
Real Time Face Detection System

Nafi Rushdi Nafi Hamdan

Master in Computer Science

Advisor: Dr. Jeffrey Duffany

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  This paper presents details of a

prototype for research project on face detection

systems. The prototype uses Emgu CV cross platform

.Net wrapper with the Intel OpenCV image

processing library and C# .Net. The library allows

capture and processing of image from a camera in

real time. Principal Component Analysis (PCA) with

Eigen face is used on the technology. Details of the

project such as code samples, architecture diagram,

system design ER diagrams, use cases, activity

diagrams, data flow diagrams, class diagram, and

sequence diagram are presented. Details of the

testing, and feasibility are also given.

Key Terms  Emgu CV, Face Detection, Intel

OpenCV, Principal Component Analysis.

INTRODUCTION

Face recognition is a computer based system to

recognize faces by scanning the face in real-time

using a camera, and matching the image to stored

images from the database [1]. Data validation,

matching facial attributes is the key to this

technology, and the objective is to find the identity

of the person, unknown or unknown, under the

scanner [2]. The technology of face recognition

forms an important part of bio-metric face

recognition systems, used in offices, sensitive

installations, to counter and detect terror activities,

in crime fighting, and in many other security systems

[3].

The system proposed in this paper basic Dotnet

API‘s to interact and acquire the output of a local

camera used for scanning such as a webcam or other

attached cameras. The output from the camera is

used to recognize faces in real time. The proposed

system offers many advantages over existing

systems [4]. Some of the existing systems such as

human guards, security, locks and keys, finger print

scanning, surveillance cameras, magnetic swipe

cards, etc., are not very reliable. They can be hacked

or misused and allow identity theft. This paper,

presents findings from a research project on face

recognition system [2].

LITERATURE REVIEW

Initial attempts at creating facial recognition

systems were by Woody Bldesoe and others and

these attempts were very crude since computer

science and applications were very rudimentary.

Problems such as variability of head rotation, facial

expression lighting intensity, aging, and other

factors, limited the scope of these efforts. Later,

experiments were conducted by the University of

Bochum, University of Southern California,

Massachusetts Institute of Technology, and others

were more promising. They were used by some

banks for identification of customers. In the next

development phases, high-resolution face images

were developed along with 3D and iris scans. These

applications were much better than humans in

recognizing faces and they were more powerful [5].

Over the decades, the rate of error in detecting

face has reduced. Systems are now available were

face recognition algorithms are used to extract

features of the face, such as shape of nose, relative

position and shape of eyes, mouth, lips, skin and

texture recognition, thermal cameras, and other

techniques. In general, face recognition algorithms

are of two types, geometric, and photometric.

Geometric approach looks at landmarks of the face,

while statistical converts the face into values that are

matched with templates to remove variations. The

latest Apple X phone uses advanced face recognition

system. The main problem of these systems is the

speed of cross-referencing and matching thousands

of records in the database, with the least number of

errors [6].

Several airports in Australia, Ottawa, Panama

use an airport-wide surveillance system with face

recognition systems, designed to spot and identify

potential terrorists and other unwanted elements.

These systems are still subject to problems of

lighting, expression, pose, noise, additional features

such as bear and glasses. Some concerns and

criticism are raised about the effectiveness of these

systems. It appears the systems installed in London

have not recognized even one offender. However,

crime rate is down by 34%, and the reason is that the

fear of advanced face recognition cameras in public

places, acts as a major deterrent. There are some

fears of a total surveillance society, where privacy of

people is under threat [7].

PROPOSED SYSTEM

The project uses Emgu CV cross platform .Net

wrapper with the Intel OpenCV image processing

library and C# .Net. The library allows capture and

processing of image from a camera in real time.

Principal Component Analysis (PCA) with Eigen

face is used on the technology. The system is made

of two phases, enrolment phase and the

authentication / verification phase. Enrolment phase

facilitates capture and processing of user biometric

data for use by system in subsequent authentication

operations. During this phase, users are enrolled,

features and characteristics of the face are extracted

with a process called feature extraction, and a model

is created in a template [8].

The modeling process is important and the

subjects face is mapped to construct the face image.

After the model is created and the signals are

process, a quality check is run on the templates

extracted from the face. If the required amount of

features is extracted, then the template is stored in

the facial database. Facial recognition is done with

complex algorithms, and with mathematical and

metrical techniques. These are used to develop a

raster model, a digital format of the face. When a

person’s face is to be matched, then the image is

processed and compared at a pixel level for faster

and accurate results. Running these comparisons and

algorithms requires machines with large

computational power, since algorithms, functions,

and routines are to be run on a large number of

templates [9]. Figure 1 illustrates the system design.

Figure 1

System Design

As seen in Figure 1, the system consists of

different components and processes handlers.

Camera, either a web cam or any other camera is

used to capture images of the subjects face. This is

used for face detection, and the face images are

stored in the database.

The structured database allows features

extraction with Eigen face values, which are

extracted from the images. A test can be run to find

the effectiveness of the system by running tests with

the nearest neighbor classifier. When the test is run,

then face recognition is carried out. Even if a match

is not found, an alert is sent to the system. There can

be instances of false-positives and false-negatives,

and these are indicated as alerts to the users.

Depending on the circumstances, corrective action

can be taken [10].

Advantages of the Proposed System

The following advantages of this project are

evident. Extraction of similar facial areas is carried

out, and identification and authentication is based on

individual facial features. Easy adaptation with

existing IT systems with flexible integration for

many types of video monitoring systems. A 1: n

matching is provided and the system supports

diverse graphic and video formats as well as live

cameras. The system uses an open CV based

multiple-matching face detection and combination

of eye-zone extraction and facial recognition. It uses

recognition based on neural network technology,

with short processing time, high recognition rate,

and recognition regardless of vantage point and

facial changes. The system is accurate with fast

identification, provides high usability and security,

and has a user friendly design.

Data Flow Diagram

Data Flow Diagram (DFD) is used to analyze

and describe data movement through a diagram. This

is an important tool used to develop other

components. Logical data flow diagram is used to

represent data from input to output in a logical and

independent manner from physical components of

the system. A physical data flow diagram presents

the movements of data between departments and

workstations. Each component is given a descriptive

name. The process is later given a number, used for

identification. DFD is carried out at different levels.

Each process in the lower level is broken down into

a detailed DFD at the next level. The upper level is

the content diagram and it has a single process bit

that is useful in understanding the system. The

process in the context level diagram is later

expanded into other processes at the first DFD level

[2].

The reason for exploding the process into sub

process is that the levels of different details can be

understood in greater detail. This explosion is

continued until the required amount of detail is

obtained. DFD is also known as a bubble chart and

it helps to understand the system requirements and

in identifying important transformations that lead to

a program development of the system design. It thus

becomes the initial point for design at the lowest

level. A series of bubbles are joined by the data flows

in the system [4]. The DFD for the face recognition

system is given in Figure 2.

Figure 2

DFD for Face Recognition System

From Figure 2, it is seen that the user sends the

query and this is taken as a process request, which is

passed to the real time face detection database. The

request is sent to the requirement database to check

for the user. If the user records exist or if the scan is

matched, then the request is processes, a match

found and feedback given to the user, with the

relevant data. Figure 3 gives the Level 1 illustration

of the DFD.

Figure 3

Level 1 DFD for Face Recognition System

As seen in Figure 3, the exploded view of the

DFD. User sends a query to the system and it accepts

the request. System checks availability of data for

query processing and sends the request to the

database. Database verifies the records, matches the

request with data and send to the system, where the

query is processes. This is then sent to the user as a

request.

ER Diagram

The entity relation diagram, maps the relations

between different entities of the system. Figure 4

presents the ER diagram of the system.

Figure 4

ER Diagram

As seen in Figure 4, the entity User Id has

attributes like Image and User Name. The entity

User Id is connected to another Entity Features.

Features have attributes like Eigen Values, Eigen

Vectors and Images. Thus, a User Id can have 1 or

many features like Eigen Values, Eigen Vectors and

Images.

The features of User Id are connected to another

entity Classify which has entities like Frame Id and

User Id. Thus, features are classified into Frame Id

and User Id. The entity Features is connected to

another entity Capture which has attributes Frame

Id, Webcam Device and Frame. Thus, Features of

the User Id captured has Frame Id, Webcam Device

and Frame associated to it.

Use Cases

Two use case diagrams are given in the test case.

Figure 5 presents the first use case diagram. The use

case is to click a photo using webcam; user has to

perform certain activities. User has to initially keep

his face in front of the Webcam. The webcam will

use face recognition technology to detect the face in

front of it and when the face is recognized it will

process and save the image in the system. In Use

Case 1, User has used a webcam and saved his face

Image successfully in the system.

The System is the User in this Case. It manages

all security related issues. It recognizes the face of

the User who had in the Use Case 1 used a webcam

to detect and save his face image. After face

matching it will check whether a new face is to be

registered or the previous face with existing

information needs to be modified. The Image is

ultimately saved to the system. Thus, the insertion or

modification i.e. updating of an image and its

corresponding information in the database is done

accordingly.

Figure 5

Use Case Diagram 1

Figure 6 illustrates the second use case diagram.

Figure 6

Use Case Diagram 2

There are three actors involved in this Activity

Diagram namely - User, Webcam and Features

Extract. User uses a webcam to capture Image i.e. his

face. The face captured by the webcam is sent to

extract certain notable features of the face that can

help recognize it. These features are then sent back

to the user. The user will then classify the features

and send it back to the Features extract through the

webcam. The Features Extract will verify and send

the expression of the user which it has recognized

back to the user.

Class Diagram

Figure 7 illustrates the class diagram of the

system. There are two classes present here namely,

Capture and Classification. Class Capture has

attributes like Frame No and Bitmaps. It means

every Image that is captured is classified by Frame

No and their Bitmaps. Class Capture has operations

Capture and Save defined. The Image captured thus

can be captured again if not matching or it can be

saved if it matches. Class Classification has

attributes Images and Features. Thus it means every

Image that has been captured can be classified as

Image and Features of the Image. The operation for

Class Classification is Classify.

Figure 7

Class Diagram

Sequence Diagram

The sequence diagram illustrates the sequence

of operations. Figure 8 illustrates the sequence

diagram.

Figure 8

Sequence Diagram

User saves his face image using the webcam. If

the face is not recognized and found to be invalid,

the user is exited from the system. The process of

recognizing the image again is started. If the Image

is found to be valid, then the particular menu is

displayed for the user. He can choose the options he

wants from the menu. The face image which has

been matched is then saved to the system and the

database is updated with the latest information of the

user.

Activity Diagram

 Figure 9 shows the activity diagram. The

activity begins the user who receives a request with

an invalid face. The request is processed through

face recognition. If the face is invalid, the user exits

the system. If the face is valid, then a menu is

displayed and the image is saved.

Figure 9

Activity Diagram

FACE RECOGNITION APP

The Face Recognition Prototype Software App

is based on the Emgu CV cross platform. Code for

the app was obtained from open source repository.

Emgu CV has two layers, layer 1 or the basic layer

and layer 2 or the second layer. Layer 1 carries the

structure, enumeration,, functions mappings that

show the ones on OpenCV. Layer 2 has the classes

that use features of .Net. Image is specified by the

generic parameters such as color and depth, and an

8bit unsigned Grayscale image is done in Emgu CV

by calling a function. Image pixels are stored in a 3D

array. When a new image is stored, an identification

number, and the pixel values are stored as numbers.

When a face is scanned, the image is converted into

pixel values and matched with the stored records.

Figure 9

Welcome Screen

If there is a match, then the person is accepted,

if there is a mismatch with the stored values, then the

request is denied [11].

Figure 10

System Architecture [11]

Sample codes, obtained from Emgu CV are

given in Figure 11. The code is compiled and run as

a sub-routines [11].

On the Project Executable folder called “Faces”

was created and images were stored as BMP formats.

Names of the images were face1.bmp, face2.bmp,

etc. and the names were stored in a file

“TrainedLabels.txt”, in the same folder. It is a flat

file with CSV structure and data can be obtained

from the folder “bin/x86/Debug/Faces/”. A

Euclidean algorithm was used to compare the images

and to select the image that are match the face on the

camera [11]. Next images show more sample codes.

Figure 11

Sample Code 1

Figure 12

Sample Code 2

Figure 13

Sample Code 3

Figure 14

Sample Code 4

Figure 15

Sample Code 5

Figure 16

Sample Code 6

Figure 17

Sample Code 7

PROJECT IMPLEMENTATION

The Project is loaded in Visual Studio 2008.

Visual Studio for Design and coding of project was

done with this system. All databases were created

and stored in SQL Server 2005. Tables were created

and query run to store data or record the project. The

software and hardware used in the research are

detailed as follows:

Hardware Requirement: i3 Processor Based

Computer, 1GB-Ram, 5 GB Hard Disk.

Software Requirement: Windows XP, Windows

7 (ultimate & enterprise), Visual studio 2008, SQL

Server 2005.

Operating System: Windows XP, 7(ultimate &

enterprise).

Languages: Asp.Net with C# (.Net 2008)

Database System: MS-SQL Server 2005

Documentation Tool: MS - Word 2010

These are the basic hardware and software

requirements and they can be enhanced if required.

PROJECT TESTING

Since the project would be implemented on a

large scale, testing was done to trace bugs and

defects. Tests were run to identity the desired output

for all types of inputs. This approach is essential for

a successful project. System testing was done to find

if user requirements were met. The code for the new

system was written with ASP.NET and with C#,

which was also used as the interface for front-end

designing. The system was tested with users and all

applications were tested for different use cases.

Some defects and bugs were found in some of the

components, and these were corrected before

implementation. Form and data flow was as per the

requirements.

 The testing done here was System Testing

checking whether the user requirements were

satisfied. The code for the new system has been

written completely using ASP .NET with C# as the

coding language, C# as the interface for front-end

designing. The new system has been tested well with

the help of the users and all the applications have

been verified from every nook and corner of the user.

Figure 18 illustrates the different levels of testing

used.

As seen from Figure 18, client’s needs were met

by acceptance testing, while requirements were met

by system testing. Design specifications were met by

integration testing, and coding specifications were

met by unit testing.

Figure 18

Levels of Testing

FEASIBILITY

The project was evaluated for Technical

Feasibility, Economic Feasibility, and

Operational Feasibility. For technical feasibility, the

system was verified to see if the components and

systems were feasible to develop and implement.

The project is technically feasible because, all the

technology needed for our project is readily

available. For economic feasibility, the project is

feasible since all the hardware, cameras, and

software are available and not expensive to procure.

Cost of development is less when compared to

financial benefits of the application. For operational

feasibility, different operational factors such as

manpower, time, and equipment requirements were

examined. The project is operationally feasible as

the time requirements and personnel requirements

are met. The project was completed by for team

members in three months.

CONCLUSIONS

The paper detailed the research on face

recognition system and developed a prototype. The

prototype was run and used for sample face

recognition. Important aspects of the project such as

the details of the proposed system, various assets

such as system design, ER diagrams, use case

diagrams, activity diagrams, etc. were presented.

Methods of testing and feasibility were also

presented. The conclusion is that the project is

feasible, useful, and it can be implemented.

Sequence Diagram

The future work needs to include a larger

database and image sample, where tests are run to

identify unknown faces from public databases.

REFERENCES

[1] Y. P. Chen, C. H. Liu, K. Y. Chou, and S. Y. Wang, "Real-

time and low-memory multi-face detection system design

based on naive Bayes classifier using FPGA," in Automatic

Control Conference (CACS), 2016 International, IEEE,

2016, pp. 7-12.

[2] C. N. Kumar Ravi, & A. Bindu, "An efficient skin

illumination compensation model for efficient face

detection," in IEEE Industrial Electronics, IECON 2006-

32nd Annual Conference, IEEE, Paris, France, 2006, pp.

3444-3449.

[3] M. Bappaditya, "Face recognition: Perspectives from the

real world," in Control, Automation, Robotics and Vision

(ICARCV), 2016 14th International Conference on, IEEE,

2016, pp. 1-5.

[4] C. O. Manlises, J. M. Martinez, J. L. Belenzo, C. K. Perez,

& M. Kristine, T. A. Postrero., "Real-time integrated CCTV

using face and pedestrian detection image processing

algorithm for automatic traffic light transition," in

Humanoid, Nanotechnology, Information Technology,

Communication and Control, Environment and

Management (HNICEM), 2015 International Conference

on, IEEE, 2015, pp. 1-4.

[5] S. Yang, P. Luo, C. Loy, & X. Tang, "From facial parts

responses to face detection: A deep learning approach," in

Proceedings of the IEEE International Conference on

Computer Vision, 2015, pp. 3676-3684.

[6] S. Yang, P. Luo, C. Loy, & X. Tang, "Wider face: A face

detection benchmark," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2016, pp. 5525-5533.

[7] S. Yang, P. Luo, C. Loy, & X. Tang,"Faceness-Net: Face

detection through deep facial part responses," in IEEE

transactions on pattern analysis and machine intelligence,

2017.

[8] Z. Stefanos, C. Zhang, & Z. Zhang, "A survey on face

detection in the wild: past, present and future," in Computer

Vision and Image Understanding, 138, 2015, pp. 1-24.

[9] Z. Kaipeng, Z. Zhang, Z. Li, & Y. Qiao, "Joint face

detection and alignment using multitask cascaded

convolutional networks," in IEEE Signal Processing

Letters, 23, no. 10, 2016, pp. 1499-1503.

[10] Z. Chenchen, Y. Zheng, K. Luu, & M. Savvides, "CMS-

RCNN: contextual multi-scale region-based CNN for

unconstrained face detection," in Deep Learning for

Biometrics, Springer, Cham, 2017, pp. 57-79.

[11] Emgu CV. (2018, April 9). Emgu CV Open CV 3x [Online].

Available: http://www.emgu.com/wiki/index.php/Main_

Page.

