
Abstract Results and Conclusions

Acknowledgements

Cryptography is the cornerstone of secure communication. One of

the earliest cryptographic techniques used by the Romans is the

monoalphabetic substitution cipher, which replaces one letter in a

message with another. This approach has one glaring weakness, in

that the frequency of letters is preserved in the ciphertext.

Therefore, messages encrypted via monoalphabetic substitution

are vulnerable to frequency analysis attacks. A persistent attacker

that has intercepted the message can conduct frequency analysis to

“crack” a monoalphabetic substitution cipher. An algorithm can

also be created to automate the process and conduct frequency

analysis attacks on ciphertext to crack the cipher quickly,

decrypting the message and exposing the plaintext and its contents

to an unintended recipient.

References

Methodology Methodology pt. 2

The program runs in about 1 second. It performs eight partial

iterations, one for each tendency test, and one full iteration for the

translation. A few bugs have yet to be resolved, such as the

switching between P and M.

Cryptography is the process by which a code, or cipher, is applied

to some text (the plaintext) to transform it into an obfuscated form

(the ciphertext).

The two basic categories of ciphers are transposition and

substitution. The former changes the order of letters without

changing the letters, while the latter changes the letters without

changing the order[1].

The monoalphabetic substitution cipher pairs each letter in an

alphabet with another letter in the same alphabet and rewrites the

message by replacing each letter with its pair[2].

Introduction

Problem and Initial Approach

Because each occurrence of a given letter is replaced with the

same letter every time, the number of times that letter appears can

still be detected. The study of how frequently a letter appears

within a ciphertext is called frequency analysis. This study forms

the basis for decrypting the monoalphabetic substitution cipher.

As demonstrated by Figure 1, the letter E is the most common

letter in the English alphabet, generally composing up to 12.7% of

the letters in a document. E is followed by T, A, O, I, and N.

Cryptographers recognize that these tendencies will likely hold

with most pieces of plaintext. And thanks to the monoalphabetic

cipher’s fatal flaw, these letter frequencies are preserved when the

plaintext is converted into ciphertext. Therefore, a persistent

cryptographer can use frequency analysis to try and guess which

letter in the ciphertext maps to which letter in the plaintext [3].

Letter frequency is the basis for this study, but other tendencies of

the English language are also used for this research:

• The only one-letter words in English are “a” and “I”.

• A list of common two- and three-letter words.

• A list of common double-letter pairs in English

• The most common three-letter word is “the”.

• The most common letter at the end of a word is ‘s’, followed

by ‘d’, in plural words and past-tense words, respectively.

• The most common three-letter word ending is “–ing”.

• ‘W’ is a rare letter, though the question words (“where”,

“what”, “why”, etc.) are common.

Cracking the Monoalphabetic Substitution Cipher
Author: Carlos Santana

Advisor: Prof. Jeffrey Duffany

Polytechnic University of Puerto Rico

I conducted this research on my own, with help from various

websites across the internet, primarily for help in formatting with

Python. The biggest sources of help were the Simon Singh website

and the CodeDrome article[4] for providing me with the

technique. Additionally, I wish to thank professor Duffany, whose

guidance proved invaluable for pointing me in the right direction.

Additional thanks to Dr. Denise Cobian editing my article. And

finally, I wish to thank my parents who bankrolled the article

edition process.

Future Work

For future iterations of this program, the researcher would

probably begin by adding a final test to the check_mapping()

method. It would go through all the remaining mappings and

brute-force switching them with each other to see which one

sticks. This process is normally time-consuming, but by expanding

the number of mappings that are proven to be correct prior to

running the brute-force check, this time can be shortened greatly.

Segments of unnecessary code would be deleted, so that the

program would be easier to understand. The tests can also be

improved so they rely less on assumptions and more on hard

evidence. The researcher could also investigate more letter

frequency data to create more tests from. The final bit of work

would be to optimize the code to speed up the algorithm further.

[1] M. Singh, “Difference between Substitution Cipher Technique and 

Transposition Cipher Technique – GeeksforGeeks,” GeeksforGeeks, 

October 7, 2021. [Online]. Available: 

https://www.geeksforgeeks.org/difference-between-substitution-cipher-

technique-and-transposition-cipher-technique/. [Accessed 6-May-2022].

[2] 101 Computing, “Mono-Alphabetic Substitution Cipher.”, Nov 9, 

2019. [Online]. Available: https://www.101computing.net/mono-alphabetic-

substitution-cipher/. [Accessed: 6-May-2022].

[3] S. Singh, “The Black Chamber - Letter Frequencies,” Simon Singh. 

[Online]. Available: 

https://www.simonsingh.net/The_Black_Chamber/letterfrequencies.html. 

[Accessed May-06-2022].

[4] C. Webb, “Frequency analysis in Python,” CodeDrome, 12-Jul-2018. 

[Online]. Available: https://www.codedrome.com/frequency-analysis-in-

python/. [Accessed: 17-May-2022].

A program was created that would run in four phases. In Figure 2,

the main body of the program is displayed to demonstrate

execution flow. The following steps are followed:

1. Ciphertext is received from the user, and statistics of the

ciphertext are derived

2. Frequency analysis is conducted on the ciphertext

3. A mapping between the ciphertext and plaintext is created and

then fixed using tendency tests

4. The ciphertext is translated into the plaintext and displayed.

Figures 3-6 contain the helper functions used in each phase of the

program. A few functions were omitted due to lack of space.

Phase 1 uses the following methods:

1. Readfromfile() reads from a file, converts the text into

lowercase, and reports the success thereof to the user.

2. Textstats() returns information about the ciphertext, including

length, indices of spaces, a list of all the words in the

ciphertext, words that contain a double-letter pair, and the

words sorted by lengths.

3. Has_double() returns whether a word has a double-letter pair.

This function is not listed.

Figure 1: Letter frequencies in English

Figure 7: Program Results

Phase 2 uses the following methods:

1. Countletters() iterates over the ciphertext and counts how

many times a letter appears. Symbols are not counted.

2. Countpcts() divides each value by the number of letters in the

ciphertext to convert them to percentages.

Phase 3 uses the following methods:

1. Create_mapping() takes each letter of the ciphertext and maps

it to a letter in the plaintext. The list of letters is sorted in order

from most frequent to least frequent

2. Check_mapping() runs a series of tests, called the tendency

tests, on the mapping to confirm that it is correct.

The eight tendency tests conducted in phase 3 are check_the(),

check_twoletters(), check_plurals(), check_w(), check_endings(),

check_threeletters(), check_ing(), and check_doubles(). Their

code is very extensive, so they are omitted in this presentation.

Phase 4 uses the following method:

1. Translate() iterates over a text and rewrites the text by

replacing each letter in the original with its corresponding

letter in the mapping. The results are printed out to the user.

ct = readfromfile("duffcaesar.txt")

(ctl, SPACE_INDICES, ctw, CIPHER_WORDS_WITH_DOUBLES, 

WORDS_BY_SIZE) = textstats(ct)

CIPHER_FREQ = {}

(CIPHER_FREQ, ctl_lettersonly) = countletters(ct)

CIPHER_FREQ_PCT = countpcts(CIPHER_FREQ, ctl_lettersonly)

CIPHER_FREQ_SORTED = sorted(CIPHER_FREQ_PCT.items(), 

key=lambda kv:(kv[1],kv[0]), reverse=True)

CIPHER_FREQ_LETTERSONLY = []

for i in CIPHER_FREQ_SORTED:

CIPHER_FREQ_LETTERSONLY.append(i[0])

MAPPING = create_mapping(CIPHER_FREQ_SORTED, FREQ_SORTED)

MAPPING = check_mapping(MAPPING)

pt = translate(ct, MAPPING)

print("The ciphertext:\n{0}\nmay decode to the 

following:\n{1}".format(ct,pt))

def translate(cipher:str, map:dict) -> str:

plain = ""

for letter in cipher:

plain += map[letter]

return plain

def create_mapping(cipher_dict: dict, plain_dict: dict) -> 

dict:

mapping = {}

cipherlen = len(cipher_dict)

for i in range(cipherlen):

mapping[cipher_dict[i][0]] = plain_dict[i][0]

mapping.update(CONSTANT_SYMS)

return mapping

def check_mapping(potential_map:dict) -> dict:

map_with_fixed_the = check_the(potential_map)

map_with_fixed_two = check_twoletters(map_with_fixed_the)

map_with_fixed_plurals = check_plurals(map_with_fixed_two)

map_with_fixed_w = check_w(map_with_fixed_plurals)

map_with_fixed_end = check_endings(map_with_fixed_w)

map_with_fixed_three = 

check_threeletters(map_with_fixed_end)

map_with_fixed_ing = check_ing(map_with_fixed_three)

map_with_fixed_doubles = check_doubles(map_with_fixed_ing)

newmap = {}

newmap.update(map_with_fixed_doubles)

newmap.update(CONSTANT_SYMS)

return newmap

def countletters(text:str) -> tuple:

counts = {}

lettersonly = 0

for char in text:

if char not in FREQ_LETTERSONLY:

continue

counts[char] = counts.get(char, 0) + 1

lettersonly += 1

return (counts, lettersonly)

def countpcts(dicto:dict, nums:int) -> dict:

counts_pct = {}

for item in dicto.keys():

counts_pct[item] = dicto[item]/nums

return counts_pct

def readfromfile(filename: str) -> str:

with open(filename, 'r') as f:

text = f.read().lower()

print("Ciphertext read from: {0}".format(filename))

return text

def textstats(text:str) -> tuple:

textlen = len(text)

spaces = []

for i in range(textlen):

if text[i] == ' ':

spaces.append(i)

words = text.split(' ')

doubles = []

for word in words:

if has_double(word):

doubles.append(word)

sizes = []

big = len(max(words,key=len))

for i in range(1, big + 1):

lst = []

for word in words:

if word[-1] not in FREQ_LETTERSONLY:

word = word[:-1]

if len(word) == i and word not in lst:

lst.append(word)

sizes.append(lst)

return (textlen, spaces, words, doubles, sizes)

Figure 2: Program Main Body

Figure 3: Phase 1 of Program (receive ciphertext and collect stats)

Figure 6: Phase 4 of program (translation and printing of results

Figure 5: Phase 3 of program (mapping ciphertext to plaintext)

Figure 4: Phase 2 of program (frequency analysis)

https://www.geeksforgeeks.org/difference-between-substitution-cipher-technique-and-transposition-cipher-technique/
https://www.101computing.net/mono-alphabetic-substitution-cipher/
https://www.simonsingh.net/The_Black_Chamber/letterfrequencies.html

