
Exploring Distributed Machine Learning System on Raspberry Pi Computer Cluster

Isaac L. Torres Torres

Master’s in Computer Science

Alfredo Cruz, PhD

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract – This project explored the use of

Distributed Machine Learning (DML) as a potential

tool in training times of Machine Learning (ML)

models in lower-end computer cluster, to provide

alternatives for students and scientists when

implementing their ML environment without

expensive/performant hardware. As part of this, an

ML training environment was developed and

deployed using container technology on a 4-node

raspberry pi computer cluster. This cluster was used

to train ML classifier models over the popular

CIFAR10 dataset. Test cases were set up to analyze

how the training times for models were affected

when adding and removing nodes from the system

and varying the number of processor cores allotted

to the system. Data was recorded for each test, such

as the test’s execution time, average CPU time spent

when building the model, overhead, and model

accuracy, among others. When analyzing this data,

it was found that they were practical limits to the

speedup on training times achievable when using

DML for the cluster, with diminishing returns on

speedup values when adding additional nodes.

Meanwhile, the speedup observed when increasing

processing power for the cluster displayed no such

limitations, showing that DML can be used to

improve training times for lower-end devices but in

a limited capacity.

Key Terms: Containers, Distributed Machine

Learning, Docker, Limitations Raspberry Pi.

INTRODUCTION

Machine Learning (ML) is a section of

computer science that involves applying a set of

statistics over a group of data to generate a helpful

process or algorithm to achieve some goal(s). Some

examples of ML applications include controlling

self-driving cars [1], recognizing speech [2],

predicting market trends [3], among others. Usually,

when working with any nontrivial machine learning

application, a significant amount of data is required.

Machine learning models are valued depending on

how accurately they can complete the task, and it is

generally the case that models trained with higher

amounts of data tend to be more accurate. Although

many factors are also involved in this, a significant

amount of data is needed to be processed to pursue

better and more accurate models. This results in a

rise of the necessary processing power required to

train models in a reasonable amount of time.

There are two possible ways to approach this

scaling problem. The first is to perform vertical

scaling. The classic example of this is adding

programmable GPUs to a host system. These GPUs

feature a high number of hardware threads which

improve performance; this has been a proven and

tested method [4, 5]. The second way this can be

approached is by scaling horizontally. This is where

distributed machine learning systems come in; these

are systems and algorithms designed to take

advantage of multiple computer nodes to process

workloads faster than traditional machine learning

strategies.

This project had the purpose of viewing how

distributed machine learning can be leveraged to

allow lower-end devices to be used to complete

nontrivial machine learning tasks. This was explored

by developing a training environment/system to be

used for training machine learning models. This

system was used to perform various tests on a

microcomputer cluster consisting of 4 Raspberry Pi

computer nodes. These tests consisted of training

machine learning models as classifiers on the

popular CIFAR10 image dataset. This dataset

consists of 60000 32x32 color images of one of ten

2

possible classes. The system allowed different

configurations to train models on the CIFAR10 test

data with a varying number of nodes in the cluster

and the number of processor cores used on each host

processor. These values were varied to view the

impact on performance. The unique combination of

these served as the different tests conducted in the

project.

LITERATURE REVIEW

Machine Learning

Machine Learning is a subset of computer

science derived from the study of artificial

intelligence. It can be described as the study and

application of algorithms that can learn. There are

three main broad approaches regarding machine

learning which are: Unsupervised Learning,

Reinforcement Learning, and Supervised Learning.

The last of these was used in this project. Supervised

learning algorithms are those that operate with a set

of data that already has all data points classified. In

simple terms, humans tell the algorithm what values

to look for and which decisions are right. Additional

data on which the model was not trained upon is then

used to determine if the model makes accurate

predictions based on its experience with previous

data [6].

Computer Clusters

This is a group of computers that are working or

coordinating together to achieve some goal. This is

done mainly for two reasons: Improving

performance or throughput, or improving uptime by

providing a backup computer in case the primary

computer fails. This project’s main purpose for using

a computer cluster is the first reason. Training ML

models takes time with more complex models

requiring an extensive amount of training before

being able to approach an acceptable level of

accuracy in their predictions. As such, it is only

logical to search for ways to reduce this training

time. Increasing the speed of training a model can be

done by training on performant hardware. But there

are limits to this, a researcher is constricted to

whatever hardware is available to acquire and not

every computer scientist or company has access to

the higher-end components necessary. Meanwhile,

computer clusters allow for increasing the count of

individual computers in which a program will run to

improve performance. This comes at the price of

some overhead involved in orchestrating each

computer to work together.

Distributed Machine Learning

Next, after discussing Machine Learning and

Computer Clusters, the next logical step is how to

implement machine learning in a Computer Cluster

or distributed environment. Distributed Machine

Learning is a term associated with specific M.L.

algorithms designed to run multi-node systems, or

specific systems designed to improve performance,

accuracy or be able to handle large amounts of input

data [7].

Figure 1 shows a visual representation of the

difference between traditional machine learning and

distributed machine learning. There are two main

paradigms used when discussing distributed

machine learning: data parallelization and model

parallelization. In the Data-Parallel approach, the

data is partitioned as many times as there are worker

nodes in the system. In the Model-Parallel approach,

exact copies of the entire data sets are processed by

the worker nodes which operate on different parts of

the model. For this project, a model-paralleled

approach was used.

Figure 1

Traditional ML vs DML [8]

This project specifically focused on a computer

vision problem which is a subset of ML. Computer

vision is defined as a field inside artificial

3

intelligence. Computer vision allows computers and

applications to deduce useful information from

image data, videos, and other visual inputs and take

actions or make recommendations based on that

information. This project involved building a simple

classifier model for digital images. As such, the type

of ML algorithm chosen was a Convolutional Neural

Network these are a type of Neural Network that has

useful applications for computer vision problems.

Neural Networks

Artificial neural networks are often just called

Neural Networks (NN) is a field that investigates

how simple models of biological brains can be used

to solve difficult computational tasks as seen in

machine learning. Neural Networks can be used to

make predictions mostly because they can be

structured into different forms, and these can have a

hierarchical or multi-layered structure to them.

When trying to apply N.N. to solve computer

vision problems there are several drawbacks because

of the unique qualities of image processing. If

designing a N.N. to accept an image as an input, this

would require at least one perceptron for each input,

the inputs being the number of pixels in the image

[9]. For very small images this might be possible, but

as an image grows the number of neurons, it would

rapidly become unwieldy for large and higher

resolution images. It is apparent that for computer

vision neural networks are not the best choice for the

job.

Convolutional Neural Network

This is where Convolutional Neural Network

(CNN) comes into place. A CNN is a Deep Learning

algorithm that can take in an input image and be able

to determine and assign importance to various

aspects/objects in the image. And additionally, be

able to differentiate objects one from the other

noticing features such as color and shapes while not

suffering from the same drawback from using

traditional NN [10]. This is done using filters, these

are data arrays that are used to parse an image. To

apply a filter, of a size specified by the user

(typically 3x3 or 5x5 pixels) it is moved across an

input image. Typically, from the top left to bottom

right. During this process for each point on the

image, a value is calculated, this value is computed

based on the filter being used to apply a convolution

operation. The convolution operation simply

consists of passing the filter (also called a kernel)

over an input, generally an image. On this pass, when

the values of the image match the size of the kernel,

matrix multiplication is performed between the

kernel and the input, to provide the value of one cell

on the output.

Figure 2 shows a 5x5 input matrix (I) which is

being applied a 3x3 filter/kernel matrix (K) the first

shaded cell in the output 3x3 matrix (O) is the result

of perfuming a matrix multiplication of the blue

shaded area of the matrix I and the filter matrix K in

yellow.

Figure 2

Matrix Convolution Operation [11]

What happens when passing a filter over an

image? After a filter has passed over the image in a

CNN, a feature map is generated for that filter. These

represent patterns recognized in the image. Multiple

filters can be applied to an input to produce different

feature maps. Still, more importantly, filters can be

staked to produce layers of more detailed feature

maps, which become more and more abstract as a

deeper CNN is created that they can detect more

complex features such entire faces, for example.

Training Dataset

The dataset used in this project for training and

testing models is the CIFAR-10. This dataset is

composed of 60000 32x32 images which belong to

one in ten classes, each class corresponds to 6000

respective images. The data set is divided into a

training and test set where there are 50000 training

images and 10000 test images. The ten classes which

appear in the dataset are the following:

4

Classes: 'plane', 'car', 'bird', 'cat', 'deer', 'dog',

'frog', 'horse', 'ship', 'truck'

Figure 3 presents a sample of the different

images contained in the dataset.

 Figure 3

Example of CIFAR10 dataset images [12]

METHODOLOGY

Overview

A system/environment was required which

would allow for quickly training and testing ML

models. Not only in a single host machine but to also

be distributed through multiple hosts, specifically in

a computer cluster consisting of 4 raspberry pi

computers. The developed solution consisted of a

combination of tools and code. As discussed

previously the purpose of this was to examine how

distributed machine learning could be leveraged in

lower-end computer systems specifically a

Raspberry Pi computer cluster. This required the

following steps:

1. Cluster Set up – The physical setup of a

Raspberry Pi computer cluster and all the

necessary configurations needed to prepare

nodes in the cluster.

2. Code Implementation – This encompassed the

implementation of machine learning

algorithm(s) capable to be used in a distributed

and undistributed environment and the

configuration of tools and dependencies

involved.

3. Test Case Development & Execution– This step

involved establishing and executing a set of

different tests to be conducted to compare the

distributed and undistributed designs to observe

and record results.

4. Analysis of Results – The final from involved

analyzing the gathered data from the previous

step to draw conclusions and comparisons.

Design

The main code for this project consisted of three

main scripts or programs (written in python):

1. Standalone Client – This program was

responsible for running the machine learning

implementation designed to run on a single host.

2. Server Client – This program was part of the

distributed machine learning program used

which works in conjunction with the worker-

client program or programs to train a model.

3. Worker Client – Second half of distributed

machine learning implementation.

Figure 4 shows a representation of how both the

distributed and undistributed algorithms were

designed to run on the RPI Cluster.

Figure 4

Visualization of main programs used in the project

The standalone client consisted of a simple

machine learning example that would execute

various tasks such as first loading the CIFAR10

dataset into the file system and then dividing the

dataset into a testing and training dataset. Then the

program would train an ML model over the train set.

An additional script was used for testing the

resulting model over the test dataset and outputting

the accuracy of the model. This program was

designed to be run on a single host in traditional ML

fashion. When referring to this program further on it

will be either as the standalone implementation or

5

the undistributed implementation of the classifier

algorithm.

The second and third programs were designed

to be executed together in a multi-host environment

i.e., the RPI computer cluster. The second was a

program that acted as server-client which was

designed to run on a master node in the cluster, this

program was responsible for assigning work to

worker nodes/clients as well as grouping results of

work from the worker clients once received and

finally creating a single ML model as an output.

The server and worker clients were designed to

communicate and operate between themselves using

the flower framework, a python library which

facilitates implementing distributed machine

learning tasks. This library would handle the

creation of the output model by aggregating the

weights of the different parameters produced from

each worker and taking the average between them.

Internally the flower framework uses RPC channels

to increase the speed of communication between the

master and clients' nodes.

Training algorithm: CNN

In this section the code for the machine learning

algorithm used and its properties are reviewed. A

code snippet with the declaration of the convolution

neural network used for training is:.

Class used to define Neural network

class NueralNetwork(nn.Module):

 def __init__(self):

 # Constructor

 super().__init__()

 self.conv1 = nn.Conv2d(3, 6, 5)

 # Adding 2d Convolution Layer

 self.pool = nn.MaxPool2d(2, 2)

 # A Pooling Layer reduces the variance

 self.conv2 = nn.Conv2d(6, 16, 5)

 # Additional 2d Convolution Layer after pooling

 self.fc1 = nn.Linear(16 * 5 * 5, 120)

 # Linear transformation

 self.fc2 = nn.Linear(120, 84)

 # Linear transformation

 self.fc3 = nn.Linear(84, 10)

Linear transformation

The CNN used consists of 2 convolution layers

and 3 Linear transforms:

1. The first layer applies a filter to extract features

from the image. These would detect basic lines,

curves and basic outlines that are detected on the

image.

2. The second layer was a pooling layer which is

used to take the average of a region when a filter

is passed through producing a layer with

reduced dimensions. This output is passed

through an additional convolution layer to

extract additional more complex features from

the averaged previous layer.

3. Finally, three successive linear transforms were

applied to the resulting layer. These final

transforms reduce the output of the convolution

layer to 10 possible outcomes corresponding to

the 10 classes of which the images of the

CIFAR10 dataset could be. When running an

input through the model the output with a higher

weight would be chosen as the model’s guess.

Running Test Cases

The Processing of running a test on the system

was simplified thanks to the selection of tools used.

First, test cases were defined using docker-compose

files. These files defined the appropriate images

(bundles of code and dependencies) to be used in the

test, where containers (instance of the code in image)

would be deployed to the cluster. The number of

nodes and the number of CPU cores used. When

running the test on a single host a single container

was sufficient. But for our distributed test using the

RPI cluster, multiple containers were necessary

which had to run in different nodes in the cluster.

Normally, these would have to be started

individually, in this area docker-compose files also

helped as they replaced having to rely on the Docker

CLI for the deployment of our containers since it is

possible to manage multiple containers through a

single compose file.

The following code sample shows an example

of a docker-compose file:

6

master:

 image: ${TARGET}-master-node

 container_name: ${TARGET}-master

 build:

 context: "../"

 dockerfile: "server.${TARGET}"

 deploy:

 mode: global

 constraint: node.label==RPI-M

networks:

 cluster_network

The files could be executed in a group of host

computers through a docker swarm which in short is

a group of computers logically through their docker

daemons (running docker process). Each worker

node in the cluster needed to be registered to the

master node via the docker CLI to achieve this.

When running a compose file on the main node of a

docker swarm, the docker daemon handles reads the

compose files, and starts managing distribution and

execution of containers on each swarm node as

specified in the compose file used.

As mentioned before, these compose files were

used to define and execute the different test cases in

the project. When a test case was to be executed by

its corresponding compose, the file was fed to the

docker client on the master node of the RPI cluster,

also known as the manager for the docker swarm.

After which, the docker would take care of

deploying containers matching the specification

given in the compose file. Each container run by

docker in this way is considered a service and the

group of deployed services are collectively referred

to as a stack by docker.

 Figure 5 shows a visual representation of the

process of building and uploading the final images

containing all the necessary source code to execute

each test case and how these images were used by

each node. For caching purposes, these images were

accessed through a remote registry where the images

were stored. The benefit of using a registry to

distribute images is that the images do not have to be

updated locally on each node of the cluster before

use.

 Figure 5

Process visualization of creating dispensing docker images

The process of deploying test cases to the cluster

could be managed from a host external to the cluster

thanks to docker contexts which allow remote

commands to be sent to an external docker daemon.

When targeting the RPI cluster the docker context

was set to the master/manager node of the docker

swarm in the RPI cluster. This way the cluster test

could be performed remotely without having to

directly access the cluster. Figure 6 shows how test

cases were executed from an external host through

compose files.

Figure 6

Visualization of Running Test Cases

Data Collection

As discussed previously the testing process was

done using composed files. Each compose file

corresponded through a different test case which is

run through the system. The different test cases

consisted of running the same machine learning task

in this case Training a classifier on the CIFAR10

data with varying amounts of worker nodes and

varying amounts of processor cores. Each possible

7

configuration of nodes and cores had its own unique

compose file. For these test cases, various values

were recorded and calculated based on the recorded

data. To reduce the variance of these values each test

case was run three times to produce an average value

for test case. For each of these the following values

were recorded and/or calculated:

• Total Training time (Ttime) – This is the time

required for training a model using the

parameters established in the test case. This

value was averaged over three runs of the same

test case.

∆𝑇𝑡𝑖𝑚𝑒 =
𝑇1 + 𝑇2 + 𝑇3

3

• Total Work Time (Wtime) – This approximated

the time taken to training for the test case. This

was calculated as the average work time

between all the nodes used in the test case.

∆𝑊𝑡𝑖𝑚𝑒 =
𝑊1 + ⋯ + 𝑊𝑛

𝑛

• Accuracy (Acc.) –The accuracy for the final

model produced by the test case.

∆𝐴𝑐𝑐 =
𝐴1 + ⋯ + 𝐴𝑛

3

• Total overhead Time (Otime) – This was the

amount of time spent by the system on

communication between nodes. This was

calculated by subtracting the total work time

from the total training time.

𝑂𝑡𝑖𝑚𝑒 = ∆𝑇𝑡𝑖𝑚𝑒 − ∆𝑊𝑡𝑖𝑚𝑒

• Work Percentage (W%) – This value represents

the percentage of time the system spent

performing actual work training the model.

𝑊% =
∆𝑊𝑡𝑖𝑚𝑒

∆𝑇𝑡𝑖𝑚𝑒

• Overhead Percentage (O%) – This value

represented the percentage of time the system

spent communicating between nodes.

𝑂% =
∆𝑂𝑡𝑖𝑚𝑒

∆𝑇𝑡𝑖𝑚𝑒

• Speedup – This was calculated through a simple

division of training times obtained from test

cases. Each test case was compared to a base

training time which would be obtained from test

case with the lowest number of nodes or cores.

Speedup (S) =
∆Ttime (Test Case x)

∆Ttime (Test Case(base))

RESULTS

In this section the results of all test cases are

compiled as well as various data visualizations based

on the recovered data, as well the results of any

additional calculations performed. The

abbreviations used for variables in the previous

section are used reused in this section. The addition

of “N” and “C” are short for “node count” and “core

count” and represent the number of nodes and

processor cores allotted for use when running the test

case. Table 1 presents the result of training a model

by first varying the number of worker nodes in the

system.

Table 1

Results for increasing node counts

N:C ∆𝑻𝒕𝒊𝒎𝒆 ∆𝑾𝒕𝒊𝒎𝒆

𝑾% 𝑶% 𝑺 ∆𝑨𝒄𝒄

1:2

936.
3 936.3 1.00 0.00 0.00 0.56

2:4
478.

8 437.6 0.91 0.09 1.96 0.55

3:6
387.

0 327.0 0.84 0.18 2.42 0.56

From this table, it can be observed that training

times were reduced by adding additional worker

nodes. Though, some additional time was lost due to

overhead in the system. This however still resulted

in positive speed up values after adding additional

nodes. Additional nodes could be physically added

to determine an inflection point where the overhead

involved with communication starts to be greater

than the actual CPU time. Due to lack of materials,

an inflection point was determined through

extrapolating from gathered data this is shown

further in figure 9.

Figure 7 shows a visualization of the overall

training time and the actual CPU time spent by the

cluster on average to train models with varying

amounts of nodes.

8

Figure 7

Training times for test cases varying node count

Figure 8 presents the percentage of time each

test case spent training a model vs coordinating

nodes is presented in the following figure. From the

figure, it can be seen the amount of CPU time is

slowly decreasing meanwhile the communication

time is increasing as more nodes are added.

 Figure 8

CPU Time vs Communication Time

Figure 9 presents a visualization of CPU

training times vs communication time when

increasing node count in the cluster.

Figure 9

CPU time vs Communication time extrapolated

The amount of processing power used in each

node configuration was also varied to measure the

impact additional computational power would have

on each node configuration. The next table presents

test cases that involved a fixed node count but

varying the number of processors available to use

during training. Specifically, Table 2 shows the

results for varying the number of cores used when

running the cluster in a 3-node configuration.

Table 2

Results for varying Core count in 3-Node Configuration

N:C ∆𝑻𝒕𝒊𝒎𝒆 ∆𝑾𝒕𝒊𝒎𝒆

𝑾% 𝑶% 𝑺 ∆𝑨𝒄𝒄

3:1
2205.5

1856.

9

0.84

0.16

1.00

0.57

3:2
1247.9

1086.

4

0.87

0.13

1.77

0.56

3:3

815.0

726.8

0.89

0.11

2.71

0.59

3:4

628.8

561.8

0.89

0.11

3.51

0.58

3:5

503.2

453.0

0.90

0.10

4.38

0.6

3:6 387.0 327.0

0.84

0.18

5.70

0.61

It can be seen that as more cores were allotted

for the cluster to use, training times for models

decreased. Figure 10 shows a visualization of

training times for test results using a 3-node

configuration. Since this configuration contained the

most data points linear and exponential regression

was used to approximate the behavior of the cluster.

 Figure 10

Results for varying Core count in 3-Node Configuration

Figure 11 presents a comparison between the

trends for speedup values obtained from increasing

CPU count and increasing node count. For this figure

9

speedup, the data from tables 1 and 2 were used to

present the behavior of the system when adding

computational power to the system without adding

more nodes. It is important to note that adding a node

is equivalent to adding two cores to the cluster as

each RPI has two cores. This figure was created to

view if modifying the existing hardware would

produce better results than adding additional nodes

to the cluster.

Figure 11

Speedup comparison for varying nodes and cores

Finally, Figure 12 shows a visualization of the

accuracy of values for all test cases tried. The

average accuracy was calculated to be 57±1.7%.

Figure 12

Accuracy of Models across all test cases

DISCUSSION

From the results, various trends regarding the

recollected data can be seen. First is accuracy for all

models produced by test cases which remained

almost constant hovering around 57±1.7%. The is

strong evidence that training models in distributed

environments have little effect if any on the accuracy

of trained models. Second training times for models

when adding additional nodes outpaced training

times for models trained by adding additional cores.

At least meanwhile, the number of cores remained

low. Also, from observing the behavior of speed up

values it was found that adding additional nodes has

diminishing returns when compared to simply

adding more processing power to the system. From

figure 9 it can be inferred that this limit lies around

4 to 5 nodes when the overhead time starts to become

greater than the actual time spent performing work.

This is consistent with current literature regarding

how coordination and communication time between

nodes is one of the more significant bottlenecks in

distributed environments.

CONCLUSION

For this project, an environment for training

machine learning models with the functionality to

scale up or down with relative ease was successfully

created. This system was used to examine the

performance of an RPI cluster in training classifier

models over the CIFAR10 dataset. By observing

training times produced by the test cases, it was

found that in general, models produced using a

distributed approach were trained in less time than

models trained with an undistributed approach, at

least for initial test cases, which involved low

processing power. Additionally, when examining

the effect of adding additional cores to the system

without the added complexity of adding additional

nodes it was found that this could result in greater

speedup values when adding the equivalent

processing power of an additional node to the

system. It is apparent that training machine learning

models was feasible in an RPI. Although, examining

recovered data it was observed that training time

could not be reduced indefinitely by adding

additional nodes to the cluster, due to diminishing

returns. For this particular implementation, the max

practical number of RPI that could be used in the

cluster was found to be from 4 to 5. Since RPI are

not traditionally designed to have their hardware be

upgraded, this creates a hard limit for workloads able

to be run on RPI clusters.

10

ACKNOWLEDGMENTS

This work is supported by, or in part by, the

DoD Cybersecurity Scholarship Program (CySP)

under grant # H98230-20-1-0355. Special thanks are

extended to Dr. Alfredo Cruz, Ph.D. of the

Polytechnic University of Puerto for his extended

supervision, guidance, and patience throughout this

project.

REFERENCES

[1] M. Bojarski, et al. (2016). End to End Learning for Self-

Driving Cars. [online]. Available:

http://arxiv.org/abs/1604.07316

[2] D. Amodei, et al. (2016). Deep speech 2: End-to-end Speech

Recognition in English and Mandarin. PMLR. [online].

Available: http://proceedings.mlr.press/v48/amodei16.html

[3] A. Khandani, A. Kim, and A. Lo,. “Consumer Credit-risk

Models via machine-learning algorithms,” Journal of

Banking & Finance, vol. 34, issue 11, pp. 2767-2787, 2010.

[4] H. Kargupta, et al, “MobiMine: Monitoring the Stock

Market From a PDA,” ACM Explore. News., vol. 3, no. 2,

pp. 37–46, 2002.

[5] H. Kargupta, et al, “VEDAS: A Mobile and Distributed Data

Stream Mining System for Real-time Vehicle Monitoring,”

In Proceedings of the 2004 SIAM International Conference

on Data Mining, Lake Buena Vista, FL, USA, pp. 300–311,

2004.

[6] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin,

“Voronoi-Based Multi-Robot Autonomous Exploration in

Unknown Environments via Deep Reinforcement

Learning,” IEEE Transactions on Vehicular Technology,

vol. 69, no. 12, pp. 14413–14423, 2020..

doi:10.1109/TVT.2020.3034800

[7] P. Tean. (2020). Distributed Machine Learning for Big

Data. [online] Available:

https://www.guavus.com/technical-blog/distributed-

machine-learning-for-big-data-and-streaming/

[8] L. Mao. (2019). Parallelism VS Model Parallelism in

Distributed Deep Learning Training. [online] Available:

https://leimao.github.io/blog/Data-Parallelism-vs-Model-

Paralelism/

[9] J. Verbraeken, et al. (2020). A Survey on Distributed

Machine Learning. [online] Available:

https://dl.acm.org/doi/fullHtml/10.1145/3377454

[10] P. Walpita. (2020), Convolutional Neural Networks for

Artificial Vision. [online] Available:

https://priyalwalpita.medium.com/convolutional-neural-

networks-for-artificial-vision-455be7c85d15

[11] S. Saha. (2018). A Comprehensive Guide to Convolutional

Neural Networks. [online] Available:

https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-

3bd2b1164a53

[12] A. Krizhevsky. (2013). CIFAR-10 and CIFAR-100

Datasets. [online] Available:

https://www.cs.toronto.edu/~kriz/cifar.html

