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Abstract – This project explored the use of 

Distributed Machine Learning (DML) as a potential 

tool in training times of Machine Learning (ML) 

models in lower-end computer cluster, to provide 

alternatives for students and scientists when 

implementing their ML environment without 

expensive/performant hardware. As part of this, an 

ML training environment was developed and 

deployed using container technology on a 4-node 

raspberry pi computer cluster. This cluster was used 

to train ML classifier models over the popular 

CIFAR10 dataset. Test cases were set up to analyze 

how the training times for models were affected 

when adding and removing nodes from the system 

and varying the number of processor cores allotted 

to the system. Data was recorded for each test, such 

as the test’s execution time, average CPU time spent 

when building the model, overhead, and model 

accuracy, among others. When analyzing this data, 

it was found that they were practical limits to the 

speedup on training times achievable when using 

DML for the cluster, with diminishing returns on 

speedup values when adding additional nodes. 

Meanwhile, the speedup observed when increasing 

processing power for the cluster displayed no such 

limitations, showing that DML can be used to 

improve training times for lower-end devices but in 

a limited capacity.  

Key Terms: Containers, Distributed Machine 

Learning, Docker, Limitations Raspberry Pi.  

INTRODUCTION 

Machine Learning (ML) is a section of 

computer science that involves applying a set of 

statistics over a group of data to generate a helpful 

process or algorithm to achieve some goal(s). Some 

examples of ML applications include controlling 

self-driving cars [1], recognizing speech [2], 

predicting market trends [3], among others. Usually, 

when working with any nontrivial machine learning 

application, a significant amount of data is required. 

Machine learning models are valued depending on 

how accurately they can complete the task, and it is 

generally the case that models trained with higher 

amounts of data tend to be more accurate. Although 

many factors are also involved in this, a significant 

amount of data is needed to be processed to pursue 

better and more accurate models. This results in a 

rise of the necessary processing power required to 

train models in a reasonable amount of time. 

There are two possible ways to approach this 

scaling problem. The first is to perform vertical 

scaling. The classic example of this is adding 

programmable GPUs to a host system. These GPUs 

feature a high number of hardware threads which 

improve performance; this has been a proven and 

tested method [4, 5]. The second way this can be 

approached is by scaling horizontally. This is where 

distributed machine learning systems come in; these 

are systems and algorithms designed to take 

advantage of multiple computer nodes to process 

workloads faster than traditional machine learning 

strategies.  

This project had the purpose of viewing how 

distributed machine learning can be leveraged to 

allow lower-end devices to be used to complete 

nontrivial machine learning tasks. This was explored 

by developing a training environment/system to be 

used for training machine learning models. This 

system was used to perform various tests on a 

microcomputer cluster consisting of 4 Raspberry Pi 

computer nodes. These tests consisted of training 

machine learning models as classifiers on the 

popular CIFAR10 image dataset. This dataset 

consists of 60000 32x32 color images of one of ten 
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possible classes. The system allowed different 

configurations to train models on the CIFAR10 test 

data with a varying number of nodes in the cluster 

and the number of processor cores used on each host 

processor. These values were varied to view the 

impact on performance. The unique combination of 

these served as the different tests conducted in the 

project. 

LITERATURE REVIEW 

Machine Learning 

Machine Learning is a subset of computer 

science derived from the study of artificial 

intelligence. It can be described as the study and 

application of algorithms that can learn. There are 

three main broad approaches regarding machine 

learning which are: Unsupervised Learning, 

Reinforcement Learning, and Supervised Learning. 

The last of these was used in this project. Supervised 

learning algorithms are those that operate with a set 

of data that already has all data points classified. In 

simple terms, humans tell the algorithm what values 

to look for and which decisions are right. Additional 

data on which the model was not trained upon is then 

used to determine if the model makes accurate 

predictions based on its experience with previous 

data [6].   

Computer Clusters 

This is a group of computers that are working or 

coordinating together to achieve some goal. This is 

done mainly for two reasons: Improving 

performance or throughput, or improving uptime by 

providing a backup computer in case the primary 

computer fails. This project’s main purpose for using 

a computer cluster is the first reason. Training ML 

models takes time with more complex models 

requiring an extensive amount of training before 

being able to approach an acceptable level of 

accuracy in their predictions. As such, it is only 

logical to search for ways to reduce this training 

time. Increasing the speed of training a model can be 

done by training on performant hardware. But there 

are limits to this, a researcher is constricted to 

whatever hardware is available to acquire and not 

every computer scientist or company has access to 

the higher-end components necessary. Meanwhile, 

computer clusters allow for increasing the count of 

individual computers in which a program will run to 

improve performance. This comes at the price of 

some overhead involved in orchestrating each 

computer to work together.  

Distributed Machine Learning 

Next, after discussing Machine Learning and 

Computer Clusters, the next logical step is how to 

implement machine learning in a Computer Cluster 

or distributed environment. Distributed Machine 

Learning is a term associated with specific M.L. 

algorithms designed to run multi-node systems, or 

specific systems designed to improve performance, 

accuracy or be able to handle large amounts of input 

data [7].  

Figure 1 shows a visual representation of the 

difference between traditional machine learning and 

distributed machine learning. There are two main 

paradigms used when discussing distributed 

machine learning: data parallelization and model 

parallelization. In the Data-Parallel approach, the 

data is partitioned as many times as there are worker 

nodes in the system. In the Model-Parallel approach, 

exact copies of the entire data sets are processed by 

the worker nodes which operate on different parts of 

the model. For this project, a model-paralleled 

approach was used. 

 
Figure 1 

Traditional ML vs DML [8]   

This project specifically focused on a computer 

vision problem which is a subset of ML. Computer 

vision is defined as a field inside artificial 
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intelligence. Computer vision allows computers and 

applications to deduce useful information from 

image data, videos, and other visual inputs and take 

actions or make recommendations based on that 

information. This project involved building a simple 

classifier model for digital images. As such, the type 

of ML algorithm chosen was a Convolutional Neural 

Network these are a type of Neural Network that has 

useful applications for computer vision problems. 

Neural Networks 

Artificial neural networks are often just called 

Neural Networks (NN) is a field that investigates 

how simple models of biological brains can be used 

to solve difficult computational tasks as seen in 

machine learning. Neural Networks can be used to 

make predictions mostly because they can be 

structured into different forms, and these can have a 

hierarchical or multi-layered structure to them.  

When trying to apply N.N. to solve computer 

vision problems there are several drawbacks because 

of the unique qualities of image processing. If 

designing a N.N. to accept an image as an input, this 

would require at least one perceptron for each input, 

the inputs being the number of pixels in the image 

[9]. For very small images this might be possible, but 

as an image grows the number of neurons, it would 

rapidly become unwieldy for large and higher 

resolution images. It is apparent that for computer 

vision neural networks are not the best choice for the 

job.  

Convolutional Neural Network 

This is where Convolutional Neural Network 

(CNN) comes into place. A CNN is a Deep Learning 

algorithm that can take in an input image and be able 

to determine and assign importance to various 

aspects/objects in the image. And additionally, be 

able to differentiate objects one from the other 

noticing features such as color and shapes while not 

suffering from the same drawback from using 

traditional NN [10]. This is done using filters, these 

are data arrays that are used to parse an image. To 

apply a filter, of a size specified by the user 

(typically 3x3 or 5x5 pixels) it is moved across an 

input image. Typically, from the top left to bottom 

right. During this process for each point on the 

image, a value is calculated, this value is computed 

based on the filter being used to apply a convolution 

operation. The convolution operation simply 

consists of passing the filter (also called a kernel) 

over an input, generally an image. On this pass, when 

the values of the image match the size of the kernel, 

matrix multiplication is performed between the 

kernel and the input, to provide the value of one cell 

on the output.  

Figure 2 shows a 5x5 input matrix (I) which is 

being applied a 3x3 filter/kernel matrix (K) the first 

shaded cell in the output 3x3 matrix (O) is the result 

of perfuming a matrix multiplication of the blue 

shaded area of the matrix I and the filter matrix K in 

yellow.  

 
Figure 2 

Matrix Convolution Operation [11] 

What happens when passing a filter over an 

image? After a filter has passed over the image in a 

CNN, a feature map is generated for that filter. These 

represent patterns recognized in the image. Multiple 

filters can be applied to an input to produce different 

feature maps. Still, more importantly, filters can be 

staked to produce layers of more detailed feature 

maps, which become more and more abstract as a 

deeper CNN is created that they can detect more 

complex features such entire faces, for example.  

Training Dataset 

The dataset used in this project for training and 

testing models is the CIFAR-10. This dataset is 

composed of 60000 32x32 images which belong to 

one in ten classes, each class corresponds to 6000 

respective images. The data set is divided into a 

training and test set where there are 50000 training 

images and 10000 test images. The ten classes which 

appear in the dataset are the following:  
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Classes: 'plane', 'car', 'bird', 'cat', 'deer', 'dog', 

'frog', 'horse', 'ship', 'truck' 

Figure 3 presents a sample of the different 

images contained in the dataset.  

 
 Figure 3 

Example of CIFAR10 dataset images [12] 

METHODOLOGY 

Overview 

A system/environment was required which 

would allow for quickly training and testing ML 

models. Not only in a single host machine but to also 

be distributed through multiple hosts, specifically in 

a computer cluster consisting of 4 raspberry pi 

computers. The developed solution consisted of a 

combination of tools and code. As discussed 

previously the purpose of this was to examine how 

distributed machine learning could be leveraged in 

lower-end computer systems specifically a 

Raspberry Pi computer cluster. This required the 

following steps:  

1. Cluster Set up – The physical setup of a 

Raspberry Pi computer cluster and all the 

necessary configurations needed to prepare 

nodes in the cluster. 

2. Code Implementation – This encompassed the 

implementation of machine learning 

algorithm(s) capable to be used in a distributed 

and undistributed environment and the 

configuration of tools and dependencies 

involved.  

3. Test Case Development & Execution– This step 

involved establishing and executing a set of 

different tests to be conducted to compare the 

distributed and undistributed designs to observe 

and record results. 

4. Analysis of Results – The final from involved 

analyzing the gathered data from the previous 

step to draw conclusions and comparisons.  

Design 

The main code for this project consisted of three 

main scripts or programs (written in python): 

1. Standalone Client – This program was 

responsible for running the machine learning 

implementation designed to run on a single host.   

2. Server Client – This program was part of the 

distributed machine learning program used 

which works in conjunction with the worker-

client program or programs to train a model.   

3. Worker Client – Second half of distributed 

machine learning implementation.  

Figure 4 shows a representation of how both the 

distributed and undistributed algorithms were 

designed to run on the RPI Cluster.  

 
Figure 4 

Visualization of main programs used in the project 

The standalone client consisted of a simple 

machine learning example that would execute 

various tasks such as first loading the CIFAR10 

dataset into the file system and then dividing the 

dataset into a testing and training dataset. Then the 

program would train an ML model over the train set. 

An additional script was used for testing the 

resulting model over the test dataset and outputting 

the accuracy of the model. This program was 

designed to be run on a single host in traditional ML 

fashion. When referring to this program further on it 

will be either as the standalone implementation or 
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the undistributed implementation of the classifier 

algorithm. 

The second and third programs were designed 

to be executed together in a multi-host environment 

i.e., the RPI computer cluster. The second was a 

program that acted as server-client which was 

designed to run on a master node in the cluster, this 

program was responsible for assigning work to 

worker nodes/clients as well as grouping results of 

work from the worker clients once received and 

finally creating a single ML model as an output.  

The server and worker clients were designed to 

communicate and operate between themselves using 

the flower framework, a python library which 

facilitates implementing distributed machine 

learning tasks. This library would handle the 

creation of the output model by aggregating the 

weights of the different parameters produced from 

each worker and taking the average between them. 

Internally the flower framework uses RPC channels 

to increase the speed of communication between the 

master and clients' nodes. 

Training algorithm: CNN  

In this section the code for the machine learning 

algorithm used and its properties are reviewed. A 

code snippet with the declaration of the convolution 

neural network used for training is:. 

# Class used to define Neural network 

class NueralNetwork(nn.Module): 

    def __init__(self):                             

 # Constructor 

        super().__init__() 

        self.conv1 = nn.Conv2d(3, 6, 5)             

 # Adding 2d Convolution Layer 

        self.pool = nn.MaxPool2d(2, 2)              

 # A Pooling Layer reduces the variance  

        self.conv2 = nn.Conv2d(6, 16, 5)            

 # Additional 2d Convolution Layer after pooling   

        self.fc1 = nn.Linear(16 * 5 * 5, 120)       

 # Linear transformation  

        self.fc2 = nn.Linear(120, 84)               

 # Linear transformation 

        self.fc3 = nn.Linear(84, 10)                 

# Linear transformation 

 

The CNN used consists of 2 convolution layers 

and 3 Linear transforms: 

1. The first layer applies a filter to extract features 

from the image. These would detect basic lines, 

curves and basic outlines that are detected on the 

image.  

2. The second layer was a pooling layer which is 

used to take the average of a region when a filter 

is passed through producing a layer with 

reduced dimensions. This output is passed 

through an additional convolution layer to 

extract additional more complex features from 

the averaged previous layer.  

3. Finally, three successive linear transforms were 

applied to the resulting layer. These final 

transforms reduce the output of the convolution 

layer to 10 possible outcomes corresponding to 

the 10 classes of which the images of the 

CIFAR10 dataset could be. When running an 

input through the model the output with a higher 

weight would be chosen as the model’s guess.  

Running Test Cases 

The Processing of running a test on the system 

was simplified thanks to the selection of tools used. 

First, test cases were defined using docker-compose 

files. These files defined the appropriate images 

(bundles of code and dependencies) to be used in the 

test, where containers (instance of the code in image) 

would be deployed to the cluster. The number of 

nodes and the number of CPU cores used. When 

running the test on a single host a single container 

was sufficient. But for our distributed test using the 

RPI cluster, multiple containers were necessary 

which had to run in different nodes in the cluster. 

Normally, these would have to be started 

individually, in this area docker-compose files also 

helped as they replaced having to rely on the Docker 

CLI for the deployment of our containers since it is 

possible to manage multiple containers through a 

single compose file.  

The following code sample shows an example 

of a docker-compose file: 
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master: 

    image: ${TARGET}-master-node 

    container_name: ${TARGET}-master  

    build: 

      context: "../"                                  

      dockerfile: "server.${TARGET}" 

    deploy: 

      mode: global  

      constraint: node.label==RPI-M    

networks: 

  cluster_network 

The files could be executed in a group of host 

computers through a docker swarm which in short is 

a group of computers logically through their docker 

daemons (running docker process). Each worker 

node in the cluster needed to be registered to the 

master node via the docker CLI to achieve this. 

When running a compose file on the main node of a 

docker swarm, the docker daemon handles reads the 

compose files, and starts managing distribution and 

execution of containers on each swarm node as 

specified in the compose file used.  

As mentioned before, these compose files were 

used to define and execute the different test cases in 

the project. When a test case was to be executed by 

its corresponding compose, the file was fed to the 

docker client on the master node of the RPI cluster, 

also known as the manager for the docker swarm. 

After which, the docker would take care of 

deploying containers matching the specification 

given in the compose file. Each container run by 

docker in this way is considered a service and the 

group of deployed services are collectively referred 

to as a stack by docker. 

     Figure 5 shows a visual representation of the 

process of building and uploading the final images 

containing all the necessary source code to execute 

each test case and how these images were used by 

each node. For caching purposes, these images were 

accessed through a remote registry where the images 

were stored. The benefit of using a registry to 

distribute images is that the images do not have to be 

updated locally on each node of the cluster before 

use.   

 
 Figure 5 

Process visualization of creating dispensing docker images 

The process of deploying test cases to the cluster 

could be managed from a host external to the cluster 

thanks to docker contexts which allow remote 

commands to be sent to an external docker daemon. 

When targeting the RPI cluster the docker context 

was set to the master/manager node of the docker 

swarm in the RPI cluster. This way the cluster test 

could be performed remotely without having to 

directly access the cluster. Figure 6 shows how test 

cases were executed from an external host through 

compose files.  

 
Figure 6 

Visualization of Running Test Cases 

Data Collection  

As discussed previously the testing process was 

done using composed files. Each compose file 

corresponded through a different test case which is 

run through the system. The different test cases 

consisted of running the same machine learning task 

in this case Training a classifier on the CIFAR10 

data with varying amounts of worker nodes and 

varying amounts of processor cores. Each possible 
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configuration of nodes and cores had its own unique 

compose file. For these test cases, various values 

were recorded and calculated based on the recorded 

data. To reduce the variance of these values each test 

case was run three times to produce an average value 

for test case. For each of these the following values 

were recorded and/or calculated:  

• Total Training time (Ttime) – This is the time 

required for training a model using the 

parameters established in the test case. This 

value was averaged over three runs of the same 

test case.  

∆𝑇𝑡𝑖𝑚𝑒 =
𝑇1 +  𝑇2 + 𝑇3

3
 

• Total Work Time (Wtime) – This approximated 

the time taken to training for the test case. This 

was calculated as the average work time 

between all the nodes used in the test case.  

∆𝑊𝑡𝑖𝑚𝑒 =
𝑊1 + ⋯ + 𝑊𝑛

𝑛
 

• Accuracy (Acc.) –The accuracy for the final 

model produced by the test case.  

∆𝐴𝑐𝑐 =
𝐴1 + ⋯ +  𝐴𝑛

3
 

• Total overhead Time (Otime) – This was the 

amount of time spent by the system on 

communication between nodes. This was 

calculated by subtracting the total work time 

from the total training time.  

𝑂𝑡𝑖𝑚𝑒 = ∆𝑇𝑡𝑖𝑚𝑒 −  ∆𝑊𝑡𝑖𝑚𝑒  

• Work Percentage (W%) – This value represents 

the percentage of time the system spent 

performing actual work training the model.  

𝑊% =
∆𝑊𝑡𝑖𝑚𝑒

∆𝑇𝑡𝑖𝑚𝑒

 

• Overhead Percentage (O%) – This value 

represented the percentage of time the system 

spent communicating between nodes.  

𝑂% =
∆𝑂𝑡𝑖𝑚𝑒

∆𝑇𝑡𝑖𝑚𝑒

 

• Speedup – This was calculated through a simple 

division of training times obtained from test 

cases.  Each test case was compared to a base 

training time which would be obtained from test 

case with the lowest number of nodes or cores.  

Speedup (S) =
∆Ttime (Test Case x) 

∆Ttime (Test Case(base))
 

RESULTS 

In this section the results of all test cases are 

compiled as well as various data visualizations based 

on the recovered data, as well the results of any 

additional calculations performed. The 

abbreviations used for variables in the previous 

section are used reused in this section. The addition 

of “N” and “C” are short for “node count” and “core 

count” and represent the number of nodes and 

processor cores allotted for use when running the test 

case. Table 1 presents the result of training a model 

by first varying the number of worker nodes in the 

system. 

Table 1 

Results for increasing node counts 

N:C ∆𝑻𝒕𝒊𝒎𝒆 ∆𝑾𝒕𝒊𝒎𝒆 

  

𝑾%  𝑶% 𝑺 ∆𝑨𝒄𝒄 

 
1:2 

936.
3 936.3 1.00 0.00 0.00 0.56 

 

2:4 
478.

8 437.6 0.91 0.09 1.96 0.55 

 

3:6 
387.

0 327.0 0.84 0.18 2.42 0.56 

 

From this table, it can be observed that training 

times were reduced by adding additional worker 

nodes. Though, some additional time was lost due to 

overhead in the system. This however still resulted 

in positive speed up values after adding additional 

nodes. Additional nodes could be physically added 

to determine an inflection point where the overhead 

involved with communication starts to be greater 

than the actual CPU time. Due to lack of materials, 

an inflection point was determined through 

extrapolating from gathered data this is shown 

further in figure 9.  

Figure 7 shows a visualization of the overall 

training time and the actual CPU time spent by the 

cluster on average to train models with varying 

amounts of nodes.  
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Figure 7 

Training times for test cases varying node count 

Figure 8 presents the percentage of time each 

test case spent training a model vs coordinating 

nodes is presented in the following figure. From the 

figure, it can be seen the amount of CPU time is 

slowly decreasing meanwhile the communication 

time is increasing as more nodes are added. 

 
 Figure 8 

CPU Time vs Communication Time  

Figure 9 presents a visualization of CPU 

training times vs communication time when 

increasing node count in the cluster. 

Figure 9 

CPU time vs Communication time extrapolated  

The amount of processing power used in each 

node configuration was also varied to measure the 

impact additional computational power would have 

on each node configuration. The next table presents 

test cases that involved a fixed node count but 

varying the number of processors available to use 

during training. Specifically, Table 2 shows the 

results for varying the number of cores used when 

running the cluster in a 3-node configuration.  

Table 2 

Results for varying Core count in 3-Node Configuration  

N:C ∆𝑻𝒕𝒊𝒎𝒆 ∆𝑾𝒕𝒊𝒎𝒆 

  

𝑾%  𝑶% 𝑺 ∆𝑨𝒄𝒄 

 

3:1 
2205.5 

 
1856.

9 

 

0.84 

 

0.16 

 

1.00 

 

0.57 

 

3:2 
1247.9 

 
1086.

4 

 

0.87 

 

0.13 

 

1.77 

 

0.56 

 

3:3 

 

815.0 

 

726.8 

 

0.89 

 

0.11 

 

2.71 

 

0.59 

 

3:4 

 

628.8 

 

561.8 

 

0.89 

 

0.11 

 

3.51 

 

0.58 

 

3:5 

 

503.2 

 

453.0 

 

0.90 

 

0.10 

 

4.38 

 

0.6 

 

3:6 387.0 327.0 

 

0.84 

 

0.18 

 

5.70 

 

0.61 

 

It can be seen that as more cores were allotted 

for the cluster to use, training times for models 

decreased. Figure 10 shows a visualization of 

training times for test results using a 3-node 

configuration. Since this configuration contained the 

most data points linear and exponential regression 

was used to approximate the behavior of the cluster.  

 
  Figure 10 

Results for varying Core count in 3-Node Configuration 

Figure 11 presents a comparison between the 

trends for speedup values obtained from increasing 

CPU count and increasing node count. For this figure 
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speedup, the data from tables 1 and 2 were used to 

present the behavior of the system when adding 

computational power to the system without adding 

more nodes. It is important to note that adding a node 

is equivalent to adding two cores to the cluster as 

each RPI has two cores. This figure was created to 

view if modifying the existing hardware would 

produce better results than adding additional nodes 

to the cluster. 

 
Figure 11 

Speedup comparison for varying nodes and cores 

Finally, Figure 12 shows a visualization of the 

accuracy of values for all test cases tried. The 

average accuracy was calculated to be 57±1.7%. 

Figure 12 

Accuracy of Models across all test cases 

DISCUSSION 

From the results, various trends regarding the 

recollected data can be seen. First is accuracy for all 

models produced by test cases which remained 

almost constant hovering around 57±1.7%. The is 

strong evidence that training models in distributed 

environments have little effect if any on the accuracy 

of trained models. Second training times for models 

when adding additional nodes outpaced training 

times for models trained by adding additional cores. 

At least meanwhile, the number of cores remained 

low. Also, from observing the behavior of speed up 

values it was found that adding additional nodes has 

diminishing returns when compared to simply 

adding more processing power to the system. From 

figure 9 it can be inferred that this limit lies around 

4 to 5 nodes when the overhead time starts to become 

greater than the actual time spent performing work. 

This is consistent with current literature regarding 

how coordination and communication time between 

nodes is one of the more significant bottlenecks in 

distributed environments.  

CONCLUSION 

For this project, an environment for training 

machine learning models with the functionality to 

scale up or down with relative ease was successfully 

created. This system was used to examine the 

performance of an RPI cluster in training classifier 

models over the CIFAR10 dataset. By observing 

training times produced by the test cases, it was 

found that in general, models produced using a 

distributed approach were trained in less time than 

models trained with an undistributed approach, at 

least for initial test cases, which involved low 

processing power.  Additionally, when examining 

the effect of adding additional cores to the system 

without the added complexity of adding additional 

nodes it was found that this could result in greater 

speedup values when adding the equivalent 

processing power of an additional node to the 

system. It is apparent that training machine learning 

models was feasible in an RPI. Although, examining 

recovered data it was observed that training time 

could not be reduced indefinitely by adding 

additional nodes to the cluster, due to diminishing 

returns. For this particular implementation, the max 

practical number of RPI that could be used in the 

cluster was found to be from 4 to 5. Since RPI are 

not traditionally designed to have their hardware be 

upgraded, this creates a hard limit for workloads able 

to be run on RPI clusters.  
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