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Abstract ⎯  Personal Aerial Vehicles (PAVs) are 

drones that provide transportation to passengers. 

The airframe and propulsion systems of a manned 

dodecacopter, or Personal VTOL Vehicle, were 

previously developed by Capstone students from 

Polytechnic University of Puerto Rico. This paper 

explores the dynamic model and control system 

based on this design. The modeled airframe is a 

coaxial dodecacopter with six arms. It has 12 

motors, one pair in each arm: the upper motor 

rotating in opposite direction from the lower motor. 

The plant model and PID controller were developed 

in Simulink. The results confirms that the Personal 

VTOL Vehicle has sufficient robustness to be further 

developed into a real-life model, and therefore, is a 

viable alternative for urban mobility, capable of 

transporting a person with minimal flight control 

experience. 

Key Terms ⎯ Controls Engineering, Drones, 

Mathematical Modeling, Passenger Vehicle.  

PROBLEM STATEMENT 

Aerial vehicles, such as drones, have proven to 

cover a wide range of capabilities, from hobby 

aircrafts to space and the military. The versatility and 

capabilities continue to increase with the 

introduction of new technology. There has been a 

rapid increase of much smaller Unmanned Aerial 

Vehicles (UAVs) in the market over the past decade. 

However, for manned aircraft, or Personal Aerial 

Vehicles (PAVs), the viability for urban mobility or 

manned explorations is yet to be explored. It is 

crucial to understand the current challenges to ensure 

their practicality and flexibility in day to day or 

specialized applications.  

This design project focuses on building the 

dynamic model and control system of the Personal 

VTOL Vehicle Capstone developed by José Noel 

Caraballo, John M. Agosto Burgos, and Bilal M. 

Smaili Abounassif. The intent of this design is to 

explore the viability of this type of vehicle and areas 

of opportunity for optimizing the technology and 

aerodynamics. 

LITERATURE REVIEW 

History 

Early developments of modern aerial vehicles 

are dated back to the 19th century, such as Sir 

George Cayley's research in aerodynamics which led 

to the design of a glider that had curved surface that 

generated lift [1]. In the upcoming decades, other 

designs included motors and propellers, as well as 

many changes in the aircraft and wing shapes, and 

with these improvements flight duration and stability 

increased as well. 

Several advances in the aerodynamic design 

were achieved, as well as the technology to control 

equipment remotely with the emergence of radio 

communications. Great advances and applications of 

UAVs were mostly in the military and defense for 

many years until they evolved into the aircrafts 

known today. 

As the capability and reliability increased, so 

did the availability of equipment, and the 

applications have been expanded beyond the 

government and the military. Remotely controlled 

aerial vehicles can be purchased at much lower costs 

and are now available for civilian use. 

PUPR students developed for their Capstone 

Project a Personal VTOL Vehicle consisting of a 

coaxial dodecacopter with six arms that could 

transport a person. This paper focuses on the study 

of its Aerodynamics and develops the Control 

system design. 

Aerodynamics Theory 

The Personal VTOL Vehicle airframe geometry 

consists of a double-hex Dodecacopter with coaxial 



motors, and the configuration is similar to the Figure 

1 below. The upper motors rotate clockwise (CW), 

and the lower coaxial counterparts rotate 

counterclockwise (CCW). Newton’s third law states 

that for every force in nature there is an equal and 

opposite reaction. Therefore, this CW/CCW 

configuration is preferred to be used to minimize 

momentum. This reduces yaw rotation and provides 

stability during flight [2]. This configuration is going 

to be used to develop the equations of motion. 

 

 

Figure 1  

VTOL Motor Rotation Configuration 

The mathematical model of a multirotor in 

space, such as the VTOL, are used to describe the 

Aerodynamic model, and contain 6 degrees of 

freedom, the first three degrees represent the 

position and the latter three represent its orientation. 

The position in space is determined by the Cartesian 

coordinate vector ξ=[x y z]T . Using the right-hand 

rule, the assumed direction of the Cartesian 

coordinate axes is North, East, Down (NED), 

respectively. Its orientation in space is described by 

the angles roll, pitch, and yaw η = [φ θ ψ]T .  

 

Figure 2  

VTOL Orientation Configuration 

To obtain a linear approximation of the 

dodecacopter model, the Euler angle 3 × 3 rotation 

matrix Ri
b  is used to transform the coordinate 

position from the body frame b to the inertial frame 

i: 
Ri

b= 

 

cos θ cos ψ cos θ sin ψ – sin θ

sin φ sin θ cos ψ – cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ – sin φ cos ψ cos φ cos θ

  

 

(1) 

 

To transform from the inertial frame to the body 

fixed frame, the transpose of the rotation matrix 

Rb
i =  Ri

b 
T
  is used [3]. 

As for most multirotor aerial vehicles, the main 

forces acting on the VTOL are the force of gravity 

and thrust from the motors. Other forces being 

considered are the rotor drag and air resistance. 

Assuming that the dodecacopter is a rigid body, the 

Newton-Euler equations are used to describe the 

vehicle dynamic model with the total forces ΣF and 

moments ΣM. 

 
ΣF

ΣM
 =  

mI3 03

03 I3
  

v 
ω 
 +  

ω^mv

ω^I3ω
  

 
(2) 

 

• m is the mass of the vehicle 

• I3 is a 3 × 3 identity matrix 

• I is the matrix form for the moments of inertia 

and products of inertia with respect to the 

vehicle’s center of gravity: 

I =  

Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

  

 

(3) 

• v is the linear velocity  

• ω^ is the angular velocity skew-symmetric 

cross-product matrix 



 ω^=  

0 –ψ θ 

ψ 0 –φ 

– θ φ 0

   

 

(4) 

 

• ω is the angular velocity 

• v   is the inertial acceleration 

• ω   is the angular acceleration 

Control Theory  

The control system manipulates an input signal 

to obtain a desired output or result. The closed loop 

control system, which is the model of for the 

dodecacopter, maintains the system stability by 

monitoring the observed state against the desired 

state, and adjusting the variables to reach a set point. 

The main components for a feedback control loop 

are the controller, plant, and feedback elements. The 

controller or actuator computes and executes the 

correction of the signal error. The plant is the system 

or process being controlled, it could be the physical 

system or a mathematical representation of it. The 

feedback loop provides information to the controller 

about the actual state of the system and is mainly 

composed of sensing elements.  

For the dodecacopter, the mathematical 

representation is provided by the equations 

developed in the following section and 

MATLAB/Simulink is the software tool used in the 

development of the plant model and the controller. 

The plant model for the double-hex dodecacopter 

corresponds to a nonlinear system, therefore the 

Euler angles are being used to obtain a linear 

approximation. The inputs for the controller are the 

hover thrust, roll, pitch, and yaw moments. The 

controller will provide the desired output throttle of 

the twelve rotors. 

METHODOLOGY 

The equations for the main forces and moments 

acting on the Dodecacopter are the following: 

Gravity: Fg=  

Fx

Fy

Fz

 =  
0

0

mg
  

 

(5) 

Thrust (per 

each rotor j): 
FT,j=  

0

0

ΣkTω
j

2
  

 

(6) 

Torque (per 

each rotor j): 
MD,j =  

0

0

ΣkDω
j

2
  

 

(7) 

 

To calculate the moments acting on the 

Dodecacopter, it is considered the distance l and 

location of each rotor from the center of gravity. The 

clockwise rotation (CW) is assumed to be positive, 

while counterclockwise (CCW) is assumed negative. 

 

 

Figure 3  

Configuration for the Moments on the Dodecacopter 

The model was designed to accept the input 

throttle, roll, pitch, and yaw from a Logitech 

Extreme 3D Pro Joystick. The following equations 

define the input vector U = [U1 U2 U3 U4]T [4]: 

 

U1 
Hover 

Thrust 

U1=ΣkTω
j

2 = ΣTj  

=  (T1+T2+T3+T4 
+T5+T6+T7+T8 
+T9+T10+T11+T12)   

(8) 

U2 
Roll 

Moment 

U2 = l (–T2–

T8+T5+T11+ cos
π

3
(–T1–

T7–T3–

T9+T4+T10+T6+T12))  

(9) 

U3 
Pitch 

Moment 

U3 = l ( sin
π

3
(T1+T7–

T3–T9–T4–

T10+T6+T12))  

(10) 



U4 
Yaw 

Moment 

U4=
kD

k𝑇

(ΣTCW–ΣTCCW) 
 

=
kD

kT

(T1+T2+T3+T4 

+T5+T6–T7– T8 

–T9–T10–T11–T12)  

(11) 

 

The force of gravity in terms of the body frame 

the rotational matrix Ri
b  is used: 

Fg
b=Ri

bFg =Ri
b  

0

0

mg
 =  

̶ mg sin θ

mg sin φ cos θ

mg cos φ cos θ

  

 

(12) 

 

With the Newton-Euler equations, the total 

forces Fx, Fy, Fz and linear accelerations are 

obtained: 

Force Fx Fx=mx +mz θ   ̶  my ψ   (13) 

Force Fy Fy=my +mx ψ   ̶  mz φ   (14) 

Force Fz Fz=mz  +my φ   ̶  mx θ   (15) 

Linear 

Acceleration 

x   

x  = y ψ   ̶  z θ   ̶  g sin θ  
(16) 

Linear 

Acceleration 

y   

y  = z φ   ̶  x ψ  +g sin φ cos θ  
(17) 

Linear 

Acceleration 

z   

z  = x θ   ̶  y φ +g cos φ cos θ  
(18) 

 

The system is assumed to be a rigid, symmetric 

body, therefore, the moments and angular 

accelerations for the model are: 

Moment Mx 
Mx=φ (Ixx)+(–

Iyyψ )θ +(Izzθ )ψ    
(19) 

Moment My 
My= θ  (Iyy)+(Ixxψ )φ +(–

Izzφ )ψ   
(20) 

Moment Mz 
Mz= ψ  (Izz)+(–

Ixxθ )φ +(Iyyφ )θ   
(21) 

Angular 

Acceleration 

φ   

φ =
Mx–(–Iyyψ )θ –(Izzθ )ψ 

(Ixx)
 

 

φ =
lU2–(–Iyyψ )θ –(Izzθ )ψ 

(Ixx)
 

 

(22) 

Angular 

Acceleration 

θ   

θ  =
My–(Ixxψ )φ –(–Izzφ )ψ 

(Iyy)
 

 

θ  =
lU3–(Ixxψ )φ –(–Izzφ )ψ 

(Iyy)
 

 

(23) 

Angular 

Acceleration 

ψ   

ψ =
Mz–(–Ixxθ )φ –(Iyyφ )θ 

(Izz)
 

 

ψ =
lU4–(–Ixxθ )φ –(Iyyφ )θ 

(Izz)
 
 

(24) 

 

The equations developed are used to build the 

plant model in MATLAB/Simulink. This is used to 

design, tune, and test the control system. 

To design the controller, first the open-loop 

model of the motors was implemented in Simulink 

to calculate the transfer function. In the real world, 

the motor’s input is the voltage, and its output is the 

rotation speed. The mathematical model represented 

the input voltage as a step response. The motor 

model was represented by the dynamic equations 

below in Laplace domain [5]: 

P(s)=
Θ (s)

V(s)
=

K

(Js+b)(Ls+R)+K2
 
 

(25) 

 

• J is the individual rotor moment of inertia 

• b is the motor damping coefficient 

• K is the motor torque and electromotive force 

constant 

• R and L are the motor’s electrical resistance and 

inductance, respectively 

The controller selected for this project is a 

Proportional-Integral-Derivative controller. The 

transfer function is 

C(s)=Kp+
Ki

s
+Kds 

 
(26) 

 

• Kp is the proportional gain which increases the 

system response 

• Ki is the integrative gain which corrects the 

steady-state error over time 

• Kp is the derivative gain which reduces the 

systems oscillation and overshoot 

Aerodynamic models contain a closed-loop 

feedback subsystem, which may include sensors 

such as an inertial measurement unit, camera, 

ultrasonic sensors, or pressure sensors [6]. These 



components provide the estimated altitude and 

attitude of the vehicle, but also add noise signals to 

the system. In this project, the calculated states of the 

vehicle will represent the closed loop feedback 

instead. 

RESULTS AND DISCUSSION 

The mathematical representation of this project 

was baselined from the Simulink model for the 

Parrot Minidrone example [6]. This project  focused 

on building the dynamic model with the twelve 

coaxial motors (VTOL block) and the Flight 

Controller block. 

 

Figure 4  

Simulation Model for the VTOL 

 

 

Figure 5  

VTOL Airframe Model 

 

 

Figure 6  

VTOL Model for the Forces and Moments 

 

 

Figure 7  

VTOL Flight Controller Model 

The PID controller for the motors and rotation 

angles was designed and tuned in Simulink. The 

motor transfer function and the feedback controller 

were mathematically represented using the Simulink 

model below: 

 

Figure 8  

VTOL Motor PID Controller Model 

The PID block facilitates the tuning of the 

proportional, integral, and derivative constants of the 

model by automatic tuning, and provides the option 

to manually tune the response as well. This approach 

was applied for the motor controller. 

 It is required that for this model, a settling time 

of less than 2 seconds be accomplished to stabilize 

the motors response. For the motor model, as well as 

the rotational angles, the overshoot is required to be 

less than or equal to 1% and reach a steady state of 

less than 1%. The following figure presents the 

results of the tuned motor PID control. By using Kp 

= 0.003856, Ki = 0.02615, and Kd = 0.0001407, these 

requirements were met. 



 

Figure 9  

VTOL Motor PID Step Response 

The PID control for the rotation angles was 

tuned manually. The table below presents the 

controller gains and the step response for each angle, 

demonstrating that the controller requirements were 

satisfied. 

 

Figure 10  

VTOL Rotational Angle PID Controller Model 

Table 1  

Rotational Angle PID Controller Gains 

Rotation 

Angle 

Kp Ki Kd 

φ 1.0 0.0001 0.001 

θ 1.0 0.0001 0.001 

ψ 0.99 0.001 0.01 

CONCLUSIONS 

Aerial Vehicles, such as the mini drones, have 

been explored in several applications. Despite their 

known stability with primarily four motors, the fast 

maneuverability of these devices is something that 

cannot be implemented in a drone that carries human 

passengers. This project focused on keeping the 

human safety factor in mind, and it demonstrated 

that by applying Newton-Euler equations of motion 

and implementing a PID controller in the motors’ 

thrust, the roll, pitch, and yaw angles, a stable and 

robust design can be obtained with twelve motors. 

As part of future work, the model can be further 

developed with the design of various subsystems 

such as power and sensor subsystem, which provide 

better estimation of the vehicle’s behavior. Although 

this may add complexity, it will significantly 

increase the model accuracy to the real-world 

environment. 

REFERENCES 

[1]  B. Terwilliger, D. C. Ison, J. Robbins and D. Vincenzi, 
"Chapter1 - History of UAS: where did they come from 

and where are they headed?," in Small Unmanned Aircraft 

Systems Guide: Exploring Designs, Operations, 

Regulations, and Economics, Newcastle, Washington, 

Aviation Supplies & Academics, Inc., 2017, pp. 1-28. 

[2]  D. Norris, "Quadcopter Flight Dynamics, Chapter 2," in 
Build Your Own Quadcopter: Power Up Your Designs with 

the Parallax Elev-8., New York, Chicago, San Francisco, 

Athens, London, Madrid, Mexico City, Milan, New Delhi, 
Singapore, Sydney, Toronto, McGraw-Hill Education, 

2014.  

[3]  P. M. R. H. P. a. R. J. Pounds, "Design of a Four-Rotor 
Aerial Robot," in Australasian Conference on Robotics 

and Automation, New Zealand, Nov. 27–29, pp. 145–150, 

2002.  

[4]  A. S. P. H. M. P. Mostafa Moussid, "Dynamic Modeling 

and Control of a HexaRotor using Linear and Nonlinear 

Methods," International Journal of Applied Information 
Systems (IJAIS), vol. 9, no. 5, pp. 9-17, 2015.  

[5]  D. Tilbury and B. Messner, "Control Tutorials for 
MATLAB and Simulink - DC Motor Speed: PID 

Controller Design," 2011. [Online]. Available: 

https://ctms.engin.umich.edu/CTMS/index.php?example=
MotorSpeed&section=SystemModeling. [Accessed April 

2022]. 

[6]  "Quadcopter Project - MATLAB and Simulink," 
MathWorks, [Online]. Available: 

https://www.mathworks.com/help/aeroblks/quadcopter-

project.html. [Accessed March 2022]. 

 

 


