
Reverse Engineering Challenges solved step-by-step to demonstrate the many uses of reverse
engineering for the Graduate Programs at the Polytechnic University of Puerto Rico

Joel Maldonado
Computer Sciences Program
Dr. Jeffrey Duffany
Computer Sciences Department
Polytechnic University of Puerto Rico

Abstract ¾ The field of reverse engineering has
seen many different applications such as analysis of
computer viruses and malware such as trojans,
worms, viruses, ransomware, and so on. Other uses
involve analyzing legacy code to possibly recreate
in a more modern program and can even be used to
test the quality of software. These are just some of
the uses of reverse engineering, which should be
discussed and be more well known throughout
people who practice coding. There are many
different approaches to reverse engineering since
one can use tools such as IDA, CFF Explorer,
Ghidra, Hopper, GDB, and many others in order to
examine the programs. Being able to properly
understand how to use these tools will help in the
proper understanding of what the code is doing and
how it is behaving which will be better
demonstrated by solving reverse engineering
challenges and explaining the methodology behind
how they were solved.

Key Terms- GDB, reverse engineering

INTRODUCTION

A technological area which should be better
known about because of the many uses it provides
is reverse engineering. Reverse engineering is an
area that has seen many different implementations
and approaches which has helped tackle different
problems such as working with legacy code [1],
analyzing malware to determine how it functions
and what it targets [2], and has also been used to
improve existing software. Despite the wide range
of implementations that reverse engineering offers
it is seldom taught as a core class in many programs
which is why bringing more awareness to it and
being able to demonstrate to other computer
scientist and anyone the possibilities and uses it
brings should be done so.

GDB which is also known as the GNU
debugger, can be used in programming languages
such as C, C++, Go, among others. [3] With GDB
you can disassemble specific parts of code one
wants to analyze into assembly language, and this
can be used to interpret the code and reverse
engineer it. Assembly language is a low-level
programming language which was created with the
purpose to be able to directly communicate with a
computer’s hardware and is also readable by
humans. Assembly language is also used when
converting high-level programming languages such
as Python, Ruby, C#, Java, etc. Assembly language
is barely written directly since humans instead use
high-level programming languages which are then
converted to assembly language which is then used
in machine language which is basically in binary or
1s and 0s. [4] With GDB basic concepts of reverse
engineering can be demonstrated and step by step
processes can be shown. There are also other tools
that are able to provide better insight and are more
aware of techniques that are used to try to thwart
reverse engineering attempts, these tools include
IDA, Ghidra, etc.

Reverse engineering can be considered as
another aspect of cybersecurity since it can be used
to analyze malware and other such programs in
order to determine what vulnerabilities are being
exploited and be able to counter these, because of
this reverse engineering challenges can often be
found in cyber security competitions and challenges
can also be found online in order to help individuals
learn and practice. These challenges vary and can
involve different type of Operating Systems and not
all challenges can be solved using the exact same
process since the difficulty varies and not all
challenges are alike. [2]

With all of the previously mentioned in mind,
showing how to solve reverse engineering
challenges from the crackmes.one webpage in a
step-by-step manner will hopefully be able to
demonstrate the importance of reverse engineering,
the applications it can be used for and show that it
isn’t as frightening as one may think when they
hear about reverse engineering. The crackmes.one
page is a website that was made to continue on the
spirit of a previous website known as cracmes.de
which no longer exists. The website is a place for
any reverse engineer to upload their challenges in
order to help others practice and learn reverse
engineering skills, techniques and to improve what
they know. The website also allows you to submit
your solution and offers a variety of challenges
which have varying difficulty and ways to be
solved. In this work these challenges will be solved
by simply using GDB.

BACKGROUND

The reason for selecting this as the focus of
research for the design project is because of many
varied reasons. Mainly because even though I have
had some experience with reverse engineering, I
feel I have not seen as much of it as I should and
feel that it is a fascinating topic which merits more
discussion between the topics of computer science.
The first experience I had with reverse engineering
was basically a challenge for the computer
architecture class I took which involved a project
known as the “binary bomb” which I found to be
interesting and fully enjoyed. It consisted of many
distinct phases in which you had to understand
what was occurring with the assembly language and
keep track of the registers in order to be able to get
the necessary input in order to pass to the next
phase of the challenge.

I also took a reverse engineering elective where
we started with the basics, but then higher leveled
challenges and tools were used. Both of these
experiences have given me a perspective of the
importance that reverse engineering has and how
not many students get to experience and view these.

This and the fact that I wanted to go back and work
on reverse engineering again is what prompted this
step-by-step solution to reverse engineering
challenges for the design project since I believe
more computer science students should try to get
involved and experience this area so that they too
can get a perspective on it and understand it’s
importance.

EQUIPMENT AND MATERIALS

Software Components

The materials that are mentioned in this project
are open tools that are open source and free to use
that have been created by different organizations
and individuals focusing on cybersecurity. The
software involved includes:
• VirtualBox: VirtualBox is known as a

powerful x86 and AMD64/Intel 64
virtualization software that allows the running
of virtual machines on your machine without
the need for the installation of the other OS on
your physical machine. It offers many features,
high performance and is also an open-source
software. Some of the guest operating systems
that it includes are Windows (NT 4.0, 2000,
XP, Server 2003, Vista, Windows 7, Windows
8, Windows 10), DOS/Windows 3.x, Linux
(2.4,2.6,3.x and 4.x), Solaris and Open Solaris,
OS/2, and OpendBSD. [5]

• Kali Linux: is an open-source, Debian-based
Linux distribution which was created in order
to be used for security related task such as
Penetration Testing, Security Research,
Computer Forensics and Reverse Engineering.
[6]

• GDB: which is a known as a portable debugger
that is able to run on many Unix-like systems
and is able to be used on many different
programming languages such as Ada, C, C++,
Fortran, Go, and many others. The GNU
Project debugger was made in order to allow
users to be able to determine what is occurring
inside another program while it is executing.
[3]

METHODOLOGY

The approach that was used in order to pick
challenges and solve them in a step-by-step manner
in order to be able to demonstrate how one could go
about doing reverse engineering challenges and
gain a better understanding of the process behind it
involved considering tackling basic challenges in
order to be able to demonstrate reverse engineering
concepts to readers who may have not been
exposed to assembly language or GDB before. In
doing so assembly language concepts are explained
in detail to provide an understanding of what
exactly is occurring in the challenge that is being
solved and to explain any possibly unknown
concepts that the reader may stumble upon. Since
reverse engineering challenges are not all identical
and can vary on their process an explanation on
everything that was done is provided as well in
hope of being able to highlight how reverse
engineering can vary. Six challenges were chosen
to demonstrate the varying approaches that can be
taken to solve a challenge and to highlight the
difference between challenges.

In order to solve problems that were chosen
from the crackmes.one site, they were first analyzed
by using tools or commands such as the file
command in order to get more details about what
type of executable file was being worked on and
then proceeding to use GDB in order to take a
much more in-depth analysis of the executable file.
GDB has many different commands that have
different uses in helping better understand the code
such as disassemble (disas) which allows the user
to disassemble a specific function or a function
fragment thus allowing a closer look at the
assembly code to that specific area, breakpoint
which allows the user to specify a breakpoint which
will make the execution of the program halt once
reached, next instruction (ni) which allows the user
to go to the following instruction in the assembly
code therefore giving the user a chance to verify
changes that occurred, the examined instruction
which allows the examination of the provided
memory but also allows one to place a flag in order

to indicate how the values should be represented
before it is displayed, info functions in order to see
debugging symbols that can be accessed in order to
help with the analysis of the program and many
others such commands which are used in order to
tackle the challenges. Figure 1 shows the
disassembly command being used in one of the
challenges in order to display the main function of
the challenge program that is being executed at the
moment by using GDB.

Figure 1

Disassembly of main function in GDB

In figure 1 where the arrow starts is where the
main function starts, so one just has to keep track
what is going on in the assembly code, the changes
occurring in the registers and values, and proceed
instruction by instruction to then analyze and
understand what is occurring to then solve the
challenge. As figure 2 shows, the main objective of
most challenges is to find what sort of input it is
expecting, if you write the correct input the
challenge will be solved, but if it is incorrect, it will
usually display that you got it wrong.

Figure 2

Example of challenge prompt and indication of right and
wrong answer

Figure 2 shows the executable file of the
challenge being run, in which it then prints out the
first line and part of the second, but then waits for
the user to input the flag. Keeping this in mind we
develop a write up step-by step guide to explain
what is going on in each step, verify register and
other areas in memory in order to explain
reasoning, deductions and show the problem-
solving process involved when tackling these
challenges that lead to the solutions.

This writeup is organized by first indicating
which problem is being solved and indicating
where others can download the challenge and is
then proceeded by steps in which assembly and
reverse engineering concepts are explained as they
are seen. All assembly code that is being explained
is accompanied by a figure in order to better
illustrate what is being explained and also is shown
to demonstrate how values in memory were
accessed in order to reach the given problem
solution.

 Therefore, when tackling the challenges,
personal notes were being taken at the same time
along with screenshots with the findings being

discovered in order to later on be able to organize
these in a proper document for the step-by-step
process for interested individuals to follow. Not
only that but even the most basic of commands or
instructions are discussed allowing individuals of
any level of experience to be able to follow the
guide. As previously mentioned, the guide was
developed with the concept of being able to allow
individuals who are following the guide to
understand how the challenges are being solved
even when they don’t have any experience with
these instructions or tools and therefore what is
occurring should be described in a basic, clear, and
concise way to avoid confusion.

An example of the format can be seen in figure
3, which displays how memory changes occur until
it has the string “…Good morning…” loaded into
the register, which is then pushed in order to print
out when the code is ran. This is one of the many
steps and different assembly instructions that are
discussed and presented in this write up step-by-
step document. It goes down to the basics and tries
to cover all the possible questions that the reader
may have when it comes to how certain
calculations occurred or when did certain areas of
memory change, which is why these are also
demonstrated and explained in order to not leave
any opening for misinterpretations and have all the
details of the process clear. After problems are
solved, it is also shown how to run the challenges
and view that the correct answer was reached,
therefore proving that the challenge was
successfully solved. With this interested individual
that want to explore reverse engineering will have
the chance to go through the entire process of
solving the problem as well and have the
confirmation of the answer in the end.

Figure 3
Example of write up document demonstration and

explanation

Now that this was discussed we can briefly
explain how each of the six challenges were solved.
The first challenge, MKesenheimer’s Forest, states
that it has multiple hidden strings but only some are
needed in order to get the correct answer. [7] We
can see how it’s normally run in Figure#2. One of
the possible answers is also shown but how the
solution was reached was by doing the following.
We run the executable file in gdb and use the info
functions command which will show that a main
function is accessible. A breakpoint is set for the
main function and the run command is done in
order to start the program which will then stop at
the breakpoint in the main function. We can then
use the disas command in order to look at the
assembly code to analyze it and get a better grasp
of what is occurring, this can be seen in figure 4
which shows part of the assembly that makes up the
main function. As you follow through the assembly
it can be seen that each individual character of the
string that was given as an input will be compared
to specific values as the assembly code goes on. For
example, the first comparison being made to the
first character in the string is 0x72, which is
hexadecimal for r. Many of the comparisons are in
hexadecimal like the previously stated example and
if the comparison fails the program will print the
wrong solution string seen in figure 2. There are
some comparisons however where the answer can

vary, such is the case with the second character’s
decimal representation, which will take any value
whose division will give a remainder of one which
is then subtracted by 1. Examples that work are ‘e’,
which is 101 in decimal, o, which is 111 in decimal,
and other such values. The following value is d
which is discovered by following the assembly
instructions. The reason for this being that d is the
only value that when is square rooted and then
multiplied by 5 as we saw will then equal to 50
which is the comparison which is being made. The
rest of the characters in the string can be verified by
direct comparisons being made to the hex values
found in the assembly and the characters of the
input provided. Therefore, one of the possible
solutions for this challenge is the string
‘redridinghood’.

Figure 4

Part of the disassembly of the main function for challenge # 1
example

The second challenge, gugus the first
challenge, we use gdb to solve the problem. [8] The
info functions command is used to verify what
functions are present in the program. Breakpoint
are set in the main function; the run command is
used to start the program in GDB and it stops in the
breakpoint which was previously set up. The disas
command is used to disassemble the main function
assembly to analyze it. After looking at the
disassembly and playing with a string input one can
notice that the strcmp function, which compares
two strings, is being called and is taking the given
input and is also taking the string ‘gu!gu?s’ to
compare the values. By following the assembly

instructions and verifying certain areas in memory
one can determine that the string is the needed input
for the challenge to be solved.

The third challenge, license checker 0x02,
follows the same approach as the previous two
problems. [9] Using GDB we verify the functions
that are in the program and set up breakpoints to the
functions that we want to verify. The breakpoint is
set up in the main function and the disas command
is used to disassemble the main function and be
able to examine the assembly. By examining what
is being loaded into memory we can see that the
string “NomanProdhan” is being moved into the
%rdx register while the string which was input is in
%rax. The string comparison is then called in order
to compare both of those strings. After that it will
load the license information later on in the
assembly that is needed which as well is "KS-
LICENSE-KEY-2021-REV-2" which is also
compared to the value that was placed as an input
for our license plate. Both strings used together is
the answer for this challenge.

The fourth challenge, Super Easy, also has the
basic approach that has been followed up till now
by using GDB. [10] First the info functions
command and then the breakpoints are set. This
program has two interesting functions which are
main and the check_pass function, so a look is
taken at both. The main function is used to send
along the input to the check_pass function. In
check_pass it verifies to see if there is a second
value to the command line arguments provided
when the code was run. The strlen and atoi function
is then used in the input that was made. The
following will then compare the value of the strlen
that was obtained from the input and verify if it at
least has a length of three, if not the program will
fail. The program then proceeds to send the value
that was input to the is_prime function in order to
verify if it is a prime value. Afterwards by looking
at the rest of the assembly you can conclude that for
the password to work it must be any number that is
at least 3 digits long and is a prime number for it to
be an accepted password.

The fifth challenge, SilentWRaith's lockcode,
was solved by first verifying the functions the
program has. [11] The program has a main function
and a val function which will both be checked. In
the main function the program verifies how many
command line arguments were passed, if not
enough an error message will be displayed. The
program loads a string into %rax which then is
passed to the strlen function to finally have both the
string from the program and its length be sent to the
val function. The val function has a for loop which
will add the character value currently being looked
at to a variable until all the characters of the string
have been passed. The val function is then left and
afterwards the input that was made is passed to the
val function as well along with its length. It does
the same and does the for loop and addition of the
values. Once it leaves the val function this time
however the sum of the characters is then passed to
the res function along with the integer 2977. In the
res function one is added to 2978 and then that
value is subtracted by the sum of the characters of
the string which was obtained previously.
Afterwards it will do a comparison in order to
verify if the value after the subtraction was 1, if it is
not it will proceed to jump and print out that the
password is wrong, but if it is equal 1 it will print
out the congratulation message. With this you can
determine that the value of the sum of the
characters of the strings must be equal to 2977 for
the password to be accepted. An example of a
string which is accepted would be the string
‘HelloThereGeneralKenobiSkywaHH’.

Lastly the sixth challenge, ezman’s easy
keyg3nme, was solved in a similar fashion. [12]
The program is placed on GDB and is checked with
the info function command to verify the functions.
By doing so the main and validate_key function is
discovered. Breakpoints are set for both functions
and the program are run in GDB. In the main
function it asks the user for an input and stores the
value in a register to then later on pass it to the
validate_key function. The assembly instructions to
look out for here are highlighted in figure 5. We
pay close attention to that last imul specifically

because of the implications it has which are: if
%eax is 0, that multiplication will result in a value
of 0 which is then being subtracted by a value and
then being used in a test instruction in order to
determine whether the jump should occur or not.
The point of the arithmetic being done beforehand
is another way of checking if the value is equal to
the value $04c7, which is 1223 in decimal, then if it
is it will move 1 into %eax and return said value,
else it will return a zero and an incorrect password
message.

Figure 5

Highlighting the math operations being done in the challenge
to compare answer

For purposes of the report the explanations are
kept to a minimum but are accompanied with a
report of each challenge and step by step analysis
on how they were solved. In the end the important
thing is that the process of reaching the answer is
understood instead of jumping straight to the
answer will help develop the reverse engineering
skills and help with challenging other problems
later on.

RESULTS AND DISCUSSION

The results from this project are that of a step-
by-step documentation on how each challenge was
solved and contains the explanation of things such
as basics of assembly code, what is occurring as the
program executes, and figures to be able to guide
the individuals reading the documentation through
the challenges while also learning from it as they
experience it by hands on application on these
challenges.

With this computer science and cybersecurity
students will hopefully be able to follow the steps
with explanations and understand what is occurring
in the provided figures. Feedback and discussion on
how the problems were solved is also essential to
consider since it is important avoid tunnel vision
and to have the documentation be understandable,
informative, and practical for those interested in
practicing reverse engineering concepts to expand
their knowledge and develop their skills when
working on such problems. This can only really be
solved if they properly understand what is
transpiring when the code is running, which is what
the tools are for, and be able to figure out the
solutions or the programs purpose when it is being
executed.

CONCLUSION

With this step-by-step documentation on how
to solve the challenges hopefully other computer
science and cybersecurity students gain some basic
knowledge of reverse engineering concepts,
develop curiosity, and interest in this field and try
to do more research on it. As discussed previously,
reverse engineering has many applications from
analyzing malware in order to counter the
vulnerabilities they exploit, to working with legacy
code. With more individuals working, practicing
and being aware of the uses of reverse engineering
more can be discussed and brought to the
community it has but can also present unique points
of view which can definitely incorporate different
types of thinking which could be discussed and
could help the area of reverse engineering keep
growing and expanding with new tools, concepts
and discoveries.

FUTURE WORK

There are many different proposals that can be
considered for future works such as using specific
tools such as IDA or Ghirdra in order to highlight
the capabilities of said tool and how they are able to
fend off some of the techniques that exists in order
to try to stop the reverse engineering process from

being achieved. This could be achieved by taking
some higher-level challenges or identifying some of
these techniques and apply them in order to then try
to reverse engineer them. Another potential future
work involves taking several reverse engineering
tools to solve the same set of challenges to
determine the strengths and weaknesses of the tools
and to evaluate whether they can detect techniques
that are used to throw off reverse engineering
attempts.

As mentioned before reverse engineering can
also be utilized for malware analysis, which is more
pertinent to cybersecurity, to understand how the
malware work and what vulnerabilities are being
exploited in order to be able to patch and counter
the use of these. A future project where some
diverse types of malwares are analyzed, handled
and properly reverse engineered would be ideal,
especially to highlight why it's important for
cybersecurity.

Lastly one more future project which could be
develop involves legacy code. As previously
discussed, legacy code is old code that needs to be
change and is difficult to understand. With reverse
engineering you could highlight how said code
could be examined in order to determine what its
purpose is and then create a more up to date code in
order to substitute the legacy code with the newer
process. It would be interesting to see older
programming languages be reverse engineer into
newer languages using this technique

REFERENCES
[1] R. Singh, “A review of reverse engineering theories

and tools,” International Journal of Engineering
Science Invention, vol. 2, no. 1, Jan. 2013 [Online].
Available: https://idc-
online.com/technical_references/pdfs/mechanical_en
gineering/A%20Review%20of.pdf

[2] S. Megira, A. R. Pangesti, and F. W. Wibowo,
“Malware analysis and detection using reverse
engineering technique,” IOP Conf. Series: Journal of
Physics: Conf. Series: Conference Series, Mar. 12,
2019 [Online]. Available:
https://doi.org/10.1088/1742-6596/1140/1/012042

[3] Sourceware.org, “GDB: The GNU project debugger.”
Accessed May 23, 2022 [Online]. Available:
https://www.sourceware.org/gdb/

[4] Tutorials Point, “Assembly - Introduction.” Accessed
May 23, 2022 [Online]. Available:
https://www.tutorialspoint.com/assembly_programmi
ng/assembly_introduction.htm

[5] Virtual Box, “Homepage.” Accessed May 23, 2022
[Online]. Available: https://www.virtualbox.org/

[6] g0t mi1k, “What is Kali Linux?”, Kali, Mar. 30, 2022
[Online]. Available:
https://www.kali.org/docs/introduction/what-is-kali-
linux/

[7] MKesenheimer, “Forest,” Crackmes, Jul. 17, 2021
[Online]. Available:
https://crackmes.one/crackme/60f31f1d33c5d42814f
b3381

[8] bueb810, “gugus the first,” Crackmes, Jan. 20, 2022
[Online]. Available:
https://crackmes.one/crackme/61e9983133c5d413767
ca5ac

[9] NomanProdhan, “License Checker 0x02,” Crackmes,
Dec. 24, 2021 [Online]. Available:
https://crackmes.one/crackme/61c62bde33c5d413767
ca0a0

[10] eventhorizon02, “super_easy,” Crackmes, Aug. 19,
2021 [Online]. Available:
https://crackmes.one/crackme/611e9bfb33c5d45db85
dc2d7

[11] SilentWraith, “lockcode,” Crackmes, Dec. 16. 2020
[Online]. Available:
https://crackmes.one/crackme/5fda4fa433c5d41f64de
e37b

[12] ezman, “easy keyg3nme,” Crackmes, Oct 13, 2019
[Online]. Available:
https://crackmes.one/crackme/5da31ebc33c5d46f00e
2c661

