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Abstract — In the past decade computers have 

become faster and more efficient, utilizing the 

technology available to put more transistors inside 

the same space; but when they can’t shrink the 

transistor any more is time to put more processors 

together to reduce the time of execution and have 

more than one processor making different 

instructions at the same time. This increment in 

throughput is possible using Message Passing 

Interface (MPI) a portable message-

passing communication protocol that allows 

breaking apart the code and thus perform many 

instructions assigning to each processor the 

specific instruction to be executed making the 

process much faster. We are using a serial C 

programming language code program that 

calculates the inverse of a matrix using the Gauss-

Jordan Method; then, we parallelize the same 

program using MPI.  

Key Terms — Matrix Inverse, Message 

Passing Interface, Multiples Cores, Parallel 

Computing. 

INTRODUCTION 

Message Passing Interface is a standardized 

and portable message-passing system. The 

advantages of this protocol is that it can provide the 

programmer a collection of functions for the design 

and implementation, without necessarily having to 

know the particular hardware on which is going to 

be executed, or the way in which they have 

implemented the used functions. This is possible 

because MPI works between the application and the 

software layer as we see in the Figure 1. MPI has 

been developed by the MPI Forum, a group of 

researchers from universities, laboratories and 

companies involved in High Performance 

Computing (HPC). The fundamental objectives of 

MPI Forum are: 

 Define a single programming environment that 

ensures the portability of parallel applications. 

 Fully define the programing interface, without 

specifying how I going to be implemented. 

 Offer quality implementations, of public 

domain, to favor the extension of the standard.  

 Convince the parallel computer manufacturers 

to offer optimize MPI versions for their 

machines (which have already manufacturers 

such as IM and Silicon Graphics)[1]. 

 

The Message-passing systems are used 

especially on distributed machines with separate 

memory for executing parallel applications as 

shown in Figure 3. With this system, each 

executing process will communicate and share its 

data with others by sending and receiving messages 

using different commands. 

 

MPI FUNCTIONS 

 

To use the MPI features in the code the 

#include "mpi.h" library must be included. The 

statement needed in every program before any other 

MPI code is MPI_Init(&argc, &argv); and the last 

statement of MPI code must be MPI_Finalize; The 

program will not terminate without this last 

statement. 

 



 
Figure 1 

Location of MPI in the Programming of Parallel 

Applications. 

 

Sending messages is straightforward. The 

source (the identity of the sender) is determined 

implicitly, but the rest of the message (envelope 

and body) is given explicitly by the sending 

process. To receive a message, a process specifies a 

message envelope that MPI compares to the 

envelopes of pending messages. If there is a match, 

a message is received. Otherwise, the receive 

operation cannot be completed until a matching 

message is sent. The MPI send and receive 

functions are discuss in the Figure 2. 

 

Figure 2 

 MPI Send and Receive Functions 

 

These are the basic point-to-point 

communication routines in MPI [2]. Table 1 shows 

the MPI data types used in the send receive 

functions: 

Table 1 

Basic MPI Data Types – C Programming 

 

MPI Datatype Type 

MPI_CHAR signed char 

MPI_SHORT signed short int 

MPI_INT signed int 

MPI_LONG signed long int 

MPI_UNSIGNED_CHAR unsigned char 

MPI_UNSIGNED_SHORT unsigned short 

MPI_UNSIGNED int 

MPI_UNSIGNED_LONG unsigned int 

MPI_FLOAT unsigned long 

MPI_DOUBLE int 

MPI_LONG_DOUBLE float 

MPI_BYTE double 

MPI_PACKED long double 

                                      

 

 
Figure 3 

 Parallel Computing Example 

 

MPI provide a function very practical to have 

quantitative information using a timer. A timer is 

specified even though it is not “message-passing,” 

because timing parallel programs is important in 

“performance debugging” and that function is 

MPI_WTIME (). MPI_WTIME returns a floating-

point number of seconds, representing elapsed wall-

clock time since some time in the past. This 



function is portable (it returns seconds, not “ticks”), 

it allows high-resolution, and carries no 

unnecessary baggage [3]. It can be implemented 

like we see in Figure 4. 

 

 
Figure 4 

 Implementation of MPI_WTime() Function 

 

All MPI communication is based on a 

Communicator which contains a context.  A context 

allows different libraries to co-exist, define a safe 

communication space for message-passing and can 

be viewed as system-managed tags. The group is 

just a set of processes that are always referred to by 

unique rank in group. The MPI_COMM_WORLD  

contains all processes available at the time the 

program was started and provides initial safe 

communication space. Inside the MPI area a 

processor could determine its rank in a 

communicator by using a call to 

MPI_COMM_RANK. Also, the processor can 

determine the size, or number of processors, of any 

communicator to which it belongs with a call to 

MPI_COMM_SIZE. 

The MPI_BCAST function broadcasts a 

message from the process with rank root to all 

processes of the group, itself included. It is called 

by all members of group using the same arguments 

for comm, root. On return, the content of root’s 

communication buffer has been copied to all 

processes. The type signature of count, datatype on 

any process must be equal to the type signature of 

count, datatype at the root. This implies that the 

amount of data sent must be equal to the amount 

received, pairwise between each process and the 

root. MPI_BCAST and all other data-movement 

collective routines make this restriction. Distinct 

type maps between sender and receiver are still 

allowed [4]. This function is described in Figure 5. 

 

 
Figure 5 

 Implementation of MPI_Bcast Function 

 

There are more functions in the MPI protocol 

that allows the programmer to exploit all the 

available resources. This method of message 

passing is practical but brings some complexity to 

the serial code because we need to understand and 

know all the options that offer the MPI. Another 

added problem is the way we are going to divide 

the code, so each processor will perform the task at 

the same time as the other processes (as it is shown 

in Figure 3) depending how much one process need 

the output of other process. The final objective to 

optimize the algorithm is to get all the processors 

working the most of the execution time.   

The exercise introduced in this work is to 

calculate the matrix inverse of a square matrix 

using the Gauss–Jordan elimination. This is a 

known algorithm that is performed by augmenting 

the square matrix     with the identity matrix of the 

same dimensions    (1) and applying the following 

matrix operations: 

 

                     (1) 

 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Augmented_matrix
http://en.wikipedia.org/wiki/Identity_matrix


Explicit representation of the workspace is(2): 
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Elementary row operations are used then to reduce 

the left half of [C](3) occupied by [A] into the 

identity matrix. Each iteration (i) for this step aims 

to reduce the    element to 1 
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    (3) 

 

where a(k) is the result of the iteration k. Further 

operation is to zero all     coefficients except     by 

replacing row j with a properly chosen linear 

combination between row i and row j(4). 
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(4) 

 

After all iterations are over, the right half of [C] 

will contain the inverse matrix or       (5). 
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    (5) 

 

The iterations have to be performed 

sequentially, i.e. iteration k+1 have to be performed 

after iteration k is over. However, the algorithm has 

some opportunities for parallel processing as we 

will explain next. 

The first step of the iteration i means dividing 

all elements of row i with aii and this can be 

executed in parallel. However, the simple division 

is an operation too simple compared to the 

overhead implied by parallelism introduction and 

the gains would be rather small. 

The second step of iteration i is performed over 

all rows j with j = i and within each row j we have 

to perform one multiplication and one addition for 

each column of the rows i and j. Processing one 

row j is an operation complex enough to allow 

parallel processing despite parallelization overhead. 

Moreover, particular programming techniques 

allow us to reduce the overhead to one equivalent 

fork/join operation per iteration i [5]. 

PROBLEM STATEMENT 

  

In this project we have a serial program that 

calculates the matrix inverse using Gauss Jordan 

method and we want to optimize the time of 

execution by using the advantage of parallel 

computing. This can be achieved by the knowing 

and understanding of the MPI Protocol. The 

challenge of this project is to transfer the code to a 

parallel programing without losing the capabilities 

of the serial program and be able to reduce the time 

of execution.    

METHODOLOGY 

We start the project with a serial program (as 

we see in Figure 6) in C language that can calculate 

the matrix inverse using Gauss Jordan method.  

 



Figure 6 

Serial Computing Example 

 

For the conversion to parallel we analyze the 

best way to implement the code in the MPI, this 

parallel code is made for four processors parallel 

computing. This can be done in a computer with 

less than four processors but does not guaranteed 

the optimization that we are looking for. In the 

Figure 7 we see the task made for each processor. 

 

 

 
Figure 7   

The Task Done by Each Processor 

 

The first processor is appending the columns of 

the matrix that we want the inverse and the identity 

matrix to create the augmented matrix (Figure 8). 

After that this processor sends the order of the 

matrix to the other three processors and sends the 

augmented matrix to the second and third 

processor.  

The second processor is receiving the order of 

the matrix and the augmented matrix, then the 

processor print the augmented matrix so that the 

operator see  in the terminal that the matrix inverse 

calculation is in progress. 

 

 

 
Figure 8 

Processor 0 Task 

 

 

 
Figure 9 

 Gauss-Jordan Operation in the code 



The third processor performs the calculation of 

the matrix inverse using Gauss-Jordam method as 

seen in Figure 9. Between the line 1 and 31 this for 

loop is checking if the pivot is not zero. If the 

matrix is singular doesn’t have inverse and the 

program print out “This result requires a non-

singular matrix” and the program is terminated. The 

next step after verifying if the matrix is non-

singular the program divides by the diagonal 

element to have a 1 in this position. Then the 

program performs the operation that leave us zero 

in the desired position, after that we send the result 

to the processor number four. The fourth processor 

prints the result in the terminal. 

LAB RESULTS 

In this work we could find that the conversion 

from serial to parallel can be done, and the 

processors can communicate with each other and 

perform the tasks as we designed. The time of 

execution wasn’t the expected because the program 

has simple arithmetic operations making the 

program too light and the computer runs the 

program to fast and the time is so little that can’t be 

measured in 6 significant figures. We made a loop 

so the process can last longer but for small matrices 

the thread synchronization overhead is 

overwhelming and for our design a 5 by 5 matrix is 

the maximum matrix we can calculate the inverse 

because due to buffer size limits, we are limited in 

the amount of actual data that can be sent with each 

call to MPI_SEND.   

CONCLUSION  

The conversion could be done with no 

complications this part of the goals that we 

establish in the problem statement was achieved. 

But the part of the execution time was not 

accomplished because of two factors: 

 For small matrices the thread synchronization 

overhead is overwhelming. We need to handle 

bigger matrixes to make the program process 

more information and the optimization in 

execution time could be significant. 

 The limit in the buffer for the MPI_Send and 

the MPI_Receive holds the program and the 

large matrixes can’t be done. 

REFERENCES 

[1] Alonso,  J.,  M.,  “Programación de aplicaciones paralelas 

con MPI (Message Passing Interface)”, Facultad de 
Informática UPV/EHU, May 7, 2012, 

http://www.sc.ehu.es/acwmialj/edumat/mpi.pdf 

 

[2]   The PACS Training Group, “Introduction to MPI”, Board     

of Trustees of the University of  Illinois, May 2, 2012, 

http://people.sc.fsu.edu/~jburkardt/pdf/mpi_course.pdf  

 

[3]    Ross, R, “MPITypes : MPITypes: A Library for Processing 

MPI Datatypes outside MPI”, Argone National Laboratory, 
May 1, 2012, http://www.mcs.anl.gov/research/projects 

/mpi/mpi-standard/mpi-report-1.1/node150.htm 

 

[4]   The group of representatives that defines and maintain the 

MPI Standard, “4.4. Broadcast” MPI Forum, May 4, 2012, 
http://www.mpi-forum.org/docs/mpi-11-html/node67.html 

 

[5]  C. Vancea, “Parallel Algorithm for Computing Matrix 

Inverse by Gauss-Jordan Method”, Department of 

Electrical Measurements and Usage of Electric Energy, 
April 23, 2012, http://electroinf.uoradea.ro/reviste%20 

CSCS/documente/JCSCS_2008/JCSCS_2008_22_Vancea

C_1.pdf 

 

 

 


