
Probability Analysis with Web Scraping and Linear Regression

Javier A. García Matos
Master of Engineering in Computer Engineering
Dr. Nelliud Torres
Electrical and Computer Engineering and Computer Science Department
Polytechnic University of Puerto Rico

Abstract ¾ Since the dawn of sports, probability
and trends have played an important role in
predicting the outcome of an event. It gives the
public a general idea of how the match will occur,
providing a powerful tool in analytics. This project
intends to extract raw tennis match data from
verified sources and apply mathematical equations
to predict the probability of the outcome of a
particular match. Firstly, with the help of the
programming language Python and a popular
technique known as web scraping, the data can be
extracted from a verified source, such as the
Association of Tennis Professionals (ATP), and
validated. After the data is extracted, in this
project, three different algorithms will be applied,
with the goal of predicting the outcome of a
particular tennis match. These algorithms are
known as linear regression (decision tree, ridge,
and lasso) and are made with the programming
language Python. There will be a section
describing each equation in detail and how it
works. Finally, the results will show which of the
equations best predicted the outcome of the
different matches and conclusions will be drawn
based on the results of each equation.

Key Terms ¾ ATP, linear regression, Python,
web scraping

INTRODUCTION

Since the sixteenth century, probability has
played a large role in the world as we know it.
From complex mathematical equations to a simple
roll of the dice, the chance of an event occurring is
present in everyday life. The world of tennis is not
exempt from this. In every match, the odds are
stacked against or for a player, depending on a
variety of factors. In this project, we will gather the
raw data from verified sources with web scraping

and apply linear regression to understand the
probabilities of a tennis match.

Basic Rules of Tennis

To investigate the probabilities of a tennis
match, some basic rules of the sport must be
explained. First, the sport is played by either two or
four players, with the same number on each team,
that is, one player against another or two players
against two. Players use rackets to hit the ball back
and forth across the court. The points mainly come
from three situations: when the ball gets stuck in
the net, goes out of bounds, or bounces twice on the
court; or when the opposing player does not hit the
ball accordingly. The game is organized into sets,
which are made up of games. Matches are typically
played as a best-of-three or best-of-five sets, with
each set consisting of games and potentially
tiebreakers (different format games to decide the
result of a set or match). Each set has a max total of
ten games with the possibility of extending the
games to 12 with a famous tiebreaker. In this setup,
each game has a scoring pattern of 15, 30, 40, and
60 points. When a game gets to a tie at 40-40, a
player needs to win by two points in a row.

The court has two parts marked by white lines.
These lines show where the game is played and
where the serve happens (figure 1). There is a net in
the middle of the court that sets the lowest point the
ball must reach to go to the other side.

Figure 1

Regulation Tennis Court [1]

Motivation

From the genesis of tennis on July 9th, 1877, at
the Wimbledon Courts (figure 2), the word upset (a
match result that did not go according to prediction)
has been used in the sport. For example, a lower-
seed player in a tournament defeats the top-seed of
the same tournament. Bearing this in mind, with
technology constantly improving and changing,
newer terms such as machine learning can be
applied to this world, with the goal to improve the
overall accuracy of tennis prediction models and
not to avoid upsets, but to know when they will
happen. This project will focus on gathering data
about tennis players with modern tools such as web
scraping and then teaching the computer how to
correctly predict a match via machine learning
algorithms (ridge, lasso, and decision tree). This
article will focus on an in-depth explanation of the
implementation of such tools and the results of the
different models of prediction. The result will be a
very educated and informed prediction or, in
simpler terms, a guess.

Figure 1

First Tennis Match [2]

PROBLEM STATEMENT

With modern-day tennis and a variety of
factors, the prediction of the outcome of a particular
match has grown to be more difficult as time
progresses. With newer techniques, players are
surprising the outcome of tennis matches around
the world. Tennis matches are one of the most
difficult sports to predict in the world; with factors,
such as surface, player attributes, head-to-head
scores, and tournament format, among others, the
outcome of a match is influenced severely [3].

Consequently, a more effective solution to properly
predict a match is needed. With this goal in mind,
this project will concentrate on using those factors
to produce an accurate prediction.

Web Scraping with Python

To correctly predict a tennis match using linear
regression, historical data must be extracted from a
verified source. Firstly, we shall define the
difference between structured data and unstructured
data. Structured data refers to data that follows a
specific format, such as database entities or Excel
files. Unstructured data refers to data that does not
follow any specific format, such as videos and
audio files. The data that will be extracted in this
project is categorized as structured data.

In this section, the first step is to implement
web scraping (figure 3). Like a web API, web
scraping provides a tool for interaction with a
website or application, yet the main difference is in
the approach used. An API is given by the
developers of the application, while web scraping is
stand-alone, that is, it extracts the data it sees in the
front-end of the website. Consequently, with web
scraping, tennis match historical data can be
extracted based on tournaments or years, among
other factors. To implement this, firstly, the verified
source is found [4]. Then, the following libraries
are imported: Beautiful Soup (made for parsing the
HTML), Selenium (web driver to automate the
front-end of a page, i.e., interactions), Pandas (a
library for handling different data structures in
Python) and CSV (tool for dealing with files in
CSV or comma-separated format). After this, the
different static variables are listed: tournaments and
years. Consequently, a loop is made for each
tournament and each year, to modify the existing
atptour.com URL (Uniform Resource Locator).
Then, the web driver is started (an instance of
Google Chrome) and the page is parsed looking for
the table with the results. After it is found, the data
is stored in a variable and then cleaned (eliminate
unnecessary characters or text). Finally, the data is
exported into a CSV file for analysis. The structure
of the data is as follows: Year, Tournament,

Ranking Winner, Winner, Result, Ranking Loser,
Loser, Final Score and
Comments.

Figure 3

Web Scraping Algorithm

Linear Regression

To discuss the implementation and results of
the project, we shall describe linear regression and
the different types used in this project. Firstly, a
linear regression is defined as a prediction of the
value of a variable based on the value of another
variable [5]. In other words, it evaluates the
different attributes (features) a particular value has
and then uses the values to predict the result (target)
of a particular variable. The word feature is very
important in this definition, since it is a synonym
for an object's characteristics. For example, in a
tennis match, feature columns may be the year a
match took place, the tournament that was played,
the winner and loser of the match, the duration of
the match, etc. These columns help predict the
results of a variety of datasets based on patterns
found in the characteristics. On the other hand, a

target column refers to the result which needs to be
predicted. It is the outcome that needs to be guessed
based on the feature columns that are provided. In
this example, the result of a tennis match, i.e., who
wins, is the target column. With these columns, a
dynamic relationship of the values is created. The
next question that arises is: What happens behind
the curtain? In other words, what technique is used
to perform such a prediction? The result of a
variable is done by advanced mathematics with the
help of vectors and slope equations, defined in the
next subsection.

Vectors and Slope Equations

A vector is a quantity that has both magnitude
and direction [6]. In other words, it is a dynamic
value used to define an object. For example, let's
use a vector as a position in a mathematical graph.
As shown in figure 4, if many vectors are used, a
line can be made in the middle of the graph to
separate the objects and therefore create a slope
equation, i.e., the mathematical equation that
describes the line in the middle. The more precise
the line is, the more accurate the prediction will be.
The result of the formula would be the dependent
variable (the prediction) and the formula would be
the characteristics (feature columns). Within the
graph, the green dots represent a particular
classification while the blue dots refer to another
classification. If the example of the feature and
target columns above is used, a result could be
predicted accordingly, where the green dots could
represent player 1 winning the match and the blue
dots could represent player 1 losing the match.

Figure 4

Linear Regression Graph [7]

Decision Tree

As discussed in the previous section, linear
regression helps determine the result of a variable
based on another variable. As such, this model has
different types, which will be covered in this
article. Firstly, a decision tree is a type of
supervised machine learning used to categorize or
make predictions based on how a previous set of
questions were answered [8]. In other words, it is
an algorithm that uses past values to make a
prediction. For example, following the example of
the previous section, some questions and answers
may be drawn from historical tennis data, such as:
Was the tournament Wimbledon? Did they play
against each other last year? Did player 1 win
against player 2 by many points? As can be
observed, the pattern with the questions is the
possible answer: yes or no. After each question, a
virtual drill down occurs until a prediction is drawn.
As shown in figure 5, starting off in the root node,
i.e., the first question, it drills down to the
“splitting,” which can be defined as the Yes answer
and the No answer. After the split occurs, a decision
node is created (a sub-question of the root
question), which can have a direct prediction (yes
or no) or can be split into another decision node.
Hence, after the last question in the branch (a
subsection of the decision tree) is answered, the
prediction is drawn. This prediction is known as the
leaf node. This follows the linear regression model,
since it functions by predicting an outcome based
on the values of other variables. It does it in a way
that is indirect. In other words, instead of
evaluating the characteristics and their values, it
uses questions. For example, it is equivalent to
saying: Did player 1 win over player 2 in
Wimbledon? To: player 1 wins over player 2 in
Wimbledon or player 1 loses to player 2 in
Wimbledon.

Figure 5 [8]

Decision Tree Graph

Lasso

Having discussed the decision tree in the
previous section, another type of linear regression
shall be discussed. Lasso, or Least Absolute
Shrinkage and Selection Operator, is defined as a
popular technique used in statistical modeling and
machine learning to estimate the relationships
between variables and make predictions [9]. In
other words, like linear regression, it establishes
virtual relationships between columns or variables
and uses it to make an educated guess of the result.
Consequently, the process for applying this
technique can be divided into steps. In the first step,
the traditional linear regression model, an initial
prediction is calculated based on the values of the
features and target columns as explained in the
section of linear regression. Consequently, it does a
regularization of the values by eliminating the
different repeated values in the data set. After this
step, it focuses on shrinking coefficients, which
means eliminating the values that are close to zero,
since they would negatively affect the prediction of
the result. Thus, the values considered for
prediction are more common cases instead of the
outliers that would affect the result. By eliminating
the outliers from the data set, it can correctly make
a prediction of a particular result.

Ridge

Finally, the last model in this project is the
ridge regression model. A ridge regression
algorithm is a model-tuning method that is used to
analyze any data that suffers from multicollinearity
[10]. In other words, this model applies linear
regression and has specific tools to battle data sets
with smaller samples and more parameters
(features). In this case, since the data set is not
large, it is a good model to apply to the test data.
The process used by this algorithm follows a step-
by-step procedure. Firstly, a regular linear
regression model is applied. As discussed in the
previous section of this project. After this step, a
standardization technique is applied. This part of
the process consists of assuring the feature and
target values achieve a mathematical mean
(average) of 0 and a standard deviation (how much
the numbers vary) of 1. With these numbers, a more
standard dataset is achieved to be analyzed. Finally,
with the data set to a “standard” form, a more
accurate prediction can be made.

IMPLEMENTATION

Non-numeric Values

After defining linear regression and its various
types, this section will focus on the implementation
of linear regression models. Firstly, to correctly
apply mathematical equations to a particular data
set, it must be “cleaned,” that is, it needs to be in
the format required by the models for it to function.
Consequently, the first step is to convert alpha
values (words) into numbers. This is done with a
term known as dictionaries. Dictionaries are
mutable data structures that allow you to store key-
value pairs [11], which means that the data in a
dictionary is stored with a key (unique identifier)
that references a particular value. For example, in
the case of tennis players, a dictionary could be the
number of the player (key) and the name of the
player (value). These keys help give a number that
represents the value, allowing for the numeric

constraint to be achieved. Figure 6 shows the first
function.

Figure 6

Non-numeric Values Algorithm

A function is a “container” of code for
completing a particular job. In other words, it is used
to segment the Python script for reusability and
organization. The function “is numeric” is a tool for
verifying whether a value is numeric. If it is not, it
will simply return the value false and if it is a
number, it will return the value true. This function is
used to determine if the value of a column is already
numeric; if it is, then it does not require a dictionary.
In the case that the value is alpha (words), the
function “string_to_numeric” is used. This function
oversees applying dictionaries to a specific column
in a data frame. A data frame is a data structure that
consists of columns and rows, where each column
can be a different data type. In other words, it is a
table with different values in it containing values that
can be numbers, words, dates, etc. For each column,
it will first list the unique values (eliminate the
repeated values) and create a dictionary with these
values, assigning each value a number or key. After
it creates the dictionaries, it exports them into a file

for future reference (keys and values) and assigns the
column in the data frame to their respective
dictionary (mapping), thus eliminating alpha values
from the data frame and finishing the “cleaning” of
the data set.

Application of Types of Linear Regression

After the dataset is cleaned, as discussed in the
previous section, the different linear regression
models can be applied. Firstly, the process begins
in the “main” function. This function oversees all
the code that is run in the Python script. It starts off
with reading the CSV file that was created in the
previous section of web scraping (historical tennis
match data) and continues to “clean” the dataset
(words to numbers). After the dataset is converted
to numeric values, the feature columns and target
columns are established. This is done with a simple
loop that establishes every column except the result
that is wished to be predicted as the features
columns. On the other hand, it only establishes the
result as the target column. With these columns
defined, they can be passed on to the “print output”
as parameters. A parameter is a value that is
supplied to function when it is called. For example,
if an "add" function was made, it could accept two
numbers as parameters and return their sum.
Consequently, the “print output” function begins
with the output document “output.csv” being
opened to clear any previous results the computer
had calculated. After this, the header of the files,
i.e., the columns, are written as the first line of the
file: Year, Tournament, Ranking Player 1, Player 1,
Ranking Player 2, Player 2, Decision Tree Result,
Lasso Result, Ridge Result, Lasso Probability of
Player 1 Winning, and Ridge Probability of Player
1 Winning. It then opens the testing document,
which contains the different results that need to be
predicted. Consequently, it loops through these
tests and creates an object for each type of linear
regression model (figure 7). An object is defined as
a data field that has unique attributes and behavior
[12]. In other words, it is an instance of the data
field. For example, if a student data type were

def print_output(feature_columns,target_column):#Prints results to
csv file
 f = open('output.csv', "w+") #Open Output CSV to clear it
 f.close()
 with open('output.csv', 'a') as csv_file:#Open Output CSV to
Append to it
 csv_file.write('Year,Tournament,Ranking Player 1,Player
1,Ranking Player 2,Player 2,Decision Tree Result,Lasso
Result,Ridge Result,Lasso Probability of Player 1 Winning,Ridge
Probability of Player 1 Winning\n')#Header Line
 with open("testing.csv", 'r') as tests:#Open testing file for
reading
 next(tests)#Skip header line
 test = csv.reader(tests)#Initialize reader object
 for row in test:#For each line in csv file
 test_row = [[int(x) for x in row]]#Create test row
 decision_tree = DecisionTreeClassifier() #Initialize
the Decision Tree object
 lasso_model = Lasso(alpha=1.0) #Initialize the lasso
object
 ridge_model = Ridge(alpha=1.0) #Initialize the Ridge
object
 decision_tree =
decision_tree.fit(feature_columns.values, target_column)#Assign
corresponding columns
 lasso_model= lasso_model.fit(feature_columns.values,
target_column)#Assign corresponding columns
 ridge_model= ridge_model.fit(feature_columns.values,
target_column)#Assign corresponding columns

decision_tree_prediction=decision_tree.predict(test_row)#Predict
the result
 lasso_model_prediction =
lasso_model.predict(test_row)#Predict the result
 ridge_model_prediction =
ridge_model.predict(test_row)#Predict the result
 with open('output.csv', 'a') as csv_file:#Open Output
CSV to Append to it
 line=''#Detail Line
 counter=0 #Counter for test values
 for column in feature_columns:#Iteration over
columns that are not the result
 if os.path.isfile(column+'_keys.csv'):#Check
if column is a Key Based Column
 df = pd.read_csv(column+'_keys.csv',
quotechar="'")#Read csv file into data frame
 line+=df[df['Key'] ==
test_row[0][counter]].Value.values[0]+','#Print value
 else: line+=str(test_row[0][counter])+','#The
opposite
 counter+=1#Increment counter for test values
 line+='Player 2 Wins,' if
decision_tree_prediction[0] == 0 else 'Player 1 Wins,' #[0]
represents the given parameters would be false, i.e. player 1
loses, [1] The opposite, i.e. player 1 wins
 line+='Player 2 Wins,' if
lasso_model_prediction[0] < 0.51 else 'Player 1 Wins,' #If the
probability is less than 50% then player 2 wins,The opposite, i.e.
player 1 wins
 line+='Player 2 Wins,' if
ridge_model_prediction[0] < 0.51 else 'Player 1 Wins,' #If the
probability is less than 50% then player 2 wins,The opposite, i.e.
player 1 wins
 line+=str("{:.2f}".format(
lasso_model_prediction[0]*100))+','#Probability of player 1
winning
 line+=str("{:.2f}".format(
ridge_model_prediction[0]*100))#Probability of player 1 winning
 csv_file.write(line)#Write Detail Line to file
 print('Output done.')
def main():
 tennis_matches=pd.read_csv('in.csv') #Read Dataset
 tennis_matches=string_to_numeric(tennis_matches) #Clean string
values
 feature_columns = tennis_matches[[i for i in
tennis_matches.columns if i!='Result']] #The columns that affect
the result
 target_column = tennis_matches['Result'] #The result that
needs to be predicted
 print_output(feature_columns,target_column)

Figure 7
Linear Regression Algorithm

created, each student would be an object of the data
type (an instance). After each object is created, the
objects are given the feature and target columns
along with their corresponding values (fit function).
With these values, the predictions are made with
each linear regression model. These values are
written to the corresponding document (output.csv).
Additionally, with the keys and values document
discussed in a previous section, the values are
changed for a more user-friendly design. In other
words, if the key for the value “Rafael Nadal” were
1, then the 1 is changed for “Rafael Nadal.” In the
case of the ridge and lasso models, since the output
is given in percentage, rules were written to give
the output as a specific result. Which means that if
the percentage of player 1 winning is greater than
49%, then it registers player 1 winning the match
and vice versa.

RESULTS

In this section, particular test cases shall be
applied to the project to see how accurate the
prediction was. Matches that are not part of the
historical data will be considered, that is,
tournaments that occurred after the year 2022:
Wimbledon, the US Open, Roland Garros, and the
Australian Open. Table 1 shows the test cases that
were applied.

Table 1
Actual Results of Test Cases

Test # Winner (Ranking) vs. Loser (Ranking) Tournament

1 Daniil Medvedev (3) vs. Andrey Rublev (8) US Open

2 Ben Shelton vs. Tommy Paul (14) US Open

3 Alexander Zverev (12) vs. Jannik Sinner (6) US Open

4 Sebastian Korda (29) vs. Hubert Hurkacz (10) Aus. Open

5 Novak Djokovic (4) vs. Alex de Minaur (22) Aus. Open

6 Casper Ruud (4) vs. Holger Rune (6) Roland Garros

7 Stefanos Tsitsipas (5) vs. Sebastian Ofner (Q) Roland Garros

8 Francisco Cerundolo (23) vs. Taylor Fritz (9) Roland Garros

9 Carlos Alcaraz (1) vs. Daniil Medvedev (3) Wimbledon

10 Hubert Hurkacz (17) vs. Lorenzo Musetti (14) Wimbledon

11 Carlos Alcaraz (1) vs. Novak Djokovic (2) Wimbledon

Table 2 shows the results of the different
algorithms with their respective test cases.

Table 2
Prediction Results of Test Cases

Test # Decision Tree Lasso Ridge

1 Player 1 Wins Player 2 Wins Player 1 Wins

2 Player 1 Wins Player 2 Wins Player 2 Wins

3 Player 2 Wins Player 1 Wins Player 1 Wins

4 Player 1 Wins Player 2 Wins Player 1 Wins

5 Player 2 Wins Player 2 Wins Player 2 Wins

6 Player 2 Wins Player 1 Wins Player 1 Wins

7 Player 1 Wins Player 1 Wins Player 1 Wins

8 Player 2 Wins Player 2 Wins Player 2 Wins

9 Player 1 Wins Player 2 Wins Player 2 Wins

10 Player 1 Wins Player 1 Wins Player 2 Wins

11 Player 1 Wins Player 2 Wins Player 1 Wins

Table 3 shows the percentage of player 1
winning for the models lasso and ridge.

Table 3
Probabilities of Prediction of Test Cases

Test # Lasso Ridge

1 49.24% 52.91%

2 43.58% 38.63%

3 55.61% 55.79%

4 48.24% 52.03%

5 50.98% 46.88%

6 58.86% 60.73%

7 53.83% 52.66%

8 44.13% 47.36%

9 42.84% 43.40%

10 51.95% 47.59%

11 48.56% 58.42%

CONCLUSIONS

After concluding the testing for the linear
regression implementation, the evaluation of the
test cases showed conclusive results. Table 4 shows
the accuracy of the results.

Table 4
Conclusions of Test Cases

Model Total Tests Correct Tests Accuracy %

Decision Tree 11 7 63%

Lasso 11 4 36%

Ridge 11 6 55%

Average 11 5.7 51%

The table shows that the algorithms were pretty
accurate overall, with the average accuracy of a
correct prediction being 51%. The best algorithm,
decision tree, showed an impressive prediction rate
of 7 out of the 11 test cases produced. On the other
hand, the ridge algorithm demonstrated to be close
in the race for the best overall prediction, with an
accuracy of 55%. In other words, 6 out of the 11
test cases were correct. In sharp contrast, the last
algorithm (lasso) showed a decline in prediction
accuracy, with 36%, thus only predicting correctly
4 out of the 11 test cases. With these results, it can
be confirmed that, with the implementation of these
algorithms, a tennis match may be more accurately
predicted. The sample test cases were produced
with different players, tournaments, and rankings,
demonstrating that the python script can adapt to
different scenarios.

In conclusion, the project of web scraping and
prediction with linear regression was an overall
success, providing an overall accuracy of 51% and
a useful tool for data gathering and collection. This
project provides a useful tool for analysts, fans, and
any person interested in the world of tennis,
allowing the worlds of programming and sports to
join forces and focus on producing more accurate
predictions. In other words, this project represents
the complete extinction of tennis upsets.

FUTURE WORK

Soon, many additions can be made to this
project, specifically in two major areas: more
features and other areas of implementation. Firstly,
the more features collected via the web scraping
algorithm, the more accurate the results will be.
Columns such as surface of play, current
tournament layout, age of players, climate, etc., can
be added Additionally, this project could be
implemented in other areas in which prediction
plays a crucial role. For example, in the world of
firewalls and cybersecurity, these algorithms can be
applied to historical malware attacks to help in the
prevention of attacks based on the prediction they

will occur, therefore allowing security staff to stop
these attacks.

REFERENCES
[1] M. Schnur, “What size is a regulation tennis court?",

Metro League, September 5, 2022. Available:
https://www.metroleague.org/what-size-is-a-
regulation-tennis-court/

[2] History of Tennis, “The first official tennis match,”
September 17, 2017. Available:
https://thehistoryoftennisblog.wordpress.com/2017/0
9/21/introduction/

[3] R. Vora, “How to predict a tennis match?”,
MatchStat, June 29, 2023. Available:
https://matchstat.com/predictions-tips/how-to-
predict-a-a-tennis-match/

[4] ATP Tour, “Homepage.” ATP Tour. Accessed Aug.
20, 2023. Available: https://www.atptour.com/

[5] IBM, “About linear regression.” Accessed Oct. 7,
2023. Available: https://www.ibm.com/topics/linear-
regression#:~:text=Resources-
,What%20is%20linear%20regression%3F,is%20calle
d%20the%20independent%20variable

[6] “Vector,” Encyclopædia Britannica, accessed Oct. 7,
2023. Available:
https://www.britannica.com/science/vector-physics

[7] Artificial Intelligence, “Linear Classification."
Accessed Oct. 7, 2023. Available:
https://leonardoaraujosantos.gitbook.io/artificial-
inteligence/machine_learning/supervised_learning/lin
ear_classification

[8] Master's in Data Science with edX, “What is a
decision tree." Accessed Oct. 7, 2023. Available:
https://www.mastersindatascience.org/learning/machi
ne-learning-algorithms/decision-tree/

[9] D. Kumar, “A complete understanding of LASSO
regression,” Great Learning, May 30, 2023.
Available:
https://www.mygreatlearning.com/blog/understandin
g-of-lasso-regression/

[10] Great Learning, “What is ridge regression?”
Accessed Oct. 7, 2023. Available:
https://www.mygreatlearning.com/blog/what-is-
ridge-
regression/#:~:text=Ridge%20regression%20is%20a
%20model,away%20from%20the%20actual%20valu
es

[11] Simplilearn, “What is a dictionary in Python?"
Accessed Oct. 7, 2023. Available:
https://www.simplilearn.com/dictionary-in-python-
article#:~:text=In%20Python%2C%20dictionaries%2
0are%20mutable,update()%2C%20dict

[12] A. S. Gillis and S. Lewis, “What is object-oriented
programming?,” TechTarget, July 2021. Available:
https://www.techtarget.com/searchapparchitecture/de
finition/object-oriented-programming-
OOP#:~:text=An%20object%20can%20be%20define
d,and%20actively%20updated%20or%20maintained

