
Algorithm for User-friendly Password Policy

Jorge Hernández Liang

Master in Computer Science

Dr. Alfredo Cruz

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  Password based security has become

prevalent as the de facto measure against intrusion.

Computer systems rarely focus on usability, and

little research has been done to change the current,

near universal method of implementation. This

paper explores the weaknesses found in password

based systems and how they can be mitigated. This

will conclude with a new set of algorithms for

validating passwords and creating baselines for

setting minimum required strengths for password

defense. This new metric allows for a wider

diversity of possible passwords while maintaining

security by assigning value to certain

characteristics and requiring a minimum amount of

security be achieved before accepting the password

instead of relying on static requirements in

minimum length and presence of character types.

The new approach embraces password diversity

and allows for trade-offs of different password

elements in order to allow users to use a wider

array of strategies at the moment of generating

their passwords.

Key Terms  Computer Security, Passwords,

Privacy, Usability.

INTRODUCTION

Passwords are a scheme in which users are

granted authorization to access specific information

or systems by providing a specific string of

characters. They have become ubiquitous in our

lives, but are also frequently exploited for common

weaknesses. This paper explores a new approach to

password security by presenting a new scheme for

password requirements. This new system adopts a

variable password strength minimum based on

expected threats as well as multiple ways to reach

those strength requirements. By not forcing the user

to implement specific rules within their passwords,

the new scheme hopes to undo certain forms of

conditioning present in many current passwords.

The new system borrows some strategies found

in previous NIST publications [1] in using entropy

as a metric for the value of characters, but changing

the way the value of characters and bonuses is

calculated, as well as adding a way to calculate

minimum levels of uncertainty required to accept a

password. This allows the user to negotiate the

contents of their password, including length and

diversity in character categories. The new scheme

also allows users to generate passwords that far

surpass requirements to allow for longer duration of

use, achieved by requiring complexity gains beyond

the additionally granted lifetime.

COMMON PASSWORD CRACKING

WEAKNESSES

In order to understand what improvements

need to be performed when creating our new

password scheme, it was important to understand

the common vulnerabilities that are exploited in

password attacks? The primary issues that are

exploited are length and predictability of characters,

both of which are easily addressed by changes to

password requirements.

The clear example of where length is an issue

with passwords is observable in bruteforce

password guessing attacks. These attacks

exhaustively attempt to verify the password

keyspace (every possible combination of characters

that can legally form a password). Due to the

exponential growth nature of password space,

increasing either length or characterspace (all

possible characters usable in the password) even

small increases will have a significant effect on the

complexity of the password. This can be seen in

Table 1, where we display a chart of keyspaces

based on what characters are present and the length

of the password. This table shows the rapidly

growing nature of passwords. The left column,

representing the base number of the exponential

growth, has a significant impact as it grows. Even

the smallest growths in the amount of available

characters has an impact of orders of magnitude

when looking at the rate of growth for password

keyspaces. The middle block of the column builds

off of the left characterset size column by

explaining how each size is constructed, using the

different character types as groups (Digits in

decimal or hexadecimal form, singlecase or mixed

case letters, standard keyboard special characters,

and ASCII characters) which are then summed up

to provide the characterset size. Finally, the

rightmost block serves the primary purpose of the

table by displaying the password keyspace created

by those different charactersets using different

password lengths. These are all presented in

scientific notation as the order of magnitude proves

to be critical component, since many of these

charactersets grow very quickly. It is also important

to note that their rate of growth increases faster on

the lower rows due to having a much larger

characterset, and therefore a larger base number for

the exponential growth.

Predictability proves to be an issue for

password systems due to it reducing the

randomness that is inherently critical to password

based security. It is harder to address, but we can

attempt to understand how it came to be and avoid

repeating those mistakes. In a previous study [2], it

was learned that the characteristics of user

passwords is reflective of common password

requirements and manifest in similar ways across

many users. The same study also presents evidence

that user diversity could lead to password diversity

when freedom is allowed at the time of password

generation.

Passwords are often presented as requiring at

least 8 characters, both upper and lower-case

characters, and the presence of either numbers or

non-alphanumeric characters. This is shown by

passwords consisting of at least 8 characters in

most users and frequently meeting the requirements

through the presence of an uppercase character in

the first character of a password and the insertion of

a special character at the end of the string of text.

For example, replacing “password” with

“Password1”. This conditioning can be referred to

as “Pavlovian Passwords” due to similarities to

classical conditioning [3].

Table 1

NIST Keyspace Cardinality Calculations

Reprinted courtesy of the National Institute of Standards and Technology, U.S. Department of Commerce.

Not copyrightable in the United States.

Figure 1

Submitted Password Lengths

From here, strict password rules have led to the

issue of predictability and therefore we must avoid

repeating the mistake in future attempts to craft

password rules.

PREVIOUS WORK

As mentioned, the author had performed a

related previous study on password based security

[2] that demonstrates some useful information for

this topic. The study consisted of an experiment

were users provided sample passwords through a

survey that was answered by university students.

The survey consisted of requests for non-personally

identifying demographic information, such as age

range, primary language, gender, and if they had a

work/study background in technology. They were

also asked to provide a mock password, but were

not given any restrictions as to the contents of the

password. (The results of the survey can be

observed in Figure 1.) The passwords were

checked for several characteristics. The passwords

were then placed in to categories based on their

relative strength levels using traditional criteria.

The users themselves were also grouped based

on provided demographic information. This

allowed for the verification of the level of influence

that demographic information plays on the provided

password characteristics.

Several conclusions were found such as gender

influencing length of the password, employment

and education background influencing the overall

strength, and other factors such as primary

language being less significant.

Another finding was that the average password

length of the participants was higher than

previously recorded averages found, which seems

to be consistently increasing as time goes on. This

effect might be amplified within this study as

participants were relatively young, being composed

of university students. The distribution of their

password lengths can be seen in Figure 1. The

significant points of information in this graph are

the low frequency of short passwords. The shortest

instance of password length was 6 characters long,

and was not very common as a password length.

It’s mode of 9, with 10 characters being a close

second also brings positive information, as these

appear close to the leftmost edge of the values and

are also very close to the average of password

lengths. The average itself also gives information,

as the length of over 14 characters on average

continues the trend of increasing password lengths

as time goes on [2].

PREVIOUS ATTEMPTS AT STANDARDS

There have been two significant attempts to

standardize the realm of password generation, one

by the Department of Defense [4] and again by the

National Institute of Standards and Technology [1].

The first mentioned was the Department of Defense

Password Management Guideline (also known as

CSC-STD-002-85 or simply as “The Green Book”)

[4]. This text contains many of the

recommendations observed today for password

management, such as the recommendation of

passwords being replaceable by the user and that

they should not be written down or re-used. The

rule for minimum length of 8 may also have

originated from one of the examples presented in

the text and was simply never updated as

technology grew. This highlights the issue of non-

evolving standards for passwords, which is

particularly critical in the constantly evolving

environment of computers, were hardware is

constantly changing and the speed to compute these

passwords is quickly being reduced.

The NIST attempt came in their special

publication 800-63-2: Electronic Authentication

Guideline. Here they try to use as a base the

concept of Shanon Entropy (a measurement for

unpredictability) to create a variable scheme for

password approval. According to this document’s

strategy, characters would add a certain number of

bits of entropy (unpredictability or randomness)

based on their position, with bonus bits being

awarded to the password based on fulfilling

addition criteria such as having a mix of upper and

lowercase characters. This scheme is conceptually

solid, helping to solve some of the presented issues,

but it does present some shortcomings. There is no

presented way to calculate a minimum acceptable

level of randomness for a password, the calculation

for level of randomness based on position of

characters is not currently supported by established

research, and there is no incentive for users to

create a password beyond the minimum required to

be considered acceptable by the system.

PASSWORD RESILIENCE TESTS

In order to demonstrate how the passwords

execution times grow quickly when the keyspace is

altered and how quickly even minor changes have

an impact on execution time, it becomes necessary

to demonstrate the runtime with concrete examples.

A series of tests were run to calculate

execution time of brute force attacks on a computer

with hardware and software representative of what

might be used by a common password cracker at

the time of execution. The specifications for the

computer were as follows:

 Intel Core i5 6600K CPU.

 MSI Z170A Motherboard.

 16GB Dual Channel DDR4 RAM at 3,000

MHz speed.

 NVIDIA GeForce GTX 1070 GPU (999 MHz

clock, 8192 MB GDDR5 memory, 1920

CUDA cores, Driver ver. 376.33).

 Windows 10.

 Hashcat V3.2 Password Cracker (MD5

Algorithm).

The tests were computed on passwords

representative of real world scenarios such as

Amazon password requirements (6 character, both

upper and lowercase), Facebook requirements (6

characters), common password requirements such

as minimum 8 characters (both any capitalization

and mixed) as well as for other reasons such as

being resilient to specific methods of attack and

more. The primary distinction for character sets is

seen in the name of each group. Categories

identified as Basic# require only 1 letter case,

Complex# requires both uppercase and lowercase,

and a special character or number. This is in

addition to length requirements, which is the

number in the category name.

The results of these tests can be seen in Table

2. Where the estimated execution time for an

exhaustive attack on those spaces is shown.

The result of these is showing that there are

clear breakpoints where there are significant gains,

enough to add a margin of safety beyond the

minimum requirement.

Many of the simple requirements have short

execution times on current hardware, whereas the

more complex requirements presented a rapid

increase in length.

The results show that both the inclusion of

diverse character sets and length add significant

amounts of security. Their combined effects

produce a rapid growth that helps greatly with

difficulty at guessing the chosen string. With

simple character sets such as only lowercase

characters, there is an acceptable strength, taking

approximately 414 days to exhaustively search the

password space in our tests, but increasing from 16

to 21 characters drastically improves the search

time to approximately 1156. Similarly, when using

a complex character set such as all uppercase,

lowercase, numbers and non-alphanumeric leads to

execution times of a few seconds at 8 characters in

length, but provides similar security to the Basic21

results at approximately 1166 days for the

exhaustive search.

Table 2

Runtime Estimates

Complexity Runtime (in days)

Amazon 0

Facebook 0

Basic8 .0001

Complex8 1.3

Basic11 2.3

Basic16 414

Complex10 1166

Basic21 1156

GOALS FOR GUIDELINES

The basis for password security is

unknowability and unpredictability. By requiring

information accessible only to legitimate users, it

becomes impossible for attackers to gain access

without coming across the password by chance.

Restoring this state of unpredictability and

minimizing the possibility of an attacker

successfully finding the password is the primary

goal of this scheme.

The first issue that can be addressed is length,

setting a minimum length that prevents the

practicality of a brute force attack or its variants

allows the password to perform its most basic

function. For this reason, the password must adhere

to a minimum length even in a worst-case scenario

where the character complexity is at a minimum.

Lowercase character only passwords, however,

are not necessarily a given. Many users can

implement passwords that have a wider range of

characters and that should be rewarded as it

provides significant additional security. For this

reason, passwords with lesser length but more

complexity should also be allowed. These tradeoffs

must be offered to prevent the case of Pavlovian

passwords mentioned previously. The added

security can manifest as both mixed character

capitalization and the presence of numbers and non-

alphanumeric characters, all of which should be

treated as separate cases. Although, it is important

to always maintain that the increase in security

should be comparable or greater than the loss in

security from predictability. To avoid abuse in

extreme cases, it becomes beneficial to treat these

benefits with diminishing returns to maintain a

minimum length expectation.

Users should also be encouraged to go beyond

a minimum requirement expectation for safety,

unfortunately previous attempts to force this have

resulted in the mentioned predictability [2] and

therefore an optional reward system can be

embraced to replace the approach. As part of the

system, providing a significant security increase

beyond the minimum required can be rewarded

with increased password lifespan before it expires.

Commonly accepted wisdom is that a 3-month

expiration time is acceptable. Increments can be

placed at 3 month intervals for additional time, but

this added time should be maxed out to around 1

year total length to avoid abuse in extreme cases.

Once again, the added security should outweigh the

loss of safety, which is simplified by the

exponential growth of the password keyspace and

linear growth of time, but it should still be

monitored and implemented on a case-by-case

basis.

It is also important to verify that the password

has not been discovered in a previous attack. Many

leaked password lists have been published online,

and while it may not be ethical to view them in

detail, it should be embraced to check the lists for

the presence of the submitted password. This

knowledge could be detrimental for any attempted

attacks since the leaked information is often used to

execute the tactic. Another common tactic is to

attempt dictionary words as passwords, along with

minor variations and simple substitutions such as

capitalizing the first letter or replacing the letter ‘e’

with a ‘3’. A simple dictionary check can be

performed at the moment of submission and

passwords should be given preference for not

failing the comparison check. Those checks should

also be performed with the simple substitutions in

mind. Where possible, they should be reverted,

such as placing all the letters in their lowercase

form so that the scan is case-insensitive for easy of

verification.

From these criteria, the rules for password

acceptance can be built, the explicit rules for which

can be stated as follows:

All passwords begin with a base value of 0

points of entropy.

 Each Character adds 2 points of Entropy.

 Inclusion of both uppercase and lowercase

characters adds 6 points of entropy.

 Inclusion of numericals in addition to

alphabetic characters adds 2 points of entropy.

 Inclusion of non-alphanumeric characters adds

4 points of entropy.

o Non-alphanumeric characters are

recommended to be limited to printed

keyboard characters consisting of the

following set {`~!@#$%^&*()-

_=+[{]}\|:;"'/?.>,<} minus any characters

that could be dangerous to include in the

character space.

 Inclusion of numericals in addition to

alphabetic characters adds 2 points of entropy

 The bonuses for the inclusion of mixed cases,

numerals and non-alphanumerics is reduced by

2 for each bonus added after the first.

o For example: Including mixed cases and

non-alphanumerics is 8 points. (6 (Cases)

+ 4 (Non-Alphanumerics) - 2 (multiple

bonuses))

 Passing a comprehensive dictionary check adds

a value of 6 points of entropy.

o The password should be checked with a

sufficiently large dictionary, at least

50,000 words. Replacing the uppercase

characters with lowercase equivalents for

consistency and it should not contain any

of those words as a substring. Passwords

found to be consisting of permutations of

the username are also considered to fail

this test.

 Password tests to find currently acceptable

entropy thresholds should:

 Be performed on current high-performance

consumer accessible hardware.

 Be performed periodically and in accordance

with changes to hardware landscape.

 Be performed using all valid characters.

 A baseline minimum entropy threshold should

be calculated based on a length that takes at

least 6 months to complete exhaustively.

 Password lifetimes should default to three

months, with an additional three months

allotted per 6 points of entropy exceeded when

compared to the minimum.

o Absolute maximum allotment of a year.

Table 3

Entropy Calculation Example

Table 4

Password Examples

EXAMPLE OF USE FOR CALCULATION OF

BASE VALUES

Test should be performed using whatever

algorithm will be used for hashing the passwords,

in this example it will be performed using SHA258

on the computer used in the previous example. For

tradition and convenience, the example will begin

with an initial value of 8 characters. The rules are

set for the ‘?a’ rules present in Hashcat, which

includes all valid character types (uppercase,

lowercase, numbers, non-alphanumeric). This

causes an estimated time of approximately 35 days

to calculate all possible passwords. Therefore, the

password length is changed to 10 and the test is

performed again which then produces an estimated

result of 3 years and 91 days. This produces an

acceptable threshold for a basic 3-month lifespan.

The test is then repeated using entropy equivalents

to confirm that the other entropy structures

produced also have strong execution times, which

can be seen in Table 3. This table demonstrates

how a complexity requirement can be adjusted to

find entropy equivalents in this system. Using a

base of 10 characters with all available characters

for our set, it becomes possible to calculate how

many characters would be needed to reach an

equivalent score using simpler character sets. For

example, reducing the character set to only

lowercase characters reduces the entropy by 8

points, which must then be made up using an

additional 4 characters as part of the password. The

table also demonstrates password groups that are

entropy equivalent for our guidelines. They present

equivalent levels of unpredictability, using several

different methods to achieve it, such as using less

characters, with a wider character set, or very small

character set with a larger character total.

This allows for a wide variety of passwords to

be implemented. Table 4 shows a list of example

passwords generated in assorted styles and

strategies. Each of the provided examples shows

possible password that can be generated, all of them

entropy equivalent, in several different styles. This

includes traditional password/phrases, Acronym

passwords (representing a phrase using specific

characters to replace words), pronounceable

passwords (That seek to emulate traditional words

for memorability), and true randomly generated

passwords. Each of these can be constructed as part

of all the mentioned character sets and would all be

approvable by this scheme in the case that the

entropy requirements permit.

All the presented examples are performed

using the assumption that all inserted passwords

will pass a dictionary check. This is done so that in

the case that when they do not pass a check, they

will be forced to produce a stronger password, and

continue to provide strong security for the password

system.

PRODUCT

The product of this project was a series of

algorithms that implemented the lessons learned

and mitigated the weaknesses exploited in

password based attacks. They follow all the

outlined rules and were generated in such a way

that all the observed weaknesses in password

structure were at least mitigated. The primary

benefit of the algorithms is versatility and

scalability. The criteria for password acceptance is

not tied to specific values, but to expected threats.

The system can grow naturally without need to

change values as hardware improves and should

remain viable while attack trends hold.

The algorithms also embrace usability, users

are no longer forced to adhere to the password

rules, instead their passwords are evaluated on

various criteria and if their combined result is

satisfactory, the password is accepted. The user is

given various avenues to produce additional forms

of password safety and they are all beneficial. In

addition to this, they are encouraged to provide

passwords stronger than the average by the reward

scheme of giving additional password usability

lifetime.

It is important to note, however, that the

algorithm presented is a template and not a hard set

of rules. Implementation should be treated as an

instance with changing details. Rigid adherence to

those rules goes against the nature of this project

and could have significant detrimental effects to its

efficiency. Simple implementations can work as is,

but experimentation should be encouraged for

better results.

The algorithms all follow a similar structural

core of calculating the strength of a given

password, or a category of passwords. The

calculation begins with counting the total length of

the password, this number is then multiplied by 2

and becomes the base value of the tested password.

From there, additional value is added based on

fulfilling certain criteria. Those include:

 +6 for inclusion of both uppercase and

lowercase characters.

 +2 for inclusion of numbers.

 +4 for inclusion of non-alphanumeric

characters.

To prevent scaling issues, a penalty of -2 is

applied to for each bonus given by this point past

the first. This prevents a significant part of the

value being added exclusively from bonuses.

After this point, a dictionary check is

performed on the password to confirm that it is not

a commonly found password or dictionary word. In

the case that it does not fail the check, a final bonus

of +6 is given to the password. This check is

performed each time a potential password is input

in to the system, as part of the approval process for

the use of the password.

One of the core features of this approach is

stated as scalability, and for this reason, there is

also a secondary algorithm that handles calculating

baseline value requirements for the passwords to be

approved. This is performed by selecting an initial

test value, and calculating an estimated time to

exhaustively test all possible passwords in a key

space of that length and a full character set of

uppercase characters, lowercase characters,

numbers and non-alphanumeric characters. These

tests should be performed on current hardware,

which should be representative of expected threats

to the system. Multiple GPU clusters for large

corporations and single enthusiast grade GPU

systems for smaller organizations and companies

for example. This produces realistic values that

give users the most flexibility that can be

practically offered without sacrificing safety. The

goal should be to achieve at least double the desired

time for password lifespan at the base value.

Using the test machine and settings presented

in the previous sections, this proved to happen at a

length of 10 characters. This should then be

confirmed to be usable by performing the same test

using the chosen lengths entropy equivalents in

other character sets, all of which should have an

execution time of a minimum satisfactory length.

 Examples of these entropy equivalence

calculations can seen in Table 3. These entropy

equivalents shown in the table are values calculated

by the author, using the rules and algorithms

created for this document. The columns of which

contain the possible lengths of passwords, and what

requirements it must meet in order to achieve its

required example value of 34. The point values of

these sources can be seen in the entries of each row,

with values of 0 meaning that it was not awarded a

bonus for that field.

The final calculation that must be performed as

part of the algorithm happens at the time of

potential password submission. If the submitted

password surpasses the base value required, then

additional time can be given to the passwords

usable lifespan as a usability tradeoff. This allows

users to change their password less frequently. It

also encourages stronger passwords past the

minimum requirement, which provides a net gain in

security, despite the increased lifespan. This is due

to the exponential growth rate of password hash

calculation versus the minor linear growth rate that

can be given to password. As provided, the rate is

that for every 2-value added to the password past

the requirement, an additional 3 months be allowed

for the password, to a maximum of 1 year to

prevent abuse cases.

The results of implementing this system would

remove many pass words that would be accepted by

currently used schemes such as “password” which

carries a life expectancy in the order of seconds,

while also allowing new creative approaches such

as “ihavemuch<3forchickentacos” which would be

rejected as a weak password by some schemes for

not containing a capital letter. Maintaining the

length of characters to a currently relevant

requirement also impacts the character space

greatly, as seen in Table 1, where rapidly grows as

those lengths are increased, even by small margins.

Even minor increases show orders of magnitude in

change for password length intervals.

This leads directly to additional burden to

attackers attempting automated methods of

infiltration. Conventional methods of password

requirements, such as the typical minimum length

of 8 with mixed cases and special character

inclusion, lead to short execution times for attacks.

As can be seen in Figure 2, while following the

guidelines presented here result in guaranteed

average execution times, such as can be seen in

Figure 3. Both Figures 2 and 3 present execution

times for attacks in the popular program known as

Hashcat which breaks password hashes, with Figure

2 presenting the aforementioned complex 8 ruleset

mentioned before and Figure 3 presenting an

acceptable runtime discovered using this algorithm.

Figure 2

Complex 8 Runtimes

Figure 3

Complex 10 Runtimes

CONCLUSION

After going through the weaknesses found in

current password schemes, new guidelines are

recommended. The new structure is less rigid: it

embraces potential sources of strength and user

variances as a source of unpredictability, which

allows for varied password styles and encourages

users to produce stronger passwords. This can lead

to a better relationship between users and their

password based systems, meaning that the

password validation system might not be

antagonistic and complicated, but instead as a

system working with the user to keep their systems

secure.

Brute Force style attacks rely on the certainty

that the password will eventually be discovered, but

by introducing varied password length that

certainty is reduced. A variety of lengths in the

used passwords space, means that a wider span of

possible passwords must be tested. This may bring

testing of passwords outside of practical reach for

password crackers.

The adoption of a variable set of password

rules also embraces many styles of secure

passwords that are not permissible in several

current schemes. Allowing users to use measures

such as sufficiently long passwords that contain

only lowercase letter allows them to secure their

accounts without forsaking comfort and usability

for the user. The password negotiation aspect also

lends itself to both security and usability. Allowing

for more secure passwords to have longer usable

timespans encourages the users to actively

participate in the betterment of the security process

instead of merely requiring them to give a

minimum effort. Combined these elements lead to

an improved security system that help to cover

many of the current issues found in password

security.

FUTURE WORK

Further study into the characteristics of human

generated passwords is critical to improving

security. This element has proven to be a source of

significant weaknesses across a variety of password

attacks. This includes further delving in to how a

person’s demographic information influences their

password contents and structure. The previously

performed study by the author [2] showed that there

are unexplored elements that can influence the

password creating process.

In addition, the algorithm itself can be refined

on a case basis, the implementation can vary and be

further developed as seen fit by the developer that

plans on using it; the needs of the implementer will

vary on a case-by-case basis.

REFERENCES

[1] Scarfone and S. Murugiah, "Guide to Enterprise

Password Management," in National Institute of

Standards and Technology, 2009.

[2] J. Hernandez, "A Study on the Password Habits of

College Students: Length and Complexity Based on

Demographics," in Richard Tapia Celebration of

Diversity in Computing, Austin, 2016.

[3] MedicineNet. (2016, June 9). Medical Definition of

Pavlovian Conditioning [Online]. Available:

http://www.medicinenet.com/script/main/art.asp?articl

ekey=4801. [Accessed 2 6 2017].

[4] S. L. &. M. J. D. Brand, "Department of Defense

password management guideline," in Department of

Defense, Fort George G. Meade, 1985.

