
Programmable logic controllers: A course in
programming and implementation

Miguel A. Ortiz
Graduation candidate

Abstract

The purpose of this paper is to provide basic information related to
programmable logic controllers (PLCs), their applications and programming.
It covers the historical background and an overview of the programmable
controller plus brief discussions of its input/output system and peripheral
devices and programming languages. The document was designed to serve as
an instructor's guide for a fifth year engineering course and continuing
education at a graduate level.

Sinopsis

Este artfculo provee informacidn b&sica sobre los controladores de 16gica
programable, sus aplicaciones y distintos metodos de programaci6n. En el
documento se presenta el trasfondo hist6rico y una descripcion de los
controladores de I6gica programable, sus sistemas de entrada/salida y equipo
periferal y los lenguajes de programacibn. El artfculo se redacto como gufa
para un curso de quinto ano de ingenierfa y como base para education
continuada a nivel graduado.

Historical background

The National Electrical Manufacturers Association (NEMA) defines a
PLC as a "digital electronic device with a programmable memory for storing
instructions to implement specific functions such as logic, sequencing, timing,
counting and arithmetic to control machines and processes." Even though a
personal computer (PC) can be used for control functions, it cannot stand the
harsher environments where a PLC operates. In fact, the PLC is less flexible
but more rugged than the PC.

33

Ortiz/Programmable controllers

In 1968, the Hydramatic Division of General Motors Corporation
requested, by definition, an electronic machine to replace the multiple relays
used in the mass manufacture of automobiles and their parts. According to
the simplified specifications by General Motors, the electronic machine must:

1. be easily programmed and reprogrammed with a minimum of down
time

2. be easily maintained while rugged enough to operate in an industrial
environment

3. consume less power and require less cabinet and floor space than
a relay control system

4. be competitive in cost and have expandable memory

5. communicate with the data collection systems and accept 120 volt
AC signals.

During the 1970s, the developments in microprocessor technology
provided a more powerful and flexible PLC. Mathematics, data manipulation
and communications were improved. Memory capacity was increased and
communications with host computers was introduced.

Overview of the programmable controller

A programmable controller is composed of two basic sections: the
^ntr^mP^Tg Un"-(CPU) and thc inPut/°utput (I/O) interface system.
thememoryS elements: the Power suPP'y. the microprocessor and

nerinhertrT P°wer f<* the CPU and, normally, to the
Sw rcJn designed to operate in areas of high electromagnetic
short-circuh-protccted. 6 °UtPUt °f P°Wer SUpP'y U ^er-regulated and

fora p̂ppr(P̂ ̂

protection circmtry,programmmg language and nature of input/output chcuitry.

34

Rev. Univ. Politic. P.R., Vol. 2, Num. 1

Microprocessors are generally categorized by word size. A greater word
length allows for faster manipulation of information, as more data are handled
in one operation. It receives and manipulates external information from the
input modules and then updates the outputs. This sequence is known as a
scan. The scan time is measured in milliseconds per kilobyte. The input
signals should not be quicker than the scan time of the microprocessor for the
input data to be processed.

The implementation of specific functions in a PLC is provided by the use
of a programmable memory. The executive memory provides the operating
system assigned by the manufacturer and normally resides in a read-only-
memory (ROM). The executive memory needs a temporary storage of data
that is provided by the random-access memory (RAM), which is not accessible
to the user. The I/O status memory is in a portion of a RAM that is assigned
for the storage of the current I/O status and is part of the executive or
operating system. The application memory is used to fulfill the control
function and it is subdivided into data memory and user memory. The data
memory, generally contains preset values for counters and timers, and
instructions for data manipulation of mathematical functions. Since this is a
changing situation, the memory used is a RAM. On the other hand, the user
memory is the most accessible to the programmer and provides the
programmable feature of the PLC. The microprocessor scans the user
memory by the use of the address bus, which provides a particular location,
and the data bus, which makes available the data stored in the memory.
Because of the continuously changing nature of the data input, this memory
is also a RAM.

The input/output system of the PLC

A. The input modules

The I/O system provides the interface between the PLC and the outside
world, either from the inputs or to the outputs. The most common interface
is the digital or discrete type. The input signals are either Open (O) or
Closed (1). Some discrete input devices are limit switches, push-buttons,
photoelectric devices, level switches, relay contacts, reed switches and selector
switches. These devices receive their operating voltage from the PLC system
and it may vary from 24 volts AC/DC depending on the specific design.
Another type of discrete input devices is the transistor-transistor-logic (TTL)
level or a contact closure.

35

Ortiz/Programmable controllers

The AC/DC input interface converts the external signal, which normally
carries undesired electrical components, into an acceptable signal to be used
by the processor. A typical AC/DC input interface is composed of two
primary parts: the power section and the logic section. The power section
performs the function of converting the relatively high voltage to a DC value
by using a bridge rectifier. A logic circuit determines whether the signal has
reached the threshold level to accept it as valid. Then an optical isolator
transmits the signal to the processor (fig. 1). A variation to this type of
interface is the isolated AC/DC input module, which has a separate return
line for each input terminal instead of a common terminal for a group of
inputs, which is the case for the standard AC/DC input module.

Figure 1. Block diagram of the AC/DC input circuit

On the other hand, the DC input module does not contain a bridge
circuit, because conversion to DC is not necessary. Different from AC/DC
mput modules, the DC module can interface in the current sinking or sourcing
mode. A device that provides current is the sourcing element whereas the one
that receives current is the sinking element.

Another type of input module to the PCL is the TTL input module
which provides the interface between the controller and TTL compatible
devices. Normally, TTL devices are faster than the standard AC/DC input
,, ,m°dul,e used successfully with binary coded <irr,Lt mCDl
thumbwheel switches which operate at TTL levels.

An mput interface can also be provided by the numerical data interface
module. This module handles multiple bits, such as the BCD wfccht
represented by four bits of data. An example of a multiple bit input w^ld te
the representation m a thumbwheel of the number 5 as 0101.

36

Rev. Univ. Politic. P.R., Vol. 2, Num. 1

The input interface could also be the non-voltage input module. This
module does not require that the field device provide power when energized.
A "dry contact" is a typical representation. Solid state relays and
instrumentation outputs with open collectors are also part of this classification.

Finally, the analog input interface module is part of the modern trend
of PLCs input types. Signals from thermocouples, pressure transducers,
resistance temperature detectors (RTDs) and strain gauges are representative
analog inputs. These signals are converted from analog to digital and then fed
to the processor in order to obtain the desired output.

B. The output modules

The discrete output module is the most common type of output interface.
This module interconnects between the controller and die output field devices.
The controlled devices will exhibit a digital or discrete operation (ON/OFF).
Some of these devices are alarms, solenoids, relays, valves, lights and fans.
The voltage characteristics are similar to those described for the input
modules, although they can be different in a system. For example, the input
can be 24 volts DC, while the outputs can be 120 volts AC. The voltage
characteristics can also be mixed in the input or output modules, meaning that
a device or group of devices can operate with one voltage characteristic while
other groups can operate with different characteristics, within the same
system.

Figure 2 shows another type of output interface. The diagram presents
a general description of the AC output module, whose configuration varies
between manufacturers. This circuit consists of the logic and power sections,
coupled by an isolator circuit. It operates as a switch through which power
is provided to control the output device. When an ON signal is fed into the
output module, it is coupled through the optical isolator, which in turn will
switch the voltage through the power section to the field device. The
switching section uses a triac, a silicon controlled rectifier (SCR), or a relay,
protected by an R-C snubber or by a metal oxide varistor (MOV).

37

Ortiz Programmable controllers

Figure 2. Block diagram of the AC output circuit

Another type of output interface is the DC oufput module. This module
has the same characteristics of the DC input module. It also operates similar
to the AC output except for the fact that its output element generally employs
a transistor to switch the load. For protection of the transistor, a "free­
wheeling" diode should be connected at the load. A fuse is also recommended
to protect the module from moderate overloads.

The TTL output module is an output interface used to directly drive
TTL output devices such as seven segment LED displays and integrated
circuits. The numerical data interface provides parallel communication
between the processor and the output device. This output may have
multiplexing capabilities, where several groups of outputs may be controlled
with one interface.

Lastly, the contact output is simply a switch which can turn ON or OFF
its load. The contacts are magnetically coupled, so isolation from the load to
controller is obtained. This output type can be used for switching AC or DC
loads of moderate current requirements.

Peripheral interfaces

The most common peripheral interfacing devices communicate in serial
form at speeds ranging from 110 to 19200 bits per second. The most popular
of this group is the EIA RS-232C, followed by the EIA RS-422. Other
interface methods are the IEEE 488 instrument bus, the PDP-11 Unibus and
the 20 mA current loop.

38

Rev. Univ. Politic. P.R., Vol. 2, Num. 1

Programming languages

Programming languages have evolved since the inception of the PLC in
the early 1960s. Nevertheless, some of the basic languages have maintained
their original standings with some necessary changes and additions. The most
popular of these languages is the relay ladder logic format (RLL). As more
sophisticated equipment has been introduced, more versatile instructions have
also evolved. Many of these instructions are enhancements to the original
ladder format. Other instructions deal with the transferring of data to and
from the I/O modules.

The functional descriptions of the various instructions presented in this
article will provide an understanding of their operation. The instructions,
although covered in a generic nature, are of the same shape, form and
function in most programmable controllers.

Types of instructions

The basic requirements in the development of the programmable
controller were the effective representation of the program logic needed to
control a machine or process and the ease of programming. Based on these
concepts, the RLL was the first one implemented. Evolution of this language
provided more powerful instruction sets.

Most industrial processes require the completion of several operations
to produce the required output. Machining manufacturing, finishing,
assembling and transporting of products require the precise coordination of
several tasks for an economical system to function. Electronic controls have
provided the necessary coordination and monitoring of these industrial
processes in the past, and with more sophistication today. These controls can
be divided into two general categories: sequential and combinatorial.
Sequential controls are required for processes which demand that certain
operations be performed in a particular order. Combinatorial processes do
not require this order.

Basic ladder logic instructions

Earlier sequence controls used electromechanical multicontact relays in
switching circuits. Logic functions were performed by state assignment of
open or closed relay contacts. The closed contact was usually the true or 1
state. The open contact was the false or O state. Figure 3 shows some
elementary relay contact connections and their equivalent logic functions.

39

Ortiz/Programmable controllers

RELAY CONTACT CONNECTIONS
LOGIC

ELECTIONS

(o)
-O A x B * C

(to>

<c)

if
A

ih

ih

HI ° A x B x C

-O A +

O A +

Figure 3. Relationship between relay contact connections and their logic
functions

are ba'sirMT/ imp.°rtant'° observe the interpretation of the symbols. They
Srns and 3 of ">e RLL. In figure 3 (a) continuity between
points 1 and 2 is granted if relays A and B and C are energized The

l̂ dlTrefavTri 'hat ̂be continuity between points
Contacts A RanH c * ̂̂ coUs B andC are energized.

in I^dcrfonn(f i g 4) a C t U a t m g ̂ T h < = * - u a l l y shown

40

Rev. Univ. Politic. P.R., Vol. 2, Num. I

T AC POWER ?
—uuuu— T1

Figure 4. Ladder diagram of a circuit

The secondary terminals of the control transformer extend vertically
downward to form the boundary lines for the diagram. Field input devices
attach from left to right, while output devices attach to the right leg. This
fight leg, designated as the common line, is normally wired to ground. Each
horizontal ling, is numbered at the left side in sequence for easy referencing.
The numbers next to each relay coil indicate the lines on which the relay
contacts are used. If the contact of reference is a normally closed contact, a
line is marked either above or underlining the line number depicting the
location. The operating sequence can be listed by following the ladder

41

urtiz/Programmable controllers

diagram line by line. The sequence shown in figure 4 is described below:

Line 2 Start push-button is actuated; ICR is energized if 3CR is
unenergized and the stop push-button is not actuated.

Line 3 Contact ICR closes, latching relay coil ICR even after the start
push-button is released.

Line 4 Contact ICR closes, energizing relay coil 2CR if limit switch 1 is not
actuated.

Lme 5 Contact 2CR closes, energizing motor control 1M if limit switch 1
is not actuated.

Line 8 Contact 2CR closes, energizing solenoid A which might control air
or hydraulic fluid.

Line 6 Limit switch 1 is actuated, energizing relay coil 3CR.

LmC 5 motor** 1LS °PeDS de"energi2ing relay coil 1M, shutting off the

Lme 7 Contact 3CR closes, energizing the time delay coil, TD1.

Line 2 relay TlCR^ 1TD ^-energizing

Line 4 Relay contact ICR opens, de-energizing relay coil 2CR.

^ 8 sequence.2^ solenoid coil A to end the

performSTaleshed 'Til! ""I•' Specific order of operations be
to design combinatorial systems^e no lole^d' Simple techni'ues ^
element must now be considered N I?I adequate, inasmuch as the time
control systems rmeT^fo™T f' m°St reqUeStS f°r deCtr0nic

manufacturing proce^sta^ IT^TH
statements into the language of dinital Inoie F ' Pl * convertln« these

used for ladder logic programming. OW5 0,6 basic s>,mbok

42

Rev. Univ. Politec. P.R., Vol. 2, Num. 1

1| N . D .

jf N . C .

() COIL OR OUTPUT

P . S .

J) PRESSURE ACTIVATED SWITCH

T . A . S .

| (TEMPERATURE ACTIVATED SWITCH

(L) LATCH OUT

" (u) UNLATCH OUT

• (/) OUT NOT

Figure 5. Basic symbols for ladder logic programming

Ortiz/Programmable controllers

The first three symbols in figure 5 are the normally open, normally
closed and output symbols. The last three symbols , latch out, unlatch out,
and out not are commonly known as relay-type instructions. The two middle
symbols represent specific device contacts. Recalling that the PLC is in part
designed to replace relays, the first three symbols need to be presented
differently.

The N.O. contact indicates that a specific signal is required to close the
contact and complete the current flow path through the rung of the ladder.
The symbol is not a representation of a real contact. It represents a no input
signal status. The N.C. contact represents a normal flow of current through
the rung when there is no input signal. (The word normally refers to the
status of a contact when it is neither electrically nor mechanically activated).
The output symbol represents a coil, but it might as well represent other
output devices such as motors, lamps or solenoids.

The out and out not relay-type instructions are the normally open and
normally closed contact counterparts. The out is on when the corresponding
input signal is on. The out not is on when there is no corresponding input
signal The inverse holds true in both cases. The latch out and unlatch out
simulate a latching relay which consists of two coils; the latching and the
unlatching coils respectively. When the latching cod is activated, the
corresponding N.O contacts close and the N.C. contacts open. The contacts
emam in that condition even after deactivating the latch cod. The contacts

A shL nI"" ""iwu condltlon when P°wer is applied to the unlatch cod.
A short pulse is all that is required to toggle each of the coils.

h„r ,hPrH?ammin8 Symb°'S Vary Sllghtly from manufacturer to manufacturer
be n sho^rnTiH"6 THe °UtPut for example, have
been shown up to this point as a circle or as a set of parentheses The latter

with cfrclcs.0mPUter termU,alS' Whereas design drawings arc normally shown

Boolean mnemonic language

%ure 6 equivalency can be confirmed by carefidly studying

44

Rev. Univ. PoUtec. P.R., Vol. 2, Num. 1

LADDER LOGIC BOOLEAN MtCMONlCS

CMP « CMP •

CHP > CMP >

CM» < CM» <

) JMP

JSB JSB

NCR

END NCR

-at

•at

Ot

<*Y

NCR

ENO NCR

AND

OR

NAND

NOR

LOAD

LOAD MIT

ADD

SUB

MUL

DIV

figure 6. Equivalency between ladder logic and Boolean mnemonics

45

Ortiz/ Programmable controllers

In many cases the Boolean characters are the same as those in the
ladder format, except for some symbols that are not used in the Boolean
system. Observe the compare, jump, jump-to-subroutine, and master control
relay instructions.

Some symbols that deserve special attention are the OR, NOR, LOAD
and LOAD NOT instructions. The OR instruction is a normally open contact
in parallel with a rung, thereby providing continuity to the output through
alternate paths. The NOR is connected in the same format and performs in
opposite form to the OR as it employs a normally closed contact. The LOAD
and LOAD NOT instructions are used to start programming from a rung with
a normally open and normally closed contacts, respectively. Some
manufacturers used the word START instead of LOAD. It is a good practice
to study the manufacturers instruction manuals in order to become familiar
with their particularities.

The four arithmetical symbols shown in figure 6 are addition
subtraction, multiplication and division. These operations can be performed
on memory data, on constants or on both.

Enhanced programs

Microprocessor technology improvements which have appeared
m £e ™arket at a reasonable cost have also provided modern

UdTH r subroutine blocks which can be introduced into the simple
Ltruct oT^rv ^ W0CkS OOMain more complicated builbin

can represent the GET and PUT instructions, timers,
J V m p ' r e ^ t e r s c o m p l i c a t e d f u n c t i o n s l i k e proportional, integrals and derivative loops (PID).

svmb^TSsEm,mrUCti°n,(fige7) inC,UdeS a number ^ contact ^ymbol. Tins number indicates the memory address reference, where data are

0000 660

GET

301

GET

005

-i-y

figure 7. Example of a subroutine block

46

Rev. Univ. Politic. P.R., Vol. 2, Num. 1

Transducers like the temperature, flow, pressure or level types ran feed
data to these addresses to be operated upon according to the program in
memory. The GET instruction is then used to retrieve the stored information.

Going back to figure 7, the program flow for subtraction of data between
two registers can be followed. (The memory locations for the temporary
storage of data, instruction, or information are often called registers). When
the control contact at the left is closed, datum at register 660, and the
difference is stored at register 005.

Figure 8 illustrates operations involving data and constants. When
contact 0000 doses, the contents of register 660 is multiplied by the constant
10; the product is stored in register 522. When the control contract 0001 is
closed, the product previously stored at register 522 is divided by the contents
of register 220 and the quotient is then stored at register 330.

0000

0001

660

G E T

522

G E T

301

G E T

220

G E T

522

330

J

Figure 8. Operations involving data and constants in a subroutine block

Companion to the GET instruction is the PUT instruction. This
i°straction is shown in figure 9 as an output with the corresponding register
location on top. The put instruction is used to store outputs into a particular
register or to move data from one particular register to another.

47

Ortiz/Programmable controllers

0000 660 005

HI GET (PUT}

Figure 9. Illustration of the use of the GET and PUT insmntipns

High-level languages

Block symbol language

Block diagrams can be used to form high-level language to allow the
programmer to implement complex routines still using the simple ladder
diagram approach. The block diagram symbols are introduced into the ladder
diagrams as if they were simple output elements. The symbols are placed in
the corresponding rung of the ladder diagram, where a permissive signal is
required to let the operation be carried out.

Figure 10 shows the most frequent block diagram symbols in use today.
The first block corresponds to the timer symbol. The control input is
programmed in series with the corresponding control contacts to permit
starting of operation upon contact closure. The timer will operate until the
preset tune is reached and then provides an output by closing all its
programmed contacts. This particular configuration shows the timer operating
internally at 1 second intervals up to the preset value of 10 seconds. At that
elapsed period of time, its output will then be activated. Upon application erf
a signal to the reset contact, the timer status will return to the original
condition; it is reset to 0 (zero) and disabled until the next control signal is
received. The reset mput is not provided in most of the configurations sold
today, because the timer resets at the time the control signal is removed.

T I*** shown in the second block of figure 10 includes a direction.
In other words, it will count down from the preset value of 30 in single

^ ?fUt SIgDaI puke ^ ̂'output is obtained at the value of
T KSCu mpUt ^ Present> counler to the preset

the w d gC the countmS direction, the word down is replaced by

48

Rev. JJniv. Politec. P.R, Vol. 2, Num. 1

RESET

CUT

DOWN 01

PRE 30

atmoL
TIN

OUT atmoL
PRE 10

BASE 01

OUT

•r«rr

PRE 10

BASE 01
TKR

PRE 10

BASE 01
TKR

CWTROL
ADD. SUB. MUL DIV

REG 107

(EG 302

REG 416

ARITHMETIC

OPERATOR

COOROL

REG 312

REG 107 KJVE

CMP » . CMP > . CMP <

OWTROI.

REG 730

REG 415
COMPARE

FUNCTIONS

DLL

AND
REG 612
REG 432
REG 723

BOOLEAN
LOGIC

PID

S REG 601
G REG 611
1 REG 701
0 REG 711
P REG 901
N REG 811
0 REG 921

PROPORTIONAL
INTEGRAL
DERIVATIVE
CONTROL

Figure 10. Block diagram symbols

Ortiz/Programmable controllers

The third block corresponds to the four arithmetical operations. When
the control signal is present, the information contained in registers 107 and
302 (data or constants), is used to perform the indicated arithmetical
operation, and the result is placed in register 416. The output line is used for
overflow indication. Higher level mathematics is used in modern equipment
in similar fashion.

The fourth block, MOVE, performs the same operation as the previously
presented combination of GET and PUT in figure 9. When the control signal
is present, the stored information at register 312 is relocated to register 107.
Many instruction manuals provide other variations for data transfer
instructions. Some of the more frequently used are shift register, word shift,
move not, arithmetic shift left/right and block move.

The fifth block in figure 10 represents the compare functions. The
mformation in ^e first ^ registers are compared and if the selected
condition is satisfied, the output is energized.

AND^S™10? rTSentS Boolean bI°<* sy-hol and it performs the
AND operator. It makes use of registers 612 and 432. When the control

72^and eTer^^T"0" ̂ be Completed ^ 5torin8 the result at register
raster to TPU!' S°me manufacturers do not assign the third
T̂ult at to IvJ r ./n 11115 Case tho se«»d register is used to store

ovet^!^. eXPeme °f destr0J™g ^ previously stored information, by

(PID) module^°<Tahh^lr^ ̂ refers to tbe Pr°portional-integral-derivative

Table 1. Module connection points
Connection Function

S process set point
Register

601
611 G desired gain value

I input from process 701
G output control signal 1\\
R proportional constant 801
N integral constant 811

derivative constant 821

50

Rev. Univ. Politec. P.R., VoL 2, Num. 1

The manufacturing sector in Puerto Rico is using this concept through
PLCs instead of "ring discrete instrumentation. This way it can reduce cost,
space and down-time in order to improve troubleshooting efficiency and
providing a basis for management-oriented information and data collection
systems.

Computer-type languages (CTL)

Computer-type languages make use of the English language and are
similar to Basic. TTiey are operator-oriented and therefore user-friendly. The
variations between this language and the Basic language must be verified from
the particular PLC manufacturer's literature.

The program can be read from a ladder diagram and transferred directly
into CTL. If we were to program the ladder rung below (fig. 11) using CTL,
the program would look like this:

Figure 11. Ladder diagram for CTL program below

10 READ X
20 IF X=0 YHRN Y=0
30 IF X=1 THEN Y = 1

Although simple, this program illustrates how easy it is to transfer from
one language to the other, using the same source of informaUon.
Mathematical instructions like SQR, LOG, SIN, and COS are used for Real
time computation.

Two principal types of languages used to program PLCs have been
^cussed: low-level and high-level languages. The ladder-type knguag ,
UP°» which others in the same category as well as those known as high-level
316 built, was found to be the most popular. This language was deve ©pe

X Y

51

Ortiz/Programmable controllers

order to provide a smooth transition between the original relay ladder
diagrams and the then new development of the PLC in 1968. Boolean
mnemonic language is the second most popular language. Nevertheless, they
both are limited in flexibility on the basis of user demands.

Block language and computer-type-languages (CTLs) form the high-level
group discussed in this presentation. Although this paper is not intended as.
a substitute for a formal textbook, it covers the general composition of PLC
programming languages.

Proposed syllabus for a course in programmable controllers

I. General information

Course title

Codification

Credits

Timetable

Pre-requisites

II. Course description

Programmable controllers
Theory and applications

EE-XXX

3

4 hours per week

EE-435 (Automatic control systems)
EE-536 (Microprocessors II)

The course will cover the development and evolution of the
programmable controller (PLC); programming instructions used by the
different manufacturers; conversion from hardware to software logic;
computer-like capabilities of the PLC; high level languages;
programming devices and peripheral; selection, applications and
installation; industrial analog devices and actual programming throughout
the course with real PLCs. ^

III. Course objectives

toCleZttna0blet;C°UrSe' ^ ̂ ̂ haVe

52

Rev. Univ. Politic. P.R, Vol. 2, Num. 1

1. Name and understand the major applications, advantages and
benefits of a typical programmable logic controller.

2. Name the major components necessary for the implementation in
a typical industrial installation.

3. Read, understand and design ladder diagrams and other high level
languages.

4. Provide a solution, from analysis to design, of a real case.

IV. Course outline

A. Brief review of microprocessors and number systems.

B. History of the PLC

1. Origins and development
2. Contrasts and similarities with the personal computer
3. The PLC industry

C. Applications

1. Selection of a system
2. Control schemes
3. Reliability

D. Hardware

1. Input/output (I/O) structure
2. Input/output (I/O) configuration
3. The CPU
4. Power supplies

E. Programming

1. Relay ladder logic
2. Extended relay instructions
3. Timers and counters
4. Mathematics and number conversion

53

Ortiz/ Programmable controllers

F. Peripherals and accessories

1. Peripherals and support
2. Programming devices
3. Communications and accessories

G. Selection and specifications

H. Assembly, installation and maintenance

I. Selected programs

Textbook

Programmable Controller Handbook
Robert E. Wilhelm, Jr.
Hayden Book Company, 1985

Note: This course will be complemented with 20 hours of in-
training sessions in programming of a commercial PLC.

A field trip to an industrial installation is advisable.

