
H
ID

H
ID

 +
 S

to
ra

g
e

S
e

ri
a

l
H

ID
S

to
ra

g
e

E
th

e
rn

e
t

Abstract

Conclusions

The USB specification has become one of the most prominent

standards for interconnection between devices and peripherals.

Its main objective is to provide ease of use and increase

compatibility by implementing standard specifications. USB

peripherals are self-configuring and are considered Plug and

Play (PnP) devices. This simplifies their usage by minimizing the

interaction required for their configuration. But host devices must

provide a minimum level of trust, which can be exploited by

malicious devices. By exploiting this trust, an attacker may

masquerade as a trusted USB device such as a keyboard, a

flash storage, or an ethernet adapter. Implementing these

attacks can be easily achieved by using commercially available

tools or a combination of open-source software and low-cost

components.

References

Device Implementation

Software Components

The USB standard has proven highly convenient, but flaws in its

design introduce serious vulnerabilities that can easily be

exploited by malicious devices. Understanding how the USB

protocol works and how it can be exploited is essential when

aiming to secure a system infrastructure.

Programmable microcontrollers provide great versatility in the

implementation of USB peripherals, and consequently, USB

attacks. When combined with existing open source software

such as Linux’s USB Gadget API, development of custom USB

devices can become a matter of simple configuration. The

capabilities these devices provide coupled with the simplicity of

their implementation can make them powerful tools in the

arsenal of penetration testers and system administrators alike

that can be implemented at a relatively low cost. Though, these

same qualities also make such tools attractive to attackers.

To facilitate Plug & Play (PnP) functionality and achieve higher

compatibility, a host will typically trust any device plugged into a

USB interface. USB interfaces present many advantages, but

they compromise security in favor of simplicity and ease-of-use.

This introduces a serious vulnerability that can be easily

exploited by malicious devices.

We will be exploring possible types of USB attacks that capable

of exploiting USB protocol vulnerabilities and how many of these

can be performed through the use of low cost components and

open source software. Specifically, we will demonstrate how we

can replicate most of the functionality of the Bash Bunny from

Hak5, a commercially available penetration testing tool for

automating USB attacks.

Introduction

Implementing USB Attacks with Microcontrollers
Author: Alejandro Rodríguez

Advisor: Dr. Jeffrey Duffany

Computer Science Department

The software components required are freely available and/or

open-source. Raspbian Stretch Lite, a minimal version of

Raspbian based on Debian Stretch, was implemented as the

device’s operating system. Additional required scripts can be

categorized as follows:

Device Setup: Bash script executed only for first-time setup.

This includes installation of required dependencies, setup of the

payload launcher service, and setup of requirements for each

attack vector. The dwc2 USB drivers and the LibComposite

kernel module are enabled in this step to allow configuration of

the USB gadgets that will be used as attack vectors.

Payload Launcher Service: Python script that launches the

boot payload corresponding to the selected boot mode. The

script is kept running in the background to detect when a button

is pressed to execute additional payloads based on the boot

mode.

Payload Tools: Set of scripts used by the payloads that enable

performing attacks on a host. These facilitate tasks such as

setup of attack vectors, management of the device’ s LED lights,

interpreting and executing Ducky Script for performing HID

attacks, synchronizing payloads with the host, and signaling the

completion of tasks on the host.

N. Nissim, R. Yahalom, and Y. Elovici, “USB-Based Attacks,” Computers & Security,

vol. 70, pp 675-688, Sep. 2017.

Tobi, “Composite USB Gadgets on the Raspberry Pi Zero”, isticktoit.net, Feb 22,

2016. [Online]. . Available: http://www.isticktoit.net/?p=1383.

Theresalu, “Duckberry Pi”, GitHub.com, [Online]. Available:

https://github.com/theresalu/rspiducky.

A. Jensen, “Poor Man’s Bash Bunny,” Cron Blog – My Personal Findings, May 9,

2018. [Online]. Available: https://www.cron.dk/poor-mans-bash-bunny.

Hak5, “Payload Library for the Bash Bunny,” GitHub.com, [Online]. Available:

https://github.com/hak5/bashbunny-payloads.

Homologous to the Bash Bunny, the device can perform multiple

attack vectors, which include ethernet adapters, serial devices,

mass storage devices, and HID keyboards. The functionality of

the Rubber Ducky, a commercial tool developed by Hak5 to

perform HID attacks, can also be emulated in the device. The

device is a Debian-based Linux machine. This means that most

payloads or attack scripts that have been designed for the Bash

Bunny can be used on our device with minimal modifications.

Ducky Script is also supported to facilitate HID attacks.

The added hardware in the device, which includes 4 dip switches

and two push buttons, allow us to select and execute different

payloads. This implementation provides for 16 different boot

modes. Each boot mode allows for execution of one payload

when the device boots and an additional payload for each button

that executes when they are pressed, resulting in a total of 48

possible payloads.

Hardware Components Attack Implementation

Attack vectors are implemented through the Gadget API included

in the Linux distribution. The API allows us to configure a USB

On-The-Go (OTG) device with one or more functions, facilitating

the emulation of almost any type of USB device. USB OTG

devices provide greater flexibility, allowing devices to act as

master, slave, or a combination of both. The LibComposite

kernel module is also used to allow greater control over the

configuration of gadgets.

Every hardware component

required is commercially available

at a relatively low-cost. The

following list specifies the

hardware components specific to

our implementation:

• Raspberry Pi Zero W

• Micros SD card

• DIP switch (x4)

• Tactile push button (x2)

• RGB LED light

• 330 resistor (x3)

• Raspberry Pi Zero USB stem

Device Descriptor Configuration

Attack Vector Configuration

USB attacks currently remain as one of the top threat vectors,

and the level of damage they can achieve can be devastating.

Performing these attacks can be relatively simple once physical

access is gained into a host. This project aims to provide insight

into how typical USB attacks are implemented with the goal of

broadening the understanding of their capabilities.

Problem

Payload Examples

Payload Result Payload Result

Assembled Device
Gadget API Setup

