
Abstract

Conclusions

Acknowledgements

This poster presents details of a prototype for research project on

face detection systems. The prototype uses EmguCV cross

platform .Net wrapper with the Intel OpenCV image processing

library and C# .Net. The library allows capture and processing of

image from a camera in real time. Principal Component Analysis

(PCA) with Eigen face is used on the technology. Details of the

project such as code samples, architecture diagram, system design

ER diagrams, use cases, activity diagrams, data flow diagrams,

class diagram, sequence diagram, testing and feasibility are

presented.

References

Methodology

Results and Discussion

The poster detailed the research on face recognition system and

developed a prototype. The prototype was run and used for sample face

recognition. Important aspects of the project such as the details of the

proposed system, various assets such as system design, ER diagrams,

use case diagrams, activity diagrams, etc. were presented. Methods of

testing and feasibility were also presented. The conclusion is that the

project is feasible, useful, and it can be implemented.

Face recognition is a computer based system to recognize faces by

scanning the face in real-time using a camera, and matching the

image to stored images from the database [1]. Data validation,

matching facial attributes is the key to this technology, and the

objective is to find the identity of the person, unknown or unknown,

under the scanner [2]. The technology of face recognition forms an

important part of bio-metric face recognition systems, used in

offices, sensitive installations, to counter and detect terror activities,

in crime fighting, and others [3].

The system proposed in this poster uses basic .Net API‘s to interact

and acquire the output of a local camera used for scanning, such as a

webcam or other attached cameras. The output from the camera is

used to recognize faces in real time. The proposed system offers

many advantages over existing systems [4]. Some of the existing

systems such as human guards, security, locks and keys, finger print

scanning, surveillance cameras, magnetic swipe cards, etc., are not

very reliable. They can be hacked or misused and allow identity

theft. This poster, presents findings from a research project on face

recognition system [2]. Fig 1 and 2 present the system design and

architecture.

Introduction

Background

Existing systems have low speed of cross-referencing and matching

thousands of records in the database, with the least number of errors.

Available systems use proprietary software and hardware, and they

are expensive. The objectives of this research are:

•Use Open Source software and low-cost hardware to develop a

reliable system.

•Develop a prototype with code, hardware configuration and test.

Problem

Woody Bldesoe and others researched methods for face recognition

in the 1960s. The efforts were very crude since computer science

and applications were very rudimentary. Problems such as variability

of head rotation, facial expression lighting intensity, aging, and other

factors, limited the scope of these efforts. Later, experiments were

conducted by the University of Bochum, University of Southern

California, Massachusetts Institute of Technology, and others were

more promising. They were used by some banks for identification of

customers. In the next development phases, high-resolution face

images were developed along with 3D and iris scans [5].

Over the decades, the rate of error in detecting face reduced.

Systems are now available where face recognition algorithms are

used to extract features of the face. Apple X phone uses advanced

face recognition system [6].

Real Time Face Detection
Author: Nafi Rushdi Nafi Hamdan (88267)

Advisor: Jeffrey Duffany, Ph.D

Department: Computer Engineering & Computer Science , MCS (ITMIA) (SP-18)

I would like thank my advisor Dr. Jeffrey Duffany for his excellent ,

exceptional guidance and support in this project .

The project was implemented using Microsoft Visual Studio 2008.

All databases were created and stored in SQL Server 2005. Tables

were created and query run to store data or record the project. The

software and hardware used in the research are detailed as follows:

Hardware Requirement: i3 Processor Based Computer, 1GB-Ram, 5

GB Hard Disk.

Software Requirement: Windows XP, Windows 7 (ultimate &

enterprise), Visual studio 2008, SQL Server 2005.

Operating System: Windows XP, 7(ultimate & enterprise)

Languages: Asp.Net with C# (.Net 2008)

Database System: MS-SQL Server 2005

Documentation Tool: MS - Word 2010

These are the basic hardware and software requirements and they

can be enhanced if required.

Future Work

Future work will investigate large scale usability. The work also

needs to consider connected databases and recognize faces under

different conditions.

[1] Chen, Yon-Ping, Chong-Hsien Liu, Kuan-Yu Chou, and Shun-Yi Wang. "Real-time and

low-memory multi-face detection system design based on naive Bayes classifier using

FPGA." In Automatic Control Conference (CACS), 2016 International, pp. 7-12. IEEE,

2016.

[2] Kumar, CN Ravi, and A. Bindu. "An efficient skin illumination compensation model for

efficient face detection." In IEEE Industrial Electronics, IECON 2006-32nd Annual

Conference on, pp. 3444-3449. IEEE, 2006, Paris, France,

[3] Mandal, Bappaditya. "Face recognition: Perspectives from the real world." In Control,

Automation, Robotics and Vision (ICARCV), 2016 14th International Conference on, pp. 1-5.

IEEE, 2016.

[4] Manlises, Cyrel O., Jesus M. Martinez, Jackson L. Belenzo, Czarleine K. Perez, and

Maria Khristina Theresa A. Postrero. "Real-time integrated CCTV using face and pedestrian

detection image processing algorithm for automatic traffic light transitions." In Humanoid,

Nanotechnology, Information Technology, Communication and Control, Environment and

Management (HNICEM), 2015 International Conference on, pp. 1-4. IEEE, 2015.

[5] Yang, Shuo, Ping Luo, Chen-Change Loy, and Xiaoou Tang. "From facial parts responses

to face detection: A deep learning approach." In Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 3676-3684.

[6] Yang, Shuo, Ping Luo, Chen-Change Loy, and Xiaoou Tang. "Wider face: A face

detection benchmark." In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 5525-5533.

[7] Emgu CV (2018, April, 9). Emgu CV Open CV 3x. [Online]. Available:

http://www.emgu.com/wiki/index.php/Main_Page

The prototype is based on the Emgu CV cross platform. Code for the

app was obtained from open source repository. Emgu CV has two

layers, layer 1 or the basic layer and layer 2 or the second layer.

Layer 1 carries the structure, enumeration,, functions mappings that

show the ones on OpenCV. Layer 2 has the classes that use features

of .Net.Image is specified by the generic parameters such as color

and depth, and an 8bit unsigned Grayscale image is done in

EmguCVby calling a function. Image pixels are stored in a 3D array.

When a new image is stored, an identification number, and the pixel

values are stored as numbers. When a face is scanned, the image is

converted into pixel values and matched with the stored records. If

there is a match, then the person is accepted, if there is a mismatch

with the stored values, then the request is denied [7]. Fig 3 shows the

welcome screen and Fig 4, a sample code.

Figure 1. System Design Figure 2. System Architecture

Figure 3. Welcome Screen Figure 4 Sample Code

Sample codes, obtained from Emgu CV, compiled and run as sub-

routines. On the Project Executable folder called “Faces” was

created and images were stored as BMP formats. Names of the

images were face1.bmp, face2.bmp, etc, and the names were stored

in a file “TrainedLabels.txt”, in the same folder. It is a flat file with

CSV structure and data can be obtained from the folder

“bin/x86/Debug/Faces/”. A Euclidean algorithm was used to

compare the images and to select the image that are match the face

on the camera [7]. Figure 5 shows the Data Flow Diagram.

Figure 5 DFD Level 1

User sends the query and this is

taken as a process request,

which is passed to the real time

face detection database. If the

user records exist or if the scan

is matched, then the request is

processes, a match found and

feedback given to the user, with

the relevant data.

As seen in Fig 4, the entity User

Id has attributes like Image and

User Name. The entity User Id is

connected to another Entity

Features. Features have

attributes like Eigen Values,

Eigen Vectors and Images. Thus,

a User Id can have 1 or many

features like Eigen Values, Eigen

Vectors and Images.

Figure 5 ER Diagram

The features of User Id are connected to another entity Classify which

has entities like Frame Id and User Id. Thus, features are classified

into Frame Id and User Id. The entity Features is connected to another

entity Capture which has attributes Frame Id, Webcam Device and

Frame. Thus, Features of the User Id captured has Frame Id, Webcam

Device and Frame associated to it.

Figure 6 presents the use case

diagram. The use case is to click

a photo using webcam; user has

to perform certain activities.

User has to initially keep his

face in front of the Webcam. The

webcam will use face

recognition technology to detect

the face in front of it and when

the face is recognized it will

process and save the image.

Figure 6 Use Case Diagram

Figure 7 illustrates the class

diagram of the system. There are

two classes present here namely,

Capture and Classification.

Class Capture has attributes like

Frame No and Bitmaps. It means

every Image that is captured is

classified by Frame No and their

Bitmaps.Figure 7 Class Diagram

Tests were run to identity the desired output for all types of inputs.

This approach is essential for a successful project. System testing was

done to find if user requirements were met. The code for the new

system was written with ASP.NET and with C#, which was also used

as the interface for front-end designing. The system was tested with

users and all applications were tested for different use cases. Some

defects and bugs were found in some of the components, and these

were corrected before implementation. Form and data flow was as per

the requirements. The testing done here was System Testing checking

whether the user requirements were satisfied. The code for the new

system has been written completely using ASP .NET with C# as the

coding language, C# as the interface for front-end designing. The new

system has been tested well with the help of the users and all the

applications have been verified from every nook and corner of the

user.

