
Serial to Parallel Matrix Inverse Algorithm using Gauss – Jordan Method

Ramón O. Fabery

Electrical Engineering

Luis Vicente, Ph.D.

Electrical and Computer Engineering & Computer Science Department

Polytechnic University of Puerto Rico

Abstract — In the past decade computers have

become faster and more efficient, utilizing the

technology available to put more transistors inside

the same space; but when they can’t shrink the

transistor any more is time to put more processors

together to reduce the time of execution and have

more than one processor making different

instructions at the same time. This increment in

throughput is possible using Message Passing

Interface (MPI) a portable message-

passing communication protocol that allows

breaking apart the code and thus perform many

instructions assigning to each processor the

specific instruction to be executed making the

process much faster. We are using a serial C

programming language code program that

calculates the inverse of a matrix using the Gauss-

Jordan Method; then, we parallelize the same

program using MPI.

Key Terms — Matrix Inverse, Message

Passing Interface, Multiples Cores, Parallel

Computing.

INTRODUCTION

Message Passing Interface is a standardized

and portable message-passing system. The

advantages of this protocol is that it can provide the

programmer a collection of functions for the design

and implementation, without necessarily having to

know the particular hardware on which is going to

be executed, or the way in which they have

implemented the used functions. This is possible

because MPI works between the application and the

software layer as we see in the Figure 1. MPI has

been developed by the MPI Forum, a group of

researchers from universities, laboratories and

companies involved in High Performance

Computing (HPC). The fundamental objectives of

MPI Forum are:

 Define a single programming environment that

ensures the portability of parallel applications.

 Fully define the programing interface, without

specifying how I going to be implemented.

 Offer quality implementations, of public

domain, to favor the extension of the standard.

 Convince the parallel computer manufacturers

to offer optimize MPI versions for their

machines (which have already manufacturers

such as IM and Silicon Graphics)[1].

The Message-passing systems are used

especially on distributed machines with separate

memory for executing parallel applications as

shown in Figure 3. With this system, each

executing process will communicate and share its

data with others by sending and receiving messages

using different commands.

MPI FUNCTIONS

To use the MPI features in the code the

#include "mpi.h" library must be included. The

statement needed in every program before any other

MPI code is MPI_Init(&argc, &argv); and the last

statement of MPI code must be MPI_Finalize; The

program will not terminate without this last

statement.

Figure 1

Location of MPI in the Programming of Parallel

Applications.

Sending messages is straightforward. The

source (the identity of the sender) is determined

implicitly, but the rest of the message (envelope

and body) is given explicitly by the sending

process. To receive a message, a process specifies a

message envelope that MPI compares to the

envelopes of pending messages. If there is a match,

a message is received. Otherwise, the receive

operation cannot be completed until a matching

message is sent. The MPI send and receive

functions are discuss in the Figure 2.

Figure 2

 MPI Send and Receive Functions

These are the basic point-to-point

communication routines in MPI [2]. Table 1 shows

the MPI data types used in the send receive

functions:

Table 1

Basic MPI Data Types – C Programming

MPI Datatype Type

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED int

MPI_UNSIGNED_LONG unsigned int

MPI_FLOAT unsigned long

MPI_DOUBLE int

MPI_LONG_DOUBLE float

MPI_BYTE double

MPI_PACKED long double

Figure 3

 Parallel Computing Example

MPI provide a function very practical to have

quantitative information using a timer. A timer is

specified even though it is not “message-passing,”

because timing parallel programs is important in

“performance debugging” and that function is

MPI_WTIME (). MPI_WTIME returns a floating-

point number of seconds, representing elapsed wall-

clock time since some time in the past. This

function is portable (it returns seconds, not “ticks”),

it allows high-resolution, and carries no

unnecessary baggage [3]. It can be implemented

like we see in Figure 4.

Figure 4

 Implementation of MPI_WTime() Function

All MPI communication is based on a

Communicator which contains a context. A context

allows different libraries to co-exist, define a safe

communication space for message-passing and can

be viewed as system-managed tags. The group is

just a set of processes that are always referred to by

unique rank in group. The MPI_COMM_WORLD

contains all processes available at the time the

program was started and provides initial safe

communication space. Inside the MPI area a

processor could determine its rank in a

communicator by using a call to

MPI_COMM_RANK. Also, the processor can

determine the size, or number of processors, of any

communicator to which it belongs with a call to

MPI_COMM_SIZE.

The MPI_BCAST function broadcasts a

message from the process with rank root to all

processes of the group, itself included. It is called

by all members of group using the same arguments

for comm, root. On return, the content of root’s

communication buffer has been copied to all

processes. The type signature of count, datatype on

any process must be equal to the type signature of

count, datatype at the root. This implies that the

amount of data sent must be equal to the amount

received, pairwise between each process and the

root. MPI_BCAST and all other data-movement

collective routines make this restriction. Distinct

type maps between sender and receiver are still

allowed [4]. This function is described in Figure 5.

Figure 5

 Implementation of MPI_Bcast Function

There are more functions in the MPI protocol

that allows the programmer to exploit all the

available resources. This method of message

passing is practical but brings some complexity to

the serial code because we need to understand and

know all the options that offer the MPI. Another

added problem is the way we are going to divide

the code, so each processor will perform the task at

the same time as the other processes (as it is shown

in Figure 3) depending how much one process need

the output of other process. The final objective to

optimize the algorithm is to get all the processors

working the most of the execution time.

The exercise introduced in this work is to

calculate the matrix inverse of a square matrix

using the Gauss–Jordan elimination. This is a

known algorithm that is performed by augmenting

the square matrix with the identity matrix of the

same dimensions (1) and applying the following

matrix operations:

 (1)

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Augmented_matrix
http://en.wikipedia.org/wiki/Identity_matrix

Explicit representation of the workspace is(2):

 [

] (2)

Elementary row operations are used then to reduce

the left half of [C](3) occupied by [A] into the

identity matrix. Each iteration (i) for this step aims

to reduce the element to 1

[

]

 (3)

where a(k) is the result of the iteration k. Further

operation is to zero all coefficients except by

replacing row j with a properly chosen linear

combination between row i and row j(4).

[

()

()

()

()

]

(4)

After all iterations are over, the right half of [C]

will contain the inverse matrix or (5).

[

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

]

 (5)

The iterations have to be performed

sequentially, i.e. iteration k+1 have to be performed

after iteration k is over. However, the algorithm has

some opportunities for parallel processing as we

will explain next.

The first step of the iteration i means dividing

all elements of row i with aii and this can be

executed in parallel. However, the simple division

is an operation too simple compared to the

overhead implied by parallelism introduction and

the gains would be rather small.

The second step of iteration i is performed over

all rows j with j = i and within each row j we have

to perform one multiplication and one addition for

each column of the rows i and j. Processing one

row j is an operation complex enough to allow

parallel processing despite parallelization overhead.

Moreover, particular programming techniques

allow us to reduce the overhead to one equivalent

fork/join operation per iteration i [5].

PROBLEM STATEMENT

In this project we have a serial program that

calculates the matrix inverse using Gauss Jordan

method and we want to optimize the time of

execution by using the advantage of parallel

computing. This can be achieved by the knowing

and understanding of the MPI Protocol. The

challenge of this project is to transfer the code to a

parallel programing without losing the capabilities

of the serial program and be able to reduce the time

of execution.

METHODOLOGY

We start the project with a serial program (as

we see in Figure 6) in C language that can calculate

the matrix inverse using Gauss Jordan method.

Figure 6

Serial Computing Example

For the conversion to parallel we analyze the

best way to implement the code in the MPI, this

parallel code is made for four processors parallel

computing. This can be done in a computer with

less than four processors but does not guaranteed

the optimization that we are looking for. In the

Figure 7 we see the task made for each processor.

Figure 7

The Task Done by Each Processor

The first processor is appending the columns of

the matrix that we want the inverse and the identity

matrix to create the augmented matrix (Figure 8).

After that this processor sends the order of the

matrix to the other three processors and sends the

augmented matrix to the second and third

processor.

The second processor is receiving the order of

the matrix and the augmented matrix, then the

processor print the augmented matrix so that the

operator see in the terminal that the matrix inverse

calculation is in progress.

Figure 8

Processor 0 Task

Figure 9

 Gauss-Jordan Operation in the code

The third processor performs the calculation of

the matrix inverse using Gauss-Jordam method as

seen in Figure 9. Between the line 1 and 31 this for

loop is checking if the pivot is not zero. If the

matrix is singular doesn’t have inverse and the

program print out “This result requires a non-

singular matrix” and the program is terminated. The

next step after verifying if the matrix is non-

singular the program divides by the diagonal

element to have a 1 in this position. Then the

program performs the operation that leave us zero

in the desired position, after that we send the result

to the processor number four. The fourth processor

prints the result in the terminal.

LAB RESULTS

In this work we could find that the conversion

from serial to parallel can be done, and the

processors can communicate with each other and

perform the tasks as we designed. The time of

execution wasn’t the expected because the program

has simple arithmetic operations making the

program too light and the computer runs the

program to fast and the time is so little that can’t be

measured in 6 significant figures. We made a loop

so the process can last longer but for small matrices

the thread synchronization overhead is

overwhelming and for our design a 5 by 5 matrix is

the maximum matrix we can calculate the inverse

because due to buffer size limits, we are limited in

the amount of actual data that can be sent with each

call to MPI_SEND.

CONCLUSION

The conversion could be done with no

complications this part of the goals that we

establish in the problem statement was achieved.

But the part of the execution time was not

accomplished because of two factors:

 For small matrices the thread synchronization

overhead is overwhelming. We need to handle

bigger matrixes to make the program process

more information and the optimization in

execution time could be significant.

 The limit in the buffer for the MPI_Send and

the MPI_Receive holds the program and the

large matrixes can’t be done.

REFERENCES

[1] Alonso, J., M., “Programación de aplicaciones paralelas

con MPI (Message Passing Interface)”, Facultad de
Informática UPV/EHU, May 7, 2012,

http://www.sc.ehu.es/acwmialj/edumat/mpi.pdf

[2] The PACS Training Group, “Introduction to MPI”, Board

of Trustees of the University of Illinois, May 2, 2012,

http://people.sc.fsu.edu/~jburkardt/pdf/mpi_course.pdf

[3] Ross, R, “MPITypes : MPITypes: A Library for Processing

MPI Datatypes outside MPI”, Argone National Laboratory,
May 1, 2012, http://www.mcs.anl.gov/research/projects

/mpi/mpi-standard/mpi-report-1.1/node150.htm

[4] The group of representatives that defines and maintain the

MPI Standard, “4.4. Broadcast” MPI Forum, May 4, 2012,
http://www.mpi-forum.org/docs/mpi-11-html/node67.html

[5] C. Vancea, “Parallel Algorithm for Computing Matrix

Inverse by Gauss-Jordan Method”, Department of

Electrical Measurements and Usage of Electric Energy,
April 23, 2012, http://electroinf.uoradea.ro/reviste%20

CSCS/documente/JCSCS_2008/JCSCS_2008_22_Vancea

C_1.pdf

