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Abstract ¾ Since the dawn of sports, probability 
and trends have played an important role in 
predicting the outcome of an event. It gives the 
public a general idea of how the match will occur, 
providing a powerful tool in analytics. This project 
intends to extract raw tennis match data from 
verified sources and apply mathematical equations 
to predict the probability of the outcome of a 
particular match. Firstly, with the help of the 
programming language Python and a popular 
technique known as web scraping, the data can be 
extracted from a verified source, such as the 
Association of Tennis Professionals (ATP), and 
validated. After the data is extracted, in this 
project, three different algorithms will be applied, 
with the goal of predicting the outcome of a 
particular tennis match. These algorithms are 
known as linear regression (decision tree, ridge, 
and lasso) and are made with the programming 
language Python. There will be a section 
describing each equation in detail and how it 
works. Finally, the results will show which of the 
equations best predicted the outcome of the 
different matches and conclusions will be drawn 
based on the results of each equation.  

Key Terms ¾ ATP, linear regression, Python, 
web scraping 

INTRODUCTION 

Since the sixteenth century, probability has 
played a large role in the world as we know it. 
From complex mathematical equations to a simple 
roll of the dice, the chance of an event occurring is 
present in everyday life. The world of tennis is not 
exempt from this. In every match, the odds are 
stacked against or for a player, depending on a 
variety of factors. In this project, we will gather the 
raw data from verified sources with web scraping 

and apply linear regression to understand the 
probabilities of a tennis match. 

Basic Rules of Tennis 

To investigate the probabilities of a tennis 
match, some basic rules of the sport must be 
explained. First, the sport is played by either two or 
four players, with the same number on each team, 
that is, one player against another or two players 
against two. Players use rackets to hit the ball back 
and forth across the court. The points mainly come 
from three situations: when the ball gets stuck in 
the net, goes out of bounds, or bounces twice on the 
court; or when the opposing player does not hit the 
ball accordingly. The game is organized into sets, 
which are made up of games. Matches are typically 
played as a best-of-three or best-of-five sets, with 
each set consisting of games and potentially 
tiebreakers (different format games to decide the 
result of a set or match). Each set has a max total of 
ten games with the possibility of extending the 
games to 12 with a famous tiebreaker. In this setup, 
each game has a scoring pattern of 15, 30, 40, and 
60 points. When a game gets to a tie at 40-40, a 
player needs to win by two points in a row.  

The court has two parts marked by white lines. 
These lines show where the game is played and 
where the serve happens (figure 1). There is a net in 
the middle of the court that sets the lowest point the 
ball must reach to go to the other side.  

 
Figure 1 

Regulation Tennis Court [1] 



Motivation 

From the genesis of tennis on July 9th, 1877, at 
the Wimbledon Courts (figure 2), the word upset (a 
match result that did not go according to prediction) 
has been used in the sport. For example, a lower-
seed player in a tournament defeats the top-seed of 
the same tournament. Bearing this in mind, with 
technology constantly improving and changing, 
newer terms such as machine learning can be 
applied to this world, with the goal to improve the 
overall accuracy of tennis prediction models and 
not to avoid upsets, but to know when they will 
happen. This project will focus on gathering data 
about tennis players with modern tools such as web 
scraping and then teaching the computer how to 
correctly predict a match via machine learning 
algorithms (ridge, lasso, and decision tree). This 
article will focus on an in-depth explanation of the 
implementation of such tools and the results of the 
different models of prediction. The result will be a 
very educated and informed prediction or, in 
simpler terms, a guess. 

 
Figure 1 

First Tennis Match [2] 

PROBLEM STATEMENT 

With modern-day tennis and a variety of 
factors, the prediction of the outcome of a particular 
match has grown to be more difficult as time 
progresses. With newer techniques, players are 
surprising the outcome of tennis matches around 
the world. Tennis matches are one of the most 
difficult sports to predict in the world; with factors, 
such as surface, player attributes, head-to-head 
scores, and tournament format, among others, the 
outcome of a match is influenced severely [3]. 

Consequently, a more effective solution to properly 
predict a match is needed. With this goal in mind, 
this project will concentrate on using those factors 
to produce an accurate prediction. 

Web Scraping with Python 

To correctly predict a tennis match using linear 
regression, historical data must be extracted from a 
verified source. Firstly, we shall define the 
difference between structured data and unstructured 
data. Structured data refers to data that follows a 
specific format, such as database entities or Excel 
files. Unstructured data refers to data that does not 
follow any specific format, such as videos and 
audio files. The data that will be extracted in this 
project is categorized as structured data.  

In this section, the first step is to implement 
web scraping (figure 3). Like a web API, web 
scraping provides a tool for interaction with a 
website or application, yet the main difference is in 
the approach used. An API is given by the 
developers of the application, while web scraping is 
stand-alone, that is, it extracts the data it sees in the 
front-end of the website. Consequently, with web 
scraping, tennis match historical data can be 
extracted based on tournaments or years, among 
other factors. To implement this, firstly, the verified 
source is found [4]. Then, the following libraries 
are imported: Beautiful Soup (made for parsing the 
HTML), Selenium (web driver to automate the 
front-end of a page, i.e., interactions), Pandas (a 
library for handling different data structures in 
Python) and CSV (tool for dealing with files in 
CSV or comma-separated format). After this, the 
different static variables are listed: tournaments and 
years. Consequently, a loop is made for each 
tournament and each year, to modify the existing 
atptour.com URL (Uniform Resource Locator). 
Then, the web driver is started (an instance of 
Google Chrome) and the page is parsed looking for 
the table with the results. After it is found, the data 
is stored in a variable and then cleaned (eliminate 
unnecessary characters or text). Finally, the data is 
exported into a CSV file for analysis. The structure 
of the data is as follows: Year, Tournament, 



Ranking Winner, Winner, Result, Ranking Loser, 
Loser, Final Score and 
Comments.

 
Figure 3 

Web Scraping Algorithm 

Linear Regression 

To discuss the implementation and results of 
the project, we shall describe linear regression and 
the different types used in this project. Firstly, a 
linear regression is defined as a prediction of the 
value of a variable based on the value of another 
variable [5]. In other words, it evaluates the 
different attributes (features) a particular value has 
and then uses the values to predict the result (target) 
of a particular variable. The word feature is very 
important in this definition, since it is a synonym 
for an object's characteristics. For example, in a 
tennis match, feature columns may be the year a 
match took place, the tournament that was played, 
the winner and loser of the match, the duration of 
the match, etc. These columns help predict the 
results of a variety of datasets based on patterns 
found in the characteristics. On the other hand, a 

target column refers to the result which needs to be 
predicted. It is the outcome that needs to be guessed 
based on the feature columns that are provided. In 
this example, the result of a tennis match, i.e., who 
wins, is the target column. With these columns, a 
dynamic relationship of the values is created. The 
next question that arises is: What happens behind 
the curtain? In other words, what technique is used 
to perform such a prediction? The result of a 
variable is done by advanced mathematics with the 
help of vectors and slope equations, defined in the 
next subsection.  

Vectors and Slope Equations 

A vector is a quantity that has both magnitude 
and direction [6]. In other words, it is a dynamic 
value used to define an object. For example, let's 
use a vector as a position in a mathematical graph. 
As shown in figure 4, if many vectors are used, a 
line can be made in the middle of the graph to 
separate the objects and therefore create a slope 
equation, i.e., the mathematical equation that 
describes the line in the middle. The more precise 
the line is, the more accurate the prediction will be. 
The result of the formula would be the dependent 
variable (the prediction) and the formula would be 
the characteristics (feature columns). Within the 
graph, the green dots represent a particular 
classification while the blue dots refer to another 
classification. If the example of the feature and 
target columns above is used, a result could be 
predicted accordingly, where the green dots could 
represent player 1 winning the match and the blue 
dots could represent player 1 losing the match.  

 
Figure 4 

Linear Regression Graph [7] 



Decision Tree 

As discussed in the previous section, linear 
regression helps determine the result of a variable 
based on another variable. As such, this model has 
different types, which will be covered in this 
article. Firstly, a decision tree is a type of 
supervised machine learning used to categorize or 
make predictions based on how a previous set of 
questions were answered [8]. In other words, it is 
an algorithm that uses past values to make a 
prediction. For example, following the example of 
the previous section, some questions and answers 
may be drawn from historical tennis data, such as: 
Was the tournament Wimbledon? Did they play 
against each other last year? Did player 1 win 
against player 2 by many points? As can be 
observed, the pattern with the questions is the 
possible answer: yes or no. After each question, a 
virtual drill down occurs until a prediction is drawn. 
As shown in figure 5, starting off in the root node, 
i.e., the first question, it drills down to the 
“splitting,” which can be defined as the Yes answer 
and the No answer. After the split occurs, a decision 
node is created (a sub-question of the root 
question), which can have a direct prediction (yes 
or no) or can be split into another decision node. 
Hence, after the last question in the branch (a 
subsection of the decision tree) is answered, the 
prediction is drawn. This prediction is known as the 
leaf node. This follows the linear regression model, 
since it functions by predicting an outcome based 
on the values of other variables. It does it in a way 
that is indirect. In other words, instead of 
evaluating the characteristics and their values, it 
uses questions. For example, it is equivalent to 
saying: Did player 1 win over player 2 in 
Wimbledon? To: player 1 wins over player 2 in 
Wimbledon or player 1 loses to player 2 in 
Wimbledon.  

 
Figure 5 [8] 

Decision Tree Graph 

Lasso 

Having discussed the decision tree in the 
previous section, another type of linear regression 
shall be discussed. Lasso, or Least Absolute 
Shrinkage and Selection Operator, is defined as a 
popular technique used in statistical modeling and 
machine learning to estimate the relationships 
between variables and make predictions [9]. In 
other words, like linear regression, it establishes 
virtual relationships between columns or variables 
and uses it to make an educated guess of the result. 
Consequently, the process for applying this 
technique can be divided into steps. In the first step, 
the traditional linear regression model, an initial 
prediction is calculated based on the values of the 
features and target columns as explained in the 
section of linear regression. Consequently, it does a 
regularization of the values by eliminating the 
different repeated values in the data set. After this 
step, it focuses on shrinking coefficients, which 
means eliminating the values that are close to zero, 
since they would negatively affect the prediction of 
the result. Thus, the values considered for 
prediction are more common cases instead of the 
outliers that would affect the result. By eliminating 
the outliers from the data set, it can correctly make 
a prediction of a particular result. 



Ridge 

Finally, the last model in this project is the 
ridge regression model. A ridge regression 
algorithm is a model-tuning method that is used to 
analyze any data that suffers from multicollinearity 
[10]. In other words, this model applies linear 
regression and has specific tools to battle data sets 
with smaller samples and more parameters 
(features). In this case, since the data set is not 
large, it is a good model to apply to the test data. 
The process used by this algorithm follows a step-
by-step procedure. Firstly, a regular linear 
regression model is applied. As discussed in the 
previous section of this project. After this step, a 
standardization technique is applied. This part of 
the process consists of assuring the feature and 
target values achieve a mathematical mean 
(average) of 0 and a standard deviation (how much 
the numbers vary) of 1. With these numbers, a more 
standard dataset is achieved to be analyzed. Finally, 
with the data set to a “standard” form, a more 
accurate prediction can be made. 

IMPLEMENTATION 

Non-numeric Values 

After defining linear regression and its various 
types, this section will focus on the implementation 
of linear regression models. Firstly, to correctly 
apply mathematical equations to a particular data 
set, it must be “cleaned,” that is, it needs to be in 
the format required by the models for it to function. 
Consequently, the first step is to convert alpha 
values (words) into numbers. This is done with a 
term known as dictionaries. Dictionaries are 
mutable data structures that allow you to store key-
value pairs [11], which means that the data in a 
dictionary is stored with a key (unique identifier) 
that references a particular value. For example, in 
the case of tennis players, a dictionary could be the 
number of the player (key) and the name of the 
player (value). These keys help give a number that 
represents the value, allowing for the numeric 

constraint to be achieved. Figure 6 shows the first 
function.  

 
Figure 6 

Non-numeric Values Algorithm 

A function is a “container” of code for 
completing a particular job. In other words, it is used 
to segment the Python script for reusability and 
organization. The function “is numeric” is a tool for 
verifying whether a value is numeric. If it is not, it 
will simply return the value false and if it is a 
number, it will return the value true. This function is 
used to determine if the value of a column is already 
numeric; if it is, then it does not require a dictionary. 
In the case that the value is alpha (words), the 
function “string_to_numeric” is used. This function 
oversees applying dictionaries to a specific column 
in a data frame. A data frame is a data structure that 
consists of columns and rows, where each column 
can be a different data type. In other words, it is a 
table with different values in it containing values that 
can be numbers, words, dates, etc. For each column, 
it will first list the unique values (eliminate the 
repeated values) and create a dictionary with these 
values, assigning each value a number or key. After 
it creates the dictionaries, it exports them into a file 



for future reference (keys and values) and assigns the 
column in the data frame to their respective 
dictionary (mapping), thus eliminating alpha values 
from the data frame and finishing the “cleaning” of 
the data set. 

Application of Types of Linear Regression 

After the dataset is cleaned, as discussed in the 
previous section, the different linear regression 
models can be applied. Firstly, the process begins 
in the “main” function. This function oversees all 
the code that is run in the Python script. It starts off 
with reading the CSV file that was created in the 
previous section of web scraping (historical tennis 
match data) and continues to “clean” the dataset 
(words to numbers). After the dataset is converted 
to numeric values, the feature columns and target 
columns are established. This is done with a simple 
loop that establishes every column except the result 
that is wished to be predicted as the features 
columns. On the other hand, it only establishes the 
result as the target column. With these columns 
defined, they can be passed on to the “print output” 
as parameters. A parameter is a value that is 
supplied to function when it is called. For example, 
if an "add" function was made, it could accept two 
numbers as parameters and return their sum. 
Consequently, the “print output” function begins 
with the output document “output.csv” being 
opened to clear any previous results the computer 
had calculated. After this, the header of the files, 
i.e., the columns, are written as the first line of the 
file: Year, Tournament, Ranking Player 1, Player 1, 
Ranking Player 2, Player 2, Decision Tree Result, 
Lasso Result, Ridge Result, Lasso Probability of 
Player 1 Winning, and Ridge Probability of Player 
1 Winning. It then opens the testing document, 
which contains the different results that need to be 
predicted. Consequently, it loops through these 
tests and creates an object for each type of linear 
regression model (figure 7). An object is defined as 
a data field that has unique attributes and behavior 
[12]. In other words, it is an instance of the data 
field. For example, if a student data type were 
 

def print_output(feature_columns,target_column):#Prints results to 
csv file 
    f = open('output.csv', "w+") #Open Output CSV to clear it 
    f.close() 
    with open('output.csv', 'a') as csv_file:#Open Output CSV to 
Append to it        
        csv_file.write('Year,Tournament,Ranking Player 1,Player 
1,Ranking Player 2,Player 2,Decision Tree Result,Lasso 
Result,Ridge Result,Lasso Probability of Player 1 Winning,Ridge 
Probability of Player 1 Winning\n')#Header Line 
    with open("testing.csv", 'r') as tests:#Open testing file for 
reading 
        next(tests)#Skip header line 
        test = csv.reader(tests)#Initialize reader object 
        for row in test:#For each line in csv file 
            test_row = [[int(x) for x in row]]#Create test row 
            decision_tree = DecisionTreeClassifier() #Initialize 
the Decision Tree object 
            lasso_model = Lasso(alpha=1.0) #Initialize the lasso 
object 
            ridge_model = Ridge(alpha=1.0) #Initialize the Ridge 
object 
            decision_tree = 
decision_tree.fit(feature_columns.values, target_column)#Assign 
corresponding columns 
            lasso_model= lasso_model.fit(feature_columns.values, 
target_column)#Assign corresponding columns 
            ridge_model= ridge_model.fit(feature_columns.values, 
target_column)#Assign corresponding columns 
            
decision_tree_prediction=decision_tree.predict(test_row)#Predict 
the result 
            lasso_model_prediction = 
lasso_model.predict(test_row)#Predict the result 
            ridge_model_prediction = 
ridge_model.predict(test_row)#Predict the result 
            with open('output.csv', 'a') as csv_file:#Open Output 
CSV to Append to it 
                line=''#Detail Line 
                counter=0 #Counter for test values 
                for column in feature_columns:#Iteration over 
columns that are not the result 
                    if os.path.isfile(column+'_keys.csv'):#Check 
if column is a Key Based Column 
                        df = pd.read_csv(column+'_keys.csv', 
quotechar="'")#Read csv file into data frame 
                        line+=df[df['Key'] == 
test_row[0][counter]].Value.values[0]+','#Print value 
                    else: line+=str(test_row[0][counter])+','#The 
opposite 
                    counter+=1#Increment counter for test values 
                line+='Player 2 Wins,' if 
decision_tree_prediction[0] == 0 else 'Player 1 Wins,' #[0] 
represents the given parameters would be false, i.e. player 1 
loses, [1] The opposite, i.e. player 1 wins 
                line+='Player 2 Wins,' if 
lasso_model_prediction[0] < 0.51 else 'Player 1 Wins,' #If the 
probability is less than 50% then player 2 wins,The opposite, i.e. 
player 1 wins  
                line+='Player 2 Wins,' if 
ridge_model_prediction[0] < 0.51 else 'Player 1 Wins,' #If the 
probability is less than 50% then player 2 wins,The opposite, i.e. 
player 1 wins  
                line+=str("{:.2f}".format( 
lasso_model_prediction[0]*100))+','#Probability of player 1 
winning 
                line+=str("{:.2f}".format( 
ridge_model_prediction[0]*100))#Probability of player 1 winning 
                csv_file.write(line)#Write Detail Line to file 
    print('Output done.')        
def main(): 
    tennis_matches=pd.read_csv('in.csv') #Read Dataset 
    tennis_matches=string_to_numeric(tennis_matches) #Clean string 
values 
    feature_columns = tennis_matches[[i for i in 
tennis_matches.columns if i!='Result']] #The columns that affect 
the result 
    target_column = tennis_matches['Result'] #The result that 
needs to be predicted  
    print_output(feature_columns,target_column) 

Figure 7 
Linear Regression Algorithm 



created, each student would be an object of the data 
type (an instance). After each object is created, the 
objects are given the feature and target columns 
along with their corresponding values (fit function). 
With these values, the predictions are made with 
each linear regression model. These values are 
written to the corresponding document (output.csv). 
Additionally, with the keys and values document 
discussed in a previous section, the values are 
changed for a more user-friendly design. In other 
words, if the key for the value “Rafael Nadal” were 
1, then the 1 is changed for “Rafael Nadal.” In the 
case of the ridge and lasso models, since the output 
is given in percentage, rules were written to give 
the output as a specific result. Which means that if 
the percentage of player 1 winning is greater than 
49%, then it registers player 1 winning the match 
and vice versa.  

RESULTS 

In this section, particular test cases shall be 
applied to the project to see how accurate the 
prediction was. Matches that are not part of the 
historical data will be considered, that is, 
tournaments that occurred after the year 2022: 
Wimbledon, the US Open, Roland Garros, and the 
Australian Open. Table 1 shows the test cases that 
were applied. 

Table 1 
Actual Results of Test Cases 

Test # Winner (Ranking) vs. Loser (Ranking) Tournament 

1 Daniil Medvedev (3) vs. Andrey Rublev (8) US Open 

2 Ben Shelton vs. Tommy Paul (14) US Open 

3 Alexander Zverev (12) vs. Jannik Sinner (6) US Open 

4 Sebastian Korda (29) vs. Hubert Hurkacz (10) Aus. Open 

5 Novak Djokovic (4) vs. Alex de Minaur (22) Aus. Open 

6 Casper Ruud (4) vs. Holger Rune (6) Roland Garros 

7 Stefanos Tsitsipas (5) vs. Sebastian Ofner (Q) Roland Garros 

8 Francisco Cerundolo (23) vs. Taylor Fritz (9) Roland Garros 

9 Carlos Alcaraz (1) vs. Daniil Medvedev (3) Wimbledon 

10 Hubert Hurkacz (17) vs. Lorenzo Musetti (14) Wimbledon 

11 Carlos Alcaraz (1) vs. Novak Djokovic (2) Wimbledon 

 

Table 2 shows the results of the different 
algorithms with their respective test cases. 

Table 2 
Prediction Results of Test Cases  

Test # Decision Tree Lasso Ridge 

1 Player 1 Wins Player 2 Wins Player 1 Wins 

2 Player 1 Wins Player 2 Wins Player 2 Wins 

3 Player 2 Wins Player 1 Wins Player 1 Wins 

4 Player 1 Wins Player 2 Wins Player 1 Wins 

5 Player 2 Wins Player 2 Wins Player 2 Wins 

6 Player 2 Wins Player 1 Wins Player 1 Wins 

7 Player 1 Wins Player 1 Wins Player 1 Wins 

8 Player 2 Wins Player 2 Wins Player 2 Wins 

9 Player 1 Wins Player 2 Wins Player 2 Wins 

10 Player 1 Wins Player 1 Wins Player 2 Wins 

11 Player 1 Wins Player 2 Wins Player 1 Wins 

 

Table 3 shows the percentage of player 1 
winning for the models lasso and ridge. 

Table 3 
Probabilities of Prediction of Test Cases  

Test # Lasso Ridge 

1 49.24% 52.91% 

2 43.58% 38.63% 

3 55.61% 55.79% 

4 48.24% 52.03% 

5 50.98% 46.88% 

6 58.86% 60.73% 

7 53.83% 52.66% 

8 44.13% 47.36% 

9 42.84% 43.40% 

10 51.95% 47.59% 

11 48.56% 58.42% 

 

CONCLUSIONS 

After concluding the testing for the linear 
regression implementation, the evaluation of the 
test cases showed conclusive results. Table 4 shows 
the accuracy of the results. 

Table 4 
Conclusions of Test Cases 

Model Total Tests Correct Tests Accuracy % 

Decision Tree 11 7 63% 

Lasso 11 4 36% 

Ridge 11 6 55% 

Average 11 5.7 51% 

   



The table shows that the algorithms were pretty 
accurate overall, with the average accuracy of a 
correct prediction being 51%. The best algorithm, 
decision tree, showed an impressive prediction rate 
of 7 out of the 11 test cases produced. On the other 
hand, the ridge algorithm demonstrated to be close 
in the race for the best overall prediction, with an 
accuracy of 55%. In other words, 6 out of the 11 
test cases were correct. In sharp contrast, the last 
algorithm (lasso) showed a decline in prediction 
accuracy, with 36%, thus only predicting correctly 
4 out of the 11 test cases. With these results, it can 
be confirmed that, with the implementation of these 
algorithms, a tennis match may be more accurately 
predicted. The sample test cases were produced 
with different players, tournaments, and rankings, 
demonstrating that the python script can adapt to 
different scenarios.  

In conclusion, the project of web scraping and 
prediction with linear regression was an overall 
success, providing an overall accuracy of 51% and 
a useful tool for data gathering and collection. This 
project provides a useful tool for analysts, fans, and 
any person interested in the world of tennis, 
allowing the worlds of programming and sports to 
join forces and focus on producing more accurate 
predictions. In other words, this project represents 
the complete extinction of tennis upsets. 

FUTURE WORK 

Soon, many additions can be made to this 
project, specifically in two major areas: more 
features and other areas of implementation. Firstly, 
the more features collected via the web scraping 
algorithm, the more accurate the results will be. 
Columns such as surface of play, current 
tournament layout, age of players, climate, etc., can 
be added Additionally, this project could be 
implemented in other areas in which prediction 
plays a crucial role. For example, in the world of 
firewalls and cybersecurity, these algorithms can be 
applied to historical malware attacks to help in the 
prevention of attacks based on the prediction they 

will occur, therefore allowing security staff to stop 
these attacks. 
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