure 4 demonstrates how we can implement the

functions required for the emulation of a HID

keyboard.

Figure 4

Configuration of Functions for Emulation of USB HID

Keyboard

 In Windows operating systems, HID attacks

are typically initiated through the “Run” prompt,

which facilitates access to a variety of applications.

Some of the most commonly used tools for

performing these attacks are the command prompt

and PowerShell, which provide powerful scripting

interfaces that are available on most Windows

computers.

Figure 5 demonstrates a simple payload script

for performing a HID attack that takes advantage of

the Ducky Script interpreter tool to simplify the

syntax. The script starts off by setting up our device

as a HID device. It continues to open the command

prompt through the Run window, followed by the

Notepad executable, in which it proceeds to type in

some text. The script finalizes by flashing the green

LED to indicate success. Figure 6 shows the results

on the target computer.

Figure 5

Example of a Payload Script for Execution of a HID Attack

Figure 6

Result of HID Attack on the Victim Computer

Storage Device Attack Vector

The storage attack vector allows simulating a

USB storage device. This mode is typically used in

conjunction with other attacks to aid in the

infiltration and exfiltration of data or files. In the

setup of our device, a default 128MB FAT disk

image is created that can later be mounted into the

target computer when the storage attack mode is

activated. Figure 7 demonstrates how we can

implement the functions for emulating a USB

storage device by using an existing disk image.

Figure 8 demonstrates a basic payload script

that combines the HID and storage attack vectors.

The script introduces an executable script into the

host that is used to produce and exfiltrate

information. The script starts off by synchronizing

a PowerShell payload script into a disk image,

which is then mounted into the host by initiating the

storage device attack mode. Afterwards, a HID

attack is performed that uses the host’s PowerShell

command line interface to execute the mounted

payload script. The script generates a text file

containing the folder structure of the current user’s

documents folder which is then written directly into

our device’s mounted disk for exfiltration. Figure 9

demonstrates the resulting text document contained

within the mounted disk.

Figure 7

Configuration of Functions for Emulating a USB Storage

Device

Figure 8

Payload Script Combining HID and Storage Attack Vectors

Figure 9

Result of Combined HID and Storage Device Attacks on the

Victim Computer

Ethernet Adapter Attack Vector

The functionality of USB Ethernet adapters can

easily be emulated and used as another attack

vector. When the attack mode is enabled, a

subnetwork is created in which both the device and

the host can communicate through unique IP

addresses. A USB network interface and a Dynamic

Host Control Protocol (DHCP) server are enabled

in the device. At the same time, the device also acts

as a network interface on the host, which

automatically receives an IP from the devices

DHCP server. Figure 10 demonstrates how we can

implement this behavior.

Figure 10

Configuration of Functions for Emulating a USB Ethernet

Adapter

This attack vector provides ample flexibility

for implementation of attacks. By itself, it is

typically used to perform reconnaissance on a

target. Interaction performed solely through

network communications is usually limited,

especially if proper controls have been

implemented to prevent network attacks. But when

combined with other attack vectors such as HID,

the results can be devastating. A high level of

control can be achieved on the target and its

interactions with the device, yielding almost

limitless possibilities. Reverse shells, for example,

can be highly dangerous attack method that can be

easily implemented through these attack vectors,

giving the attacker complete access to the target’s

command line interface (CLI) through a TCP

connection.

COUNTERMEASURES

Currently, there is no bulletproof solution for

properly defending against possible USB attacks, as

most solutions can be bypassed. But implementing

controls will still aid in minimizing risk. As with

most security solutions, establishing multiple layers

of security by implementing multiple controls will

provide the best results. The following are possible

solutions that can be implemented in conjunction:

• Prevent physical access: The most effective

countermeasures against USB attacks is to

simply to prevent physical access to the USB

interfaces. If possible, unused USB ports

should be removed and possible access to

remaining ports should be controlled.

• Software controls: Multiple approaches may

be implemented through software to minimize

risk of USB attacks. These approaches will aid

in reducing risk of attacks but require

leveraging security against accessibility and

convenience. Some methods include disabling

USB ports, blacklisting/whitelisting device

types and vendors, limiting the number of

devices of the same type that can be connected

at a time, and USB device authorization. Other

methods can rely on the detection and

prevention of possible attacks. DuckHunter

[21], for example, detects HID attacks by

identifying suspicious typing speeds and

proceeds to stop their execution.

• Ban unauthorized devices: Policies can be

established for preventing users from bringing

or using unauthorized devices. This approach

can aid in the visual identification of suspicious

devices.

• Employee awareness: Properly educating

employees to be wary of possible USB attacks

can help minimize their incidence. This

approach can also aid in the identification of

possible malicious devices and attackers.

• Enforce screen lock policies: Many USB

attacks require access to a logged in user and

can be thwarted by simply enforcing screen

locks when a computer is not in use. This can

be implemented through a combination of

network policies and user education.

CONCLUSION

The USB standard has proven highly

convenient, but flaws in its design introduce serious

vulnerabilities that can easily be exploited by

malicious devices. Understanding how the USB

protocol works and how it can be exploited is

essential when aiming to secure a system

infrastructure.

Programmable microcontrollers provide great

versatility in the implementation of USB

peripherals, and consequently, USB attacks. When

combined with existing open source software such

as Linux’s USB Gadget API, development of

custom USB devices can become a matter of simple

configuration. The capabilities these devices

provide coupled with the simplicity of their

implementation can make them powerful tools in

the arsenal of penetration testers and system

administrators alike that can be implemented at a

relatively low cost. Though, these same qualities

also make such tools attractive to attackers.

REFERENCES

[1] Hak5. (2019). Bash Bunny [Online]. Available:

https://shop.hak5.org/products/bash-bunny.

[2] Honeywell International Inc. (2018, October). Industrial

USB Threat Report [Online]. Available:

https://www.automation.com/pdf_articles/honeywellps/Ho

neywell-USB-Threat-Report.pdf.

[3] N. Nissim, R. Yahalom and Y. Elovici, “USB-Based

Attacks,” Computers & Security, vol. 70, Sep. 2017, pp.

675-688.

[4] C. Cimpanu. (2018, Mar. 18). Here's a List of 29 Different

Types of USB Attacks [Online]. Available:

https://www.bleepingcomputer.com/news/security/heres-a-

list-of-29-different-types-of-usb-attacks.

[5] Hak5. (2019). USB Rubber Ducky [Online]. Available:

https://shop.hak5.org/products/usb-rubber-ducky-deluxe.

[6] Irongeek. (2010, Mar.). Programmable HID USB

Keystroke Dongle: Using the Teensy as a Pen Testing

Device [Online]. Available: http://www.irongeek.com/i.ph

p?page=security/programmable-hid-usb-keystroke-dongle.

[7] S. Kamkar. (2014, Dec.). USBdriveby [Online]. Available:

http://samy.pl/usbdriveby.

[8] D. Spill, M. Ossmann, and K. Busse. (n. d.).

“TURNIPSCHOOL,” in nsaplayset.org [Online].

Available: http://www.nsa playset.org/turnipschool.

[9] I. Ilascu. (2018, Aug.). USBHarpoon is a BadUSB Attack

with a Twist”, bleepingcomputer.com [Online]. Available:

https://www.bleepingcomputer.com/news/security/usbharp

oon-is-a-badusb-attack-with-a-twist.

[10] Arduino. (2019). Arduino [Online]. Available:

https://www.arduino.cc.

[11] PJRC. (n. d.). Teensy [Online]. Available:

https://www.pjrc.com/teensy.

[12] Raspberry Pi Foundation. (n. d.). Raspberry Pi [Online].

Available: https://www.raspberrypi.org.

[13] Security Research Labs. (2018). “BadUSB Exposure,” in
SRLabs Open Source Projects [Online]. Available:

https://open source.srlabs.de/projects/badusb.

[14] Common Vulnerabilities and Exposures. (2019). CVE-

2010-2568 [Online]. Available: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2010-2568.

[15] USB Kill. (2019). USB Killer V3 [Online]. Available:

https://usbkill.com/products/usb-killer-v3.

[16] GitHub. (2019). Hak5 - Payload Library for the Bash

Bunny [Online]. Available: https://github.com/hak5/bash

bunny-payloads.

[17] GitHub. (2019). Hak5 - USB Rubber Ducky Payloads

[Online]. Available: https://github.com/hak5darren/USB-

Rubber-Ducky/wiki/Payloads.

[18] A. Jensen. (2018, May 9). “Poor Man’s Bash Bunny,”

Cron Blog – My Personal Findings [Online]. Available:

https://www.cron.dk/poor-mans-bash-bunny.

[19] Raspberry Pi Foundation. (n. d.). Raspberry Pi Zero W

[Online]. Available: https://www.raspberrypi.org/products/

raspberry-pi-zero-w.

[20] S. Gowdy. (2019, May 9). List of USB ID’s [Online].

Available: http://www.linux-usb.org/ usb.ids.

[21] P. Sosa. (2019). “DuckHunter,” in GitHub.com [Online].

Available: https://github.com/pmsosa/duckhunt.

