
Abstract Conclusions and Future Work

Acknowledgements

This article gives an overview for rainbow tables and the results

of testing rainbow tables according to the length of the chosen

chain. The article presents a password cracking process that

contains its own algorithms for reduction functions, changes the

length of the chain and generates tables accordingly. These are

measured to see the effectivity of the password search in detail.

Within the executed tests it was noticed that there is a dependence

of rainbow tables size in relation to the password length, the

affection of the hash search by the size of the chosen chain and

their links to collisions. After completing the testing with different

passwords and tables the cause of this arises from the principle of

using the reduction function. These results objectively describe the

pros and cons of using rainbow tables and finally the article ends

talking about what are some effective use cases for this password

cracking method.

References

Methodology Results and Discussion

Unlike other techniques, huge storage is needed for Rainbow

Table Attacks and sadly the decreasing price per Mbyte for storage

solutions nowadays doesn’t help our safety. To avoid being a

victim of Rainbow Table Attack, it is strongly advised to perform

frequent password changes. Password security it’s all about just

following recommended best practices and trying to at least keep

up with cybercriminals. However, as the popularity of less secure

hashing algorithms fell, and as password salting became a more

common practice, rainbow tables have fallen out of common use.

As a plus in future testing we can try salting it such as

"thisismypassword" + “s41Ty” to make it more unique. It is highly

unlikely to be a password that would show up in a rainbow table

already. This means that hackers would need to do all the costly

the computation themselves. Adding a salt to the hashing process

is a great way to force the hash to be more unique, complex, and

increase its security without giving extra requirements to a user.

The salt is usually stored with the password string in the database.

Adding salt can help to mitigate password attacks, like rainbow

tables, because it will be encrypting the user's password with a

random string that wouldn't be naturally included in any rainbow

table. You can also add pepper to extra secure your data from this

sort of attack. The difference between salt and pepper is that

“pepper is a site-wide static value that is kept a secret and not

stored in the database”[3].

Theoretically all passwords are “crackable” Breaking any

encryption system can be done with unlimited time and unlimited

computing power, both of which do not exist. Anything less than

that unlimited power and time will require chance and good

investigative skills. Several methods to break encryption include

dictionary attacks, brute-force attacks, and rainbow tables.

Knowing that recovering the password requires time, computing

power and most of all luck for a dictionary or brute-force attack to

find a valid password. Strong passwords increase the likelihood, if

not guarantee that it would be harder for attackers to break the

encryption of it.

Several styles to break encryption include wordbook attacks,

brute-force attacks, and rainbow tables. A dictionary attack tries

variations of words in the wordbooks. The speed at which depends

upon the computing power of the system being used. Millions of

words can be tried each second using a suitable computer system

for password breaking. However, dictionary attacks should not be

overlooked because of not knowing the password. Although using

the highest-grade encryption is easy, quick and effective, a flaw

remains with the user in choosing a strong password. The

password can make a seemingly impossible to crack file easily

done in minutes.

Introduction

Informative Overview of Rainbow Hashes
Author: Victor Hornedo Martinez

Advisor: Jeffry Duffany

Polytechnic University of Puerto Rico

I would like to acknowledge Dr. Jeffrey Duffany for initially

guiding me through this work. I would also like to thank

other members in the Computer Science & Engineering

department which have given me ideas and encouragement to

continue with this research.

The results for both SHA256 and MD5 hashes using the online

method of cracking we can start to see its drawbacks. While not

needing the user to download tables to run, the process comes with

the drawback of slower times. The reason for this is “because it

searches for all available tables it can find while proceeding with

the validation of the hash existence” [4]. If it does not exist, it will

make a new entry of the hash in its database. After this step it

keeps going threw the process until it can find the result. The

result of the two passwords is displayed in the table below.

Table 4: MD5 Password Crack Time Using Crackstation

Table 5: SHA256 Password Crack Time Crackstation

The results for both SHA256 and MD5 hashes using the online

method of cracking we can start to see its drawbacks. The reason

for this is “because it searches for all available tables it can find

while proceeding with the validation of the hash existence” [4]. If

it does not exist, it will make a new entry of the hash in its

database. After this step it keeps going threw the process until it

can find the result. The result of the two passwords is displayed in

the table below. As we can see the hash for “thisismypassword”

both in the MD5 and SHA256 variants were the easy passwords

variable used for the experiment.

Table 6: MD5 Password Crack Time Using Ophcrack

Table 7: SHA256 Password Crack Time Using Ophcrack

As we can see from the Table 6 & Table 7, it takes considerably

longer to crack these hashes. It takes a bit more time than the

online method because we don’t have the luxury of just comparing

the testing hash to public hashes available. The smallest rainbow

table available is the basic alphanumeric one, and even it is 388

megabytes. That's the default table you get with the Ophcrack

bootable ISO. Even that small-ish table is remarkably effective. It

wasn’t expected that this rainbow table would not work on the

passwords with non-alphanumeric characters (%&^$#@!*)

because the table doesn't contain those characters The table that

found the result for both variants had size of 207 gigabiytes in

total.

[1] Shavers, B., & Bair, J. “Cryptography and Encryption. In 

Hiding Behind the Keyboard”, (2016) (pp. 133–151). 

Elsevier. 

[2] Information Security Stack Exchange. [Online]. 

https://security.stackexchange.com/questions/92865.

[3] Rainbow table attacks and cryptanalytic defenses. (2022, 

February 26). [Online]. 

https://www.esecurityplanet.com/threats/rainbow-table-

attack/

[4] CrackStation. (2019, June 5). Secure Salted Password 

Hashing - How to do it Properly. [Online]. 

https://crackstation.net/hashing-security.htm

[5] International Journal on Advances in Software, vol. 4 no 3 

& 4, year 2011. IARIA Conferences. [Online]. 

http://www.iariajournals.org/software/

The storage techniques to be tested are: MD5 Hashing and SHA-

256 Hashing. Although not proven to be secure, a commonly used

superset of password hashing is hash chaining. Following the

National Institute of Standards and Technology (NIST) guidelines

on password strength, “both a weak and robust password will be

passed through the stated techniques” [3]. Then, reversal of each

of the resulting strings will be attempted using online and offline

rainbow tables. The data recorded will be the time taken to reverse

the hash or whether the attack was successful.

Figure 1: Rainbow Hash Flowchart

By generating hashes of the large collection of accessible strings, a

rainbow table attack removes the requirement for this. In the

below example we will create two hashes using the words

P@55w0rD and thisismypassword (Table 2 & Table 3). Next, we

will create a file containing our hashes so we can put them into a

cracking program.

Table 2: MD5 Hashes

Table 3: SHA256 Hashes

In the above example, while the password "thisismypassword" is

not unique it serves the purpose of this experiment which is testing

a raw simple and complex password using two different hashing

algorithms and compare the results.

Problem

Rainbow tables are fast and effective at cracking passwords

because each password is hashed the same way. Since most people

use common passwords or reuse passwords, it makes cracking

easy. You solve this issue with password salting. A salt randomizes

each hash by adding random data that is unique to each user to

their password hash, so even the same password has a unique

hash. If someone tried to compare hashes in a rainbow table to

those in a database, none of the hashes would match, even if the

passwords were the same.

P@55w0rD B884DBCC2FEDE312066A9B7609A2E3C9

thisismypassword 31435008693CE6976F45DEDC5532E2C1

P@55w0rD 7F0897E8D62D3E3641EAFC270D311CBF7

77E67B9DF608571C93056D5AACF3189

thisismypassword 1DA9133AB9DBD11D2937EC8D312E1E25

69857059E73CC72DF92E670928983AB5

P@55w0rD Not found

thisismypassword 0.7 seconds

P@55w0rD Not found

thisismypassword 0.8 seconds

P@55w0rD 419 seconds

thisismypassword 39 seconds

P@55w0rD 414 seconds

thisismypassword 34 seconds


