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The Structure of  a Composite Galaxy Model

Abstract – The algorithms and nu-
merical methods describes the way 
of implementing a composite galaxy 
–bulge area, disk, and galaxy halo- 
which is modeled as a full three-di-
mensional entity, using spherical and 
disk models as primary support. The 
research models proposed were im-
plemented in order to complement a 
GalaxSee program, parallel software 
for educational development of the 
portable cluster LittleFe has being im-
plemented as well.

INTRODUCTION
In the past it has been different 

intents to simulate the cosmologi-
cal expansion of the universe, every 
part of the process as one of many 
dynamic systems representations, 
but reality is that these tools and 
software demands an extremely 
high computational resources. 
Through the years the simulations 
ought to be better in terms of orders 
of magnitude, as high accuracy, ro-
bustness of the data collected inclu-
ding the improvement of analysis 
and data extraction from previous 
observations.  

The most common tools for 
this type of simulations are the 
use of efficient mathematical mo-
dels (Scientific Computing), and 
Supercomputers (Thousands of 
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Parallel Computer with CPU’s).  

Given the high cost of com-
mercial supercomputers, the mo-
nopoly of software (manufactu-
red by the same vendor), and the 
increasing need for government/
industry in hiring specialized 
personnel with more skills in the 
computer area; is producing an 
effect were the universities and 
the high performance computer 
research community to make a 
concerted effort to update curri-
cula and manufacture their own 
parallel computers. Up to this day 
exists many high-performance 
computing (HPC) systems for 
educational purposes, like the 
purpose cluster system - which 
is available to serve the high de-
mand trying to cover some of this 
computation needs [3], [5].

The Polytechnic Universi-
ty of Puerto Rico (UPPR) have 
a platform academically in use 
to teach courses of software and 
hardware, this platform is used 
under the parallelism techniques 
to supply services for the sub-gra-
duate and graduate levels [1]. The 
laboratory facilities at the UPPR 
uses Bootable Cluster CD (BCCD) 
as a software platform, providing 
the necessary tools to teach HPC. 
This software can be run on a sin-
gle system (portables PC) or on a 
network [4]. The cluster used is 
LittleFe compounded of 6 nodes, 
supporting shared memory pa-
rallelism (OpenMP), distributed 
memory parallelism (MPI), and 
allowing programmers to code al-

gorithms for Graphics Processing 
Unit (GPU) on a Compute Unified 
Device Architecture (CUDA) and 
the Beowulf style portable cluster 
[3]. Both systems run with GNU / 
Linux-based operating system [2].

This paper describes an appro-
ximation for the construction of a 
galaxy composed of a disk / bul-
ge area and halo, based on data 
collected from previous years of 
research (e.g. Verner 1983, Hern-
quist 1992, Dehnen 1993, Sotniko-
va 2004, and Barnes 2013). The 
density functions DF for each com-
ponent of the galaxy are applied 
under the algorithm described 
[10] for the motion of the galaxy.  
The cluster LittleFe brought up by 
an educational packet software, 
including the use of the program 
GalaxSee; the program simulates 
the galaxies dynamics as well, this 
based a Newtonian model, and 
several numerical methods used 
to emulate the motion of particles. 
The program describes the basics 
for Galactic models, were the par-
ticles are randomly generated in 
different frames, spherical, cube 
and spiral among others. 

This research was oriented to 
simulate the composite Galaxy 
model (disk, halo and bulge), the 
description of methodology, nu-
merical methods and software 
tools used to obtain the visual 
representation of the Galaxy. The 
main idea is adding a more com-
plex Galaxy model to the original 
program GalaxSee. The implemen-
tation has been done in MATLAB 
R2013b and the Wolfram Mathe-
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matical used for simulation and 
as mathematical tools.

The organization of the paper 
is as follows: In MODEL resides 
the prescriptions used to cons-
truct the galaxy and in RESULTS 
is discussed the results of the 
numerical simulation. In CON-
CLUSIONS are summarized. The  
FUTURE WORK describes the fu-
ture work and scientific approach 
of the simulation, lastly in the 
ACKNOWLEDGMENTS are the 
notes for appreciation and thank 
you to everyone who contributed 
in the research and project deve-
lopment.

MODEL
There are several ways to des-

cribe a galaxy model containing 
a stellar disk, bulge and surroun-
ding dark matter halo. The com-
ponents of the galaxy are repre-
sented in a cylindrical system. 

The total gravitational poten-
tial can be written as:

                 (1)

The Galaxy model is formed 
by an exponential disk profile 
(Thin disk) [9] [12], for the bulge 
area the Hernquist model [11] was 
used, finally the halo model has 
been described by Dehnen [13]. In 
the following sections description 
of each components of our galaxy 
has been included.

Spherically Models
Assuming a spherical symme-

try in space, in other words, whe-
re both potential Φ(r)   and density 
ρ(r) only depend on the distance 
to the center r, independent of the 
spherical angles θ  and .

The total gravitational poten-
tial at radius r is generated by 

an arbitrary spherical symmetry 
density distribution, may be con-
sidered by the sum of the poten-
tial of spherical shells.

                                                     (2)

Where  M(r) is the cumulative 
mass distribution, defined by the 
amount of mass that is included 
within the star cluster inclusive to 
a distance r from the star center.

                                                     (3)

The circular velocity is defined 
to be the speed of a test particle in 
a circular orbit at radius r.

                                                     (4)

The particle’s energy ε, it is the 
sum of kinetic energy  and 
the potential energy εpot = mΦ(r). 
A particle at r can escape from the 
gravitational potential only if the ki-
netic (εkin) energy exceeds the value 
of the potential energy (εpot), then 
defined as an escape velocity:

                                                     (5) 

For simple spherical models, 
augmented density is function of 
the potential only,

                                                      (6)
For such models, the distribu-

tion function (DFs) depend only 
on energy; then we say that the 
distribution function is isotropic. 
The approximation of DFs is calcu-
lated using the Eddington relation:

                                                      (7)

The radial velocity dispersions 
can be found from the density

                                                      (8)

The research has been done 
using generic formulas [13] to cal-

culate the density function, and the 
gravitational potential, where γ=0,1 
for halo and bulge respectively.

                                                      (9) 

                     
                                                    (10

The cumulative mass and circu-
lar velocity are:

                                                    (11)
                                                   

                                                   (12)

The dispersion velocity is given 
by

                                                    (13) 

Bulge Model
The spherical Hernquist model 

[13] using the density function (9) 
for γ=1, calculated the density dis-
tribution profile for the bulge:

                                                   (14)

Where,  Mb  is the total mass of 
the bulge and ab is the radial scale 
length. The spherical potential as-
sociate to this density profile is

                                                    (15)

The cumulative mass profile 
was obtained by integrating (3)

                                                   (16)

The circular velocity and escape 
velocity are defined by (4) and (5)

                                                   (17)

                                                   (18)

The density as function of the 
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potential is defined by
                                                    
                                                    (19)

Replacing equation (15) into 
Eddintong’s formula equation (7) 
the distribution function  (fh ) was 
calculated.

                                                    (20)

Calculating the dispersion velo-
city (13) value obtained as

                                                        (21) 

Halo Model
The spherical Dehnen models 

[13] under the density function (9) 
for γ = 0  calculated the density dis-
tribution profile for the h:

                                                          (22)

Where,  Mh  is the total mass of 
the halo and ah is the radial scale 
length. The spherical potential asso-
ciated to this density profile is

                                                          (23)  
 
The cumulative mass profile 

was obtained by integrating (3)

                                                         (24)

The circular velocity and escape 
velocity are defined by (4) and (5)

                                                          (25
                                                         

                                                         (26)

The density function can be ex-

pressed in term of potential, if we 
define:

                                                         (27)                     
   

                                                         (28)

Then calculating

                                                          (29)

Where                                                               

Replacing  (23) into Eddintong’s 
formula, (7) the distribution function 
(fb)  is obtained

                                                         (30)

Calculation of the dispersion 
velocity (13) produced under this 
constrains, 

                                                         (31)

Radial Distribution
The radial positions of particle i  

(ri) is defined by ri = ri r î where ri is 
choose to solve the nonlinear (16), 
(24) by Newton’s method and, r ̂    
is the random number of uniform 
distribution on the unit sphere.

                                                         (32)
The random number xi is of Uni-

form distribution from the interval 
[0,m(∞)), and  M(R) is the cumula-
tive mass distribution defined in 
equation (3). The mass of particles 
is  mi = m(∞).

Velocities Distribution
The polar angle ϕ  initializes a 

uniform distribution in the inter-
val [0,2π), and θ by the distribution 

sin(θ) in the interval 
[0,2π). Finally the module of the ve-

locity υ is randomly sampled by the 
Gaussian distribution.

                                                          (33)

The Rejection Sampling method 
is applied for rejection particles fa-
lling outside the maximum height 
of the function (f). When vi  is calcu-
lated, obtaining vi = vi v î  where v ̂ 
is the random number of uniform 
distribution on the unitary sphere.   

Newton’s Method
 The numerical Newton’s 

method is used to find the zeros of 
a nonlinear function y = f(x). Given 
the an initial condition xo, the non-
linear function is evaluated calcula-
ting yo = f(xo) in a similarly the deri-
vative of the function y’o = f’ (xo), the 
x intercept of tangent line, which is 
the new approximation to the zero, 
this is , the process conti-
nue until the change in the approxi-
mations: 

                                                         (34)

Where ε is the tolerance is suffi-
ciently small. 

We define the k-nth step of the 
method as:

                                                         (35)

The method is applied initially 
matching the original equation to 
zero  y - f (x) = 0. [8]

The Rejection Sampling Method
The method accepts random 

samples under a function, f(X), 
where X is a random number from 
a Uniform Distribution between 
[0,1]. The maximum height (M) of 
the function (f)  must first be calcu-
lated. Another random number is 
generated and a Uniform Distribu-
tion in [0,M). [6]

                                                          (36)
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                                                               (42)

Where Bri  is a random number 
[0,1).

Azimuthal Distribution
The angle    i  assigned at each ra-

dial position Ri is defined by B   i, whe-
re is calculated around of disk, with 
the equation [8].

                                                                (43)

Where  
 

Height Distribution
Height distributions for bright-

ness has a profile

                                                                (44)

Where I is the surface brightness, 
Io is the central surface brightness, z is 
the height above the disk, and zd is the 
scale height for the surface brightness. 
Integrating (44):

                                                                (45)

Where Az is constant and for the 
height of the disk zmin = -zmzx, finally 
obtaining [8]

                                                              (46)

Velocities Distribution
Transforming the equations 

of potential bulge and the halo in 
cylindrical coordinates, replacing

               to obtain:

                                                               (47)
 

                                                                (48)

We define the total potential as
                                                                (49)

To compute the velocities of disk 
particles, is needed first to obtained 

and , the radial and 
vertical components of the veloci-

Thin Disk Model
The particles that conforms the 

disk are represented under a cylin-
drical coordinate system, where the 
initial values R,z y are generated 
by specific distributions. The expo-
nential disk profile is defined by

                                                           (37)         

Where,  Md is the disk mass, zd is 
a vertical scale thickness and Rd is 
the radial scale length. The poten-
tial density profile will be approxi-
mated by [10]

                                                          (38)

Where  and I0,I1,R0,R1 are 
Modified Bessel functions

Radial Distribution
The radial distribution of the 

particles are calculated from the ex-
ponential profile [8].

                                                         (39)

Integrating the equation (18) obtains

                                                         (40)       

Where
 
                                                         (41)
Where Rmax is the maximun exten-

sion of the disk. Using the Newton’s 
method to solve the following nonli-
near function

Figure 1
 Modified Bessel Functions

ty of a particle Ri are obtained from 
Gaussian Distribution

                                                                (50)

Where μ = 0 and variance σ = σz 

or σ = σR. The azimuthal component 
obtained by (43) with  and va-
riance σ = σ  .

The vertical velocity for disk dis-
persion    

                                                                (51)

For disk radial dispersion velocity 
  
                                                                (52)
          Where Qt is the Toomre pa-

rameter [10] at reference radius 
, ∑(R)  is the surface 

density profile of the disk 

                                                                (53)

And κ(R) is the epicyclic frequen-
cy defined as

                                                               (54)

The azimuthal velocity of disk 
dispersion   by means of epicyclic 
approximation.

                                                               (55)

Where Ω2 (R)   is the circular angu-
lar velocity

                                                                (56)

And, assuming an exponential 
distribution of the radial velocity 
[9], we defined the mean rotation 
velocity as

                                                                 (57)

Where vc is the circular velocity

                                                                
(58)

Once the velocities are calculated, 
the distribution function (fd ) of disk 
can be obtained
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                                                             (59)
Where vR, v  and vz are corres-

ponding velocities in the radial, 
azimuthal and vertical direction. 
The  is the mean rotation ve-
locity, while σR (R), σ (R) and σz 

(R) are dispersions in the radial, 
azimuthal, and vertical directions, 
respectively. The functions H(x) 
and g(x) are defined by [13] 

                  
                                                    (60)  

                                                    (61)

Where c is fixed by requiring that 

                                                    (62)

RESULTS
The models were programmed 

with MATLAB R2013b and mathe-
matical calculations using the Wol-
fram Mathematica. The numerical 
values for the experiments were 
calculated [13].

Experiment for Bulge
Generating the radial positions 

(ri), with the values  Mb = 0.625, ab = 
0.02 and the tolerance  
applied with the Newton’s method, 
the case for 10,000 particles is repre-
sented on figure 2 and 3.

The velocities of bulge are dis-
tributed through Gaussian distri-
bution (12).

Experiment for Thin Disk
Generating the initial values 

for Ri, i and zi the distributions 
were obtained, the test parameters 
values are Rd = 1.12 kpc, Rmax=10 
kpc, zd = 0.00075 for a tolerance 

 applied by Newton’s 
method, the case for 10,000 parti-
cles.  Figure 4, 5, 6 and 7.

CONCLUSIONS
Models for the simulation of ga-

laxies are particularly complex, the 
reason of this complexity is due 
to the number of parameters and 
mathematical equations needed, 
as well as the use of advance com-
putational resources. The optimal 
use of time and resources has been 
done using algorithms that are pa-
rallelizable. The work presented 
is just an advance to this complex 
model, still the velocities of the 
disk and the distribution function 
of the disk were not calculated. 
The Halo calculation employed in 
this research are the same as those 
of the bulge area of the galaxy. The 
main purpose of this work is to 
continue, in order to finish the mo-
del and transport the data to run in 
the cluster LittleFe.

FUTURE WORK
The techniques presented des-

cribes the educational program 
GalaxSee, which are numerical 
methods solving the Newtonian 
system of particles motion in Car-
tesian 2D and 3D coordinates. For 
future work is to provide the solu-
tion of equation of particle motion 
using the algorithm with the distri-
bution functions model, in cylin-
drical coordinate. Code this model 
in Unix platform to be done using 
in the cluster LitleFe. Also will be 
needed to include the equations 
for inclination of galaxies, all those 
calculations based on information 

Figure 2 
Face on Bulge

Figure 3 
Velocities Initial of Bulge

Figure 6
Heights Particles Distributions

Figure 5 
Radial Particles Distribution

Figure 4 
Disk Galaxy 3D Model

Figure 7
Disk Model



POLITECHNÊ -57

from astronomical databases, and 
finally do the research model mer-
ging the galaxies.
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