
Cracking the Monoalphabetic Substitution Cipher

Mr. Carlos Santana

Masters in Computer Science - Cybersecurity

Jeffrey Duffany

Department of Computer Science

Polytechnic University of Puerto Rico

Abstract — Cryptography is the cornerstone of

secure communication. It is the study of techniques

by which a message, the plaintext, is transformed

into an obfuscated form, the ciphertext. One of the

earliest cryptographic techniques used by the

Romans is the monoalphabetic substitution cipher. It

replaces one letter in a message with another. This

approach has one glaring weakness, in that the

frequency of letters is preserved in the ciphertext.

This renders messages encrypted via

monoalphabetic substitution vulnerable to frequency

analysis attacks. Frequency analysis is the

knowledge of how frequently letters are used in a

language. A persistent attacker that has intercepted

the message can conduct frequency analysis to

“crack” a monoalphabetic substitution cipher. An

algorithm can also be created to automate the

process and conduct frequency analysis attacks on

ciphertext to crack the cipher in minutes, decrypting

the message and exposing the plaintext and its

contents to an unintended recipient.

Key Terms—Cryptography, Decryption,

Frequency Analysis, Monoalphabetic Substitution.

INTRODUCTION

With the proliferation of online transactions and

online communications came the need to ensure that

those communications are as secure as they can be.

The field of cryptography was born from this need

for security. Cryptography, derived from the Greek

word parts kryptos (“hidden”) and graphein (“to

write”), is the practice of communication techniques

in such a way that only the sender and the intended

recipient can understand the message’s contents.

Cryptography is the cornerstone of information

security, with its techniques forming the basis of

secure communications worldwide.

The basis of cryptography is the use of a code or

algorithm, called a cipher, to transform the original

message, called the plaintext, into its hidden or

obfuscated form, called the ciphertext. This

transformation is called encryption. The reverse

process, in which the cipher is used to transform the

ciphertext back into the plaintext, is called

decryption. The researcher will be focusing on the

decryption component of the process in this

document.

There are two kinds of cipher techniques

traditionally used: transposition and substitution.

Transposition ciphers alter the order of letters within

the message without changing the letters themselves;

for example, “automobile” could be encrypted into

“ebatmulioo”. Substitution ciphers replace each

letter in the message with another letter; for example,

“automobile” could be encrypted into “fryplpbmie”

[1]. The type of cipher the researcher will be

focusing on in this document is a substitution cipher

called the monoalphabetic substitution cipher, or

simple substitution cipher. This technique pairs each

letter of the alphabet the message was written in with

another letter in the same alphabet; then the message

is rewritten, except that every letter is replaced by

the letter it was paired with [2].

BACKGROUND

The researcher came to the Polytechnic

University with an undergraduate degree in

computer science. As a graduate student at the

university, he wished to complete a project that

would put his training in programming to good use,

while being useful to the field of cryptography and

information security. This is when the mentor

presented him with the concept of conducting

frequency analysis attacks to crack a

monoalphabetic substitution cipher and use that

cipher to decrypt some ciphertext.

PROBLEM

As the researcher mentioned earlier,

monoalphabetic substitution ciphers work by pairing

letters in the alphabet with other letters in that same

alphabet, then rewriting the message by replacing

each letter with the letter it was paired with.

However, cryptographers will recognize that this

cipher has a glaring weakness. Because each

occurrence of a given letter is replaced with the same

letter every time, the number of times that letter

appears can still be detected. For example, if

“automobile” is encrypted as “fryplpbmie”, the

presence of two p’s reveal that whatever letter the p

is replacing appears twice in the original word. The

study of how frequently a letter appears within a

ciphertext is called frequency analysis. This study

forms the basis for decrypting the monoalphabetic

substitution cipher.

Figure 1

English Letter Frequencies

There are tendencies with every language for

certain letters to occur more frequently than others.

As demonstrated by Figure 1, the letter E is the most

common letter in the English alphabet, generally

composing up to 12.7% of the letters in a document.

E is followed by T, A, O, I, and N. Cryptographers

recognize that these tendencies will likely hold with

most pieces of plaintext. And thanks to the

monoalphabetic cipher’s fatal flaw, these letter

frequencies are preserved when the plaintext is

converted into ciphertext. Therefore, a persistent

cryptographer can use frequency analysis to try and

guess which letter in the ciphertext maps to which

letter in the plaintext [3].

This was the principle behind this project. The

researcher planned to create an algorithm, in a

programming language of his choice, that would

execute the following steps:

• Receive a piece of ciphertext from the user.

• Conduct frequency analysis on the ciphertext.

• Generate an initial mapping of ciphertext letters

to plaintext letters.

• Use a series of English rules and tendencies to

fix the mapping.

• Use the mapping to translate the ciphertext into

plaintext.

• Return the plaintext to the user.

SOFTWARE

As this was a programming project, very little

equipment was needed. The researcher conducted all

the work on his personal computer, which runs on

64-bit Windows 10. Visual Studio Code was used to

create and run the program, and the program was

written in Python. Python was selected for this

programming language because of the researcher’s

familiarity with the language, as well as its powerful

features that made writing this algorithm

significantly easier.

PROGRAM DETAILS

ct = readfromfile("duffcaesar.txt")

(ctl, SPACE_INDICES, ctw,

CIPHER_WORDS_WITH_DOUBLES, WORDS_BY_SIZE)

= textstats(ct)

CIPHER_FREQ = {}

(CIPHER_FREQ, ctl_lettersonly) =

countletters(ct)

CIPHER_FREQ_PCT = countpcts(CIPHER_FREQ,

ctl_lettersonly)

CIPHER_FREQ_SORTED =

sorted(CIPHER_FREQ_PCT.items(),

key=lambda kv:(kv[1],kv[0]),

reverse=True)

CIPHER_FREQ_LETTERSONLY = []

for i in CIPHER_FREQ_SORTED:

 CIPHER_FREQ_LETTERSONLY.append(i[0])

MAPPING =

create_mapping(CIPHER_FREQ_SORTED,

FREQ_SORTED)

MAPPING = check_mapping(MAPPING)

pt = translate(ct, MAPPING)

print("The ciphertext:\n{0}\nmay decode

to the following:\n{1}".format(ct,pt))

Figure 2

Program Main Body

This program runs in four phases, as shown in

Figure 2: collecting the ciphertext and relevant data

about the ciphertext, conducting frequency analysis,

creating (and perfecting) the letter mapping, and

translating the ciphertext into plaintext, which is

then printed on the screen. The code displayed in

Figure 2 is the main body of my program, with the

comments omitted to save space. Any import

statements and constants created for this program

will be listed in Appendix A. Furthermore, most of

the code in my program is contained within

functions. To aid in understanding, the researcher

will go over each section and the relevant functions

individually.

Phase 1: Retrieving Ciphertext Data

def readfromfile(filename: str) -> str:

 with open(filename, 'r') as f:

 text = f.read().lower()

 print("Ciphertext read from:

{0}".format(filename))

 return text

def textstats(text:str) -> tuple:

 textlen = len(text)

 spaces = []

 for i in range(textlen):

 if text[i] == ' ':

 spaces.append(i)

 words = text.split(' ')

 doubles = []

 for word in words:

 if has_double(word):

 doubles.append(word)

 sizes = []

 big = len(max(words,key=len))

 for i in range(1, big + 1):

 lst = []

 for word in words:

 if word[-1] not in

FREQ_LETTERSONLY:

 word = word[:-1]

 if len(word) == i and word

not in lst:

 lst.append(word)

 sizes.append(lst)

 return (textlen, spaces, words,

doubles, sizes)

Figure 3

readfromfile(), textstats(), and has_double()

In the first phase, the program looks for a

specified file in the current working directory and

then runs readfromfile() on that file. This function is

a straightforward repackaging of a built-in function.

It opens the file in a read-only state, reads the file’s

contents, uses lower() to convert all the alphabetical

characters into lowercase format to make mapping

less of a headache later, and then deposits the results

into a string object. It prints a feedback line to the

user detailing that the ciphertext has been read from

the specified file, then returns the string object to the

user.

This string object is later passed to a separate

function called textstats() to retrieve some additional

statistical data about the ciphertext. Most of this

statistical data will prove invaluable to the frequency

analysis and mapping processes later. Five items are

calculated and then returned to the program in the

form of a 5-tuple. The five pieces of information

retrieved from the ciphertext are as follows:

• The length of the ciphertext.

• The index of every space character in the

ciphertext.

• A list containing every word in the ciphertext.

• A list of lists, where each list contains every

word from the ciphertext that has a given length.

• Every word in the ciphertext that has a double-

letter pair.

The last piece of information is collected to aid

in the perfecting process during phase 3. It is aided

by a third function called has_double(), which the

researcher has placed in Appendix B. This function

examines a word, letter by letter, and returns a

Boolean value: TRUE if the word has a double-letter

pair, and FALSE if it does not.

Phase 2: Conducting Frequency Analysis

def countletters(text:str) -> tuple:

 counts = {}

 lettersonly = 0

 for char in text:

 if char not in FREQ_LETTERSONLY:

 continue

 counts[char] = counts.get(char,

0) + 1

 lettersonly += 1

 return (counts, lettersonly)

def countpcts(dicto:dict, nums:int) ->

dict:

 counts_pct = {}

 for item in dicto.keys():

 counts_pct[item] =

dicto[item]/nums

 return counts_pct

Figure 4

Countletters() and countpcts()

In the second phase, the program takes the

ciphertext received from the user and runs

countletters() on the ciphertext. The function creates

a dictionary, with the keys being each letter that was

found in the ciphertext, and the values being how

many times said letter appeared in the ciphertext. To

conduct frequency analysis properly, the program

omits any symbol that is not a letter; newlines,

numbers, and punctuation symbols are not counted.

As each letter is counted, a secondary statistic is

calculated, measuring the total number of letters in

the ciphertext. Both objects are returned to the

program as an unordered pair.

The second function, countpcts(), operates on

the information returned by countletters(). It takes

the dictionary and makes a copy of its keys. It then

takes the number of times the letter occurred in the

ciphertext and divides it by the total number of

letters in the ciphertext, to attain a percentage: the

percent of the ciphertext letters that each letter

constitutes. This percentage is what will ultimately

be used to draw a comparison between the ciphertext

letter frequency and the plaintext letter frequency.

Phase 3: Creating and Fixing a Letter Map

def create_mapping(cipher_dict: dict,

plain_dict: dict) -> dict:

 mapping = {}

 cipherlen = len(cipher_dict)

 for i in range(cipherlen):

 mapping[cipher_dict[i][0]] =

plain_dict[i][0]

 mapping.update(CONSTANT_SYMS)

 return mapping

def check_mapping(potential_map:dict) ->

dict:

 map_with_fixed_the =

check_the(potential_map)

 map_with_fixed_two =

check_twoletters(map_with_fixed_the)

 map_with_fixed_plurals =

check_plurals(map_with_fixed_two)

 map_with_fixed_w =

check_w(map_with_fixed_plurals)

 map_with_fixed_end =

check_endings(map_with_fixed_w)

 map_with_fixed_three =

check_threeletters(map_with_fixed_end)

 map_with_fixed_ing =

check_ing(map_with_fixed_three)

 map_with_fixed_doubles =

check_doubles(map_with_fixed_ing)

 newmap = {}

 newmap.update(map_with_fixed_doubles)

 newmap.update(CONSTANT_SYMS)

 return newmap

Figure 5

Create_mapping() and check_mapping()

Now comes the meat and potatoes of the

program, so to speak. In the third phase, the program

works with two constants; the first stores the

plaintext letter frequencies sorted in descending

order, and the second contains the ciphertext letter

frequencies, also sorted in descending order. The

sorted() function is used to store a list of tuples in

both constants, with each tuple being a key-value

pair in the dictionary these constants were created

from. The first element of each tuple is the key, and

the second is the value.

The first function, create_mapping(), takes both

constants and creates a new dictionary. Then, a for-

loop repeats as many times as there are unique letters

in the ciphertext. The most common ciphertext letter

is inserted as a key into the new dictionary, with its

value being the most common plaintext letter. The

same is done with the second most common letters

in either list, then the third, then the fourth, and so

on until all the letters in the ciphertext have a

mapping to a letter in the plaintext. Then, the

mapping is updated with a separate map, included in

the constants section, that maps every symbol to

itself to prevent them from being accidentally

mapped to a letter. This dictionary is returned to the

program.

This kind of blind matching is only going to be

accurate in some cases. Therefore, this program also

has a “check” function, called check_mapping(), that

runs a series of test functions on the mapping to

improve it. Each test function applies a different rule

or tendency of the English language to the mapping,

delivering an intermediate result to the next test in

line. Once all the tests have been applied, a fresh

mapping is created. The output of the final test and

the constant symbols are merged with that mapping,

and that mapping is delivered to the program as the

mapping that will be used to perform the final

translation.

Two principles are used extensively for these

tests: whether a word is common, and how close an

existing word is to its usual form. The latter is

measured using a principle in linguistics called the

Damerau-Levenshtein (D-L) distance. This metric is

a measure of how many operations (insertions,

deletions, replacements, or adjacent letter swaps) it

will take to turn one word into another. For example,

the words “fare” and “fair” have a D-L distance of 2

because the R and E must first be swapped, then the

E must be replaced with an I. For the purposes of my

program, a word is considered close to another if

their D-L distance is 1.

The code for each of these tests is extensive, so

they will be placed in Appendix C. The tests run are

as follows:

• Check_the() looks for three-letter words that

end in E. E is the most common letter in the

English language, and one of the most common

three-letter words is ‘the’, which happens to end

in an E. Each of the potential words is checked

against ‘the’ to see if any are already close to

being correct. The most accurate one is assumed

to be the real ‘the’, and the mapping for T and

H is fixed accordingly.

• Check_twoletters() looks for two letter words

that contain a T. There is a list of common two-

letter-words in the constants section of my

program, and this list is used as a reference for

this function to fix the mapping of letters such

as A, O, I, and R.

• Check_plurals() goes over every word in the

ciphertext and checks to see if said word

reappears elsewhere in the ciphertext with an

additional letter. In English, whenever two

versions of a word are present and the second

version of said word has one more letter,

chances are the second version of the word is the

plural form of the first. In English, plurals are

formed by adding an S to the end, in most cases.

This will fix the mapping for S.

• Check_w() goes over the three-, four-, and five-

letter words in the ciphertext and sees if any of

them are close to a list of common words that

contain the letter W. If a potential match is

found, the mapping for W is fixed accordingly.

• Check_endings() extends the principle covered

in check_plurals() by measuring what letters

frequently end words in the ciphertext. The most

common letter at the end of words is S because

adding an S to the end of a word is how we

pluralize them. The second most common letter

at the end of words is D because adding a D to

the end of a word is how we change it to past-

tense.

• Check_threeletters() follows the same principle

check_twoletters() does, except it applies the

principles to three-letter-words.

• Check_ing() takes the principle held by

check_endings() a step further now that more of

the mapping has been fixed. It looks for the last

three letters of every word that is at least 4

letters long and checks to see how close this

ending is to ‘ing’. Those three letters are another

very common ending because adding ‘ing’ to

the end of a verb is how we change that verb into

its continuous present form.

• Check_doubles() takes the list of words that

have double letters, formed earlier, and checks

to see if their double-letter pair is one of the

double-letter pairs present in English. If it is not,

the double pairs are replaced accordingly and

examined to make sure they still form a word.

Phase 4: Decrypting into Plaintext

def translate(cipher:str, map:dict) ->

str:

 plain = ""

 for letter in cipher:

 plain += map[letter]

 return plain

Figure 6

Translate()

In the fourth and final phase, this program

applies the final mapping to the ciphertext via the

translate() function. The ciphertext is reconstructed,

character by character, except that each letter from

the ciphertext is replaced with its plaintext

equivalent. The results are then printed to the user in

a neatly formatted manner, with a comparison being

offered between the ciphertext and plaintext.

Figure 7

A Sample Run of the Frequency Analysis Decoder

RESULTS

The results of the program run can be seen in

Figure 7. In its current incarnation, this program

runs in 1 second. It performs eight partial iterations,

one for each test, and one full iteration for the

translation.

As of the writing of this article, it has a couple

bugs that have yet to be worked out. For instance,

the letters P and M must be switched. However,

most other words are correct.

CONCLUSION

Through the completion of this project, one can

deduce that conducting frequency analysis to

decrypt a message encrypted via the monoalphabetic

substitution cipher is possible and attainable within

a realistic timeframe. Early attempts to crack this

cipher algorithmically were very time consuming to

perform by hand, and even when run by a computer

that could perform millions of operations a second,

the brute-force approach would take several minutes

to run. By applying a few rules first, one can shorten

the amount of time this algorithm would take.

FUTURE WORK

For future iterations of this program, the

researcher would probably begin by adding a final

test to the check_mapping() method. It would go

through all the remaining mappings and brute-force

switching them with each other to see which one

sticks. This process is normally time-consuming, but

by expanding the number of mappings that are

proven to be correct prior to running the brute-force

check, this time can be shortened greatly. Segments

of unnecessary code would be deleted, so that the

program would be easier to understand. The tests can

also be improved so they rely less on assumptions

and more on hard evidence. The researcher could

also investigate more letter frequency data to create

more tests from. The final bit of work would be to

optimize the code to speed up the algorithm further.

REFERENCES

[1] M. Singh, “Difference between Substitution Cipher

Technique and Transposition Cipher Technique –

GeeksforGeeks,” GeeksforGeeks, October 7, 2021.

[Online]. Available:

https://www.geeksforgeeks.org/difference-between-

substitution-cipher-technique-and-transposition-cipher-

technique/. [Accessed 6-May-2022].

[2] 101 Computing, “Mono-Alphabetic Substitution Cipher.”,

Nov 9, 2019. [Online]. Available:

https://www.101computing.net/mono-alphabetic-

substitution-cipher/. [Accessed: 6-May-2022].

[3] S. Singh, “The Black Chamber - Letter Frequencies,” Simon

Singh. [Online]. Available:

https://www.simonsingh.net/The_Black_Chamber/letterfre

quencies.html. [Accessed May-06-2022].

https://www.geeksforgeeks.org/difference-between-substitution-cipher-technique-and-transposition-cipher-technique/
https://www.geeksforgeeks.org/difference-between-substitution-cipher-technique-and-transposition-cipher-technique/
https://www.geeksforgeeks.org/difference-between-substitution-cipher-technique-and-transposition-cipher-technique/
https://www.101computing.net/mono-alphabetic-substitution-cipher/
https://www.101computing.net/mono-alphabetic-substitution-cipher/
https://www.simonsingh.net/The_Black_Chamber/letterfrequencies.html
https://www.simonsingh.net/The_Black_Chamber/letterfrequencies.html

APPENDIX A: IMPORTS AND

CONSTANTS

import enchant

import jellyfish

import re

DICTO = enchant.Dict("en_US")

FREQUENCIES = {

 "a":0.0820, "b":0.0150, "c":0.0280,

"d":0.0430, "e":0.1270,

 "f":0.0220, "g":0.0200, "h":0.0610,

"i":0.0700, "j":0.0020,

 "k":0.0080, "l":0.0400, "m":0.0240,

"n":0.0670, "o":0.0750,

 "p":0.0190, "q":0.0010, "r":0.0600,

"s":0.0630, "t":0.0910,

 "u":0.0280, "v":0.0100, "w":0.0240,

"x":0.0020, "y":0.0200, "z":0.0010

}

FREQ_SORTED = sorted(FREQUENCIES.items(),

key=lambda kv:(kv[1],kv[0]),

reverse=True)

FREQ_LETTERSONLY = []

for i in FREQ_SORTED:

 FREQ_LETTERSONLY.append(i[0])

CONSTANT_SYMS = {

 ' ':' ', '-':'-', '.':'.', ',':',',

'!':'!', '?':'?', '\'':'\'', '\"':'\"',

':':':', ';':';', '\n':'\n',

 '0':'0', '1':'1', '2':'2', '3':'3',

'4':'4', '5':'5', '6':'6', '7':'7',

'8':'8', '9':'9'

}

ONE_LETTER_WORDS = ['a', 'i']

TWO_LETTER_WORDS = [

 'of', 'to', 'in', 'it', 'is', 'be',

'as', 'at',

 'so', 'we', 'he', 'by', 'or', 'on',

'do', 'if',

 'me', 'my', 'up', 'an', 'go', 'no',

'us', 'am'

]

THREE_LETTER_WORDS = [

 'the', 'and', 'for', 'are', 'but',

'not', 'you', 'all', 'any', 'can',

 'had', 'her', 'was', 'one', 'our',

'out', 'day', 'get', 'has', 'him',

 'his', 'how', 'man', 'new', 'now',

'old', 'see', 'two', 'way', 'who',

 'boy', 'did', 'its', 'let', 'put',

'say', 'she', 'too', 'use'

]

WORDS_WITH_W = ['who', 'why', 'what',

'when', 'with', 'word', 'where']

COMMON_LETTER_PAIRS = ['cc', 'ss', 'ee',

'tt', 'ff', 'll', 'mm', 'oo']

SAFE_LETTERS = []

Figure 8

Import Statements and Constants

APPENDIX B: HAS_DOUBLE()

def has_double(w:str):

 wlen = len(w)

 for i in range(wlen):

 if (i + 1) == wlen:

 continue

 elif w[i] == w[i+1]:

 return True

 return False

Figure 9

Has_double()

APPENDIX C: CHECK FUNCTIONS

def check_the(map_the:dict) -> dict:

 decrypted_3lw = []

 for word in WORDS_BY_SIZE[2]:

 ptword = translate(word,map_the)

 decrypted_3lw.append(ptword)

 candidate_for_the = []

 if "the" not in decrypted_3lw:

 for word in decrypted_3lw:

 if

jellyfish.damerau_levenshtein_distance(wo

rd, "the") == 1:

candidate_for_the.append(word)

 for word in candidate_for_the:

 if not word[0] == 't':

 fake_t = get_key(map_the,

't')

 real_t = get_key(map_the,

word[0])

 map_the[real_t] = 't'

 map_the[fake_t] = word[0]

 elif not word[1] == 'h':

 fake_h = get_key(map_the,

'h')

 real_h = get_key(map_the,

word[1])

 map_the[real_h] = 'h'

 map_the[fake_h] = word[1]

 elif not word[2] == 'e':

 fake_e = get_key(map_the,

'e')

 real_e = get_key(map_the,

word[2])

 map_the[real_e] = 'e'

 map_the[fake_e] = word[2]

 SAFE_LETTERS.append('t')

 SAFE_LETTERS.append('h')

 SAFE_LETTERS.append('e')

 return map_the

def check_twoletters(map_two:dict) ->

dict:

 decrypted_2lw = []

 for word in WORDS_BY_SIZE[1]:

 ptword = translate(word,map_two)

 decrypted_2lw.append(ptword)

 candidate_for_start_t = []

 candidate_for_end_t = []

 candidate_for_start_i = []

 candidate_for_start_o = []

 start_i_endings = []

 start_o_endings = []

 for word in decrypted_2lw:

 if word[-1] == 't':

candidate_for_end_t.append(word)

 elif word[0] == 't':

candidate_for_start_t.append(word)

 elif word[0] == 'i':

start_i_endings.append(word[1])

candidate_for_start_i.append(word)

 elif word[0] == 'o':

start_o_endings.append(word[1])

candidate_for_start_o.append(word)

 for word in candidate_for_start_t:

 if not word == "to":

 fake_o = get_key(map_two,

'o')

 real_o = get_key(map_two,

word[1])

 map_two[real_o] = 'o'

 map_two[fake_o] = word[1]

 for word in candidate_for_end_t:

 if word not in ["at", "it"]:

 if not word[0] == 'a':

 fake_a = get_key(map_two,

'a')

 real_a = get_key(map_two,

word[0])

 map_two[real_a] = 'a'

 map_two[fake_a] = word[0]

 elif not word[0] == 'i':

 fake_i = get_key(map_two,

'i')

 real_i = get_key(map_two,

word[0])

 map_two[real_i] = 'i'

 map_two[fake_i] = word[0]

 for word in candidate_for_start_i:

 if word not in ['is', 'if', 'in']

and word[1] not in start_o_endings:

 fake_s = get_key(map_two,

's')

 real_s = get_key(map_two,

word[1])

 map_two[real_s] = 's'

 map_two[fake_s] = word[1]

 SAFE_LETTERS.append('o')

 SAFE_LETTERS.append('a')

 SAFE_LETTERS.append('i')

 SAFE_LETTERS.append('r')

 return map_two

def check_plurals(map_p:dict) -> dict:

 alleged_plurals = []

 for word in ctw:

 if len(word) == 1:

 continue

 pluralize = "{0}[a-

z]".format(word)

 plural_results =

re.findall(pluralize,ct)

 for plural in plural_results:

 if plural not in

alleged_plurals:

alleged_plurals.append(plural)

 potential_plural_mapping = []

 for word in alleged_plurals:

 ptword = translate(word, map_p)

 if DICTO.check(ptword):

 continue

 chop_word = ptword[:-1]

 plural_word = chop_word + 's'

 if DICTO.check(plural_word) and

DICTO.check(chop_word):

 plural_map = {word[-1] : 's'}

potential_plural_mapping.append(plural_ma

p)

 closest_difference = 5

 chosen_mapping = {}

 s_freq = FREQUENCIES['s']

 for mapping in

potential_plural_mapping:

 mapping_letter =

get_key(mapping,'s')

 c_freq =

CIPHER_FREQ_PCT[mapping_letter]

 difference = abs(s_freq - c_freq)

 if difference <

closest_difference:

 chosen_mapping = mapping

 closest_difference =

difference

 chosen_mapping_exists = False

 for map in map_p:

 if map == chosen_mapping:

 chosen_mapping_exists = True

 if not chosen_mapping_exists:

 fake_s = get_key(map_p, 's')

 real_s = get_key(chosen_mapping,

's')

 map_p[fake_s] = map_p['k']

 map_p[real_s] = 's'

 SAFE_LETTERS.append('s')

 return map_p

def check_w(map_w:dict) -> dict:

 for word in WORDS_WITH_W:

 wordlen = len(word)

 for cword in

WORDS_BY_SIZE[wordlen - 1]:

 pword = translate(cword,

map_w)

 w_dld =

jellyfish.damerau_levenshtein_distance(wo

rd, pword)

 starts_with_w = pword[0] ==

'w'

 if not DICTO.check(pword) and

not starts_with_w and w_dld == 1:

 fake_w = get_key(map_w,

'w')

 real_w = get_key(map_w,

pword[0])

 map_w[real_w] = 'w'

 map_w[fake_w] = pword[0]

 SAFE_LETTERS.append('w')

 return map_w

def check_endings(map_end:dict) -> dict:

 enders = {}

 for word in ctw:

 pword = translate(word,map_end)

 ender = pword[-1]

 if ender not in FREQ_LETTERSONLY:

 continue

 if ender not in SAFE_LETTERS:

 enders[ender] =

enders.get(ender, 0) + 1

 enders_sorted =

sorted(enders.items(), key=lambda

kv:(kv[1],kv[0]), reverse=True)

 second_most_common_ending =

enders_sorted[1][0]

 if not second_most_common_ending ==

'd':

 fake_d = get_key(map_end, 'd')

 real_d = get_key(map_end,

second_most_common_ending)

 map_end[real_d] = 'd'

 map_end[fake_d] =

second_most_common_ending

 SAFE_LETTERS.append('d')

 return map_end

def check_threeletters(map_three:dict) ->

dict:

 decrypted_3lw = []

 for word in WORDS_BY_SIZE[2]:

 ptword =

translate(word,map_three)

 decrypted_3lw.append(ptword)

 for word in decrypted_3lw:

 if word not in THREE_LETTER_WORDS

and word[:2] == 'an':

 fake_y = get_key(map_three,

'y')

 real_y = get_key(map_three,

word[2])

 map_three[fake_y] = word[2]

 map_three[real_y] = 'y'

 SAFE_LETTERS.append('y')

 return map_three

def check_ing(map_ing:dict) -> dict:

 candidate_for_ing = []

 ending_frequencies = {}

 for word in ctw:

 ptword = translate(word, map_ing)

 if ptword[-3:-1] == 'in' and

len(ptword) > 3:

 if not ptword in

candidate_for_ing:

candidate_for_ing.append(ptword)

 ending_frequencies[ptword[-

1]] = ending_frequencies.get(ptword[-1],

0) + 1

 ending_freq_sorted =

sorted(ending_frequencies.items(),

key=lambda kv:(kv[1],kv[0]),

reverse=True)

 most_freq_ending =

ending_freq_sorted[0][0]

 if not most_freq_ending == 'g':

 fake_g = get_key(map_ing, 'g')

 real_g = get_key(map_ing,

most_freq_ending)

 map_ing[real_g] = 'g'

 map_ing[fake_g] =

most_freq_ending

 for word in candidate_for_ing:

 if word[1:4] == 'ein' and not

word[0] == 'b':

 fake_b = get_key(map_ing,

'b')

 real_b = get_key(map_ing,

word[0])

 map_ing[real_b] = 'b'

 map_ing[fake_b] = word[0]

 SAFE_LETTERS.append('g')

 SAFE_LETTERS.append('b')

 return map_ing

def check_doubles(map_d:dict) -> dict:

 decrypted_doubles = []

 for word in

CIPHER_WORDS_WITH_DOUBLES:

 ptword = translate(word, map_d)

 if ptword not in

decrypted_doubles:

decrypted_doubles.append(ptword)

 for word in decrypted_doubles:

 if not DICTO.check(word):

 double_index =

find_double(word)

 double_letter =

word[double_index]

 double_pair =

word[double_index] + word[double_index +

1]

 if double_pair not in

COMMON_LETTER_PAIRS:

 for pair in

COMMON_LETTER_PAIRS:

 common_double_letter

= pair[0]

 new_word =

word.replace(double_pair, pair)

 if

DICTO.check(new_word):

 fake_letter =

get_key(map_d, common_double_letter)

 real_letter =

get_key(map_d, double_letter)

map_d[real_letter] = common_double_letter

map_d[fake_letter] = double_letter

SAFE_LETTERS.append(common_double_letter)

 return map_d

Figure 10

Check functions

