
Analyzing Web Application Attacks: Understanding the Damages 

 
Javier Meléndez Ortega 

Master in Computer Science 

Jeffrey Duffany, Ph.D. 

Electrical and Computer Engineering and Computer Science Department 

Polytechnic University of Puerto Rico 

 
Abstract  This project will demonstrate the 

damages that can occur by different web 

application attacks to aid users with the knowledge 

of disasters and let them know why security is so 

important. If you don't know what the problem is, 

you will never know the risks and neither how to 

solve it. In addition, defenses on every attack will 

also be discussed. Furthermore, the project 

implements the hacking techniques on a safe and 

legal framework designed for testing web 

application securities. The attacks regarding this 

project will be the following: cross site scripting 

(known as XSS), and SQL injection (SQLi). 

Key Terms  DVWA, HTML, OWASP, SQLi, 

XSS. 

INTRODUCTION 

An increasing number of hackers are 

performing attacks in public places like restaurants, 

organizations, companies and public areas. These 

attacks grow every day for a number of reasons. 

Some of those reasons are: the attacker's curiosity 

of hacking systems, attacker may have bad 

intentions, the hacker may do it for learning 

purposes, others for the fun they find while 

hacking, some hackers do it to find issues on their 

networks, etc. Whatever the reason, defenses are 

being tested any minute with or without our 

knowledge, with or without permission. In this 

project, various attacks will be done in a safe 

environment; attacks that any malicious person can 

perform in such services that we use in our network 

or industry today to access the company 

infrastructure. An example of some of these 

services are: the mail service (Outlook Web 

Access), remote desktop protocols, database 

services, user account services, etc. At the end of 

every chapter, preventive or security measures will 

be discussed, because in order to know the security 

problems at a network, penetrations testing must be 

done; because in order to find a solution, first you 

must find what the problem is. 

TYPE OF ATTACK: CROSS-SITE 

SCRIPTING (XSS) 

WHAT IS XSS?  Cross-site Scripting is a 

type of attack on web-based systems, which is 

based on executing scripting code on websites used 

by the client. The most commonly scripting code 

used in web browsers is javascript. Javascript is 

very often used to run dynamic contents on a 

website for example: on mouse clicks, on mouse 

over (mouse arrow passes through contents without 

clicking and an event is executed), onload (on 

webpage load), etc. Javascript code is executed on 

browsers as HTML events [1]. Dynamic events 

help websites respond to user interactions and 

change depending on what the user wants or needs. 

This is why dynamic contents are useful and have 

many advantages. Additionally, dynamic contents 

can also bring disadvantages from a security 

standpoint. Events can also be malicious attacks 

that will execute without the users knowledge. 

These type of attacks are very dangerous, since 

cross-site scripting bypasses firewalls, routers, 

Intrusion Detection Systems (IDS), Intrusion 

Prevention Systems (IPS), etc. because they are 

executed in the client's browser which is the most 

commonly used program to access the internet [2]. 

In this project, I will demonstrate a real world 

scenario on the cross-site scripting attack 

demonstrating two of the most common techniques 

used by attackers. 



Tools Needed 

Instruments needed on this scenario are: 

1. Damn Vulnerable Web App (DVWA) [3] 

2. Can include one of the followings: Beef (from 

kali), Xenotix, XSSer, Acunetix [4] and/or 

Javascript knowledge, PHP knowledge, VB 

Script, ASP. 

Setting Up the Lab 

Framework: Damn Vulnerable Web App 

(DVWA) Damn Vulnerable Web App is a safe 

framework used for learning purposes. This 

program is used to practice vulnerabilities that are 

common; that have or has had a high rank in the 

OWASP list for recent years. I will be using this 

program on the project to test cross-site scripting 

vulnerabilities in a safe environment. We begin by 

downloading and installing the DVWA from 

www.dvwa.co.uk/ follow instructions on the website 

for installation. After setting up DVWA, we will 

need to start the apache and mysql service in order 

to be able to connect to DVWA at 

http://127.0.0.1/dvwa/login.php and proceed to the 

Cross-site scripting lab. 

Attack Scenario 

During this scenario we will be presented with 

the DVWA home page. We will need to change the 

security settings on the DVWA security tab on the 

left menu to low security and submit. Next, we will 

need to go to the XSS reflected tab on the left menu 

to proceed to the next step, which asks the name. If 

a name is entered, the output will be like figure 1. 

 

 

 

Figure 1 

Normal Behavior of the Website 

If instead of a name, we were to enter the 

following javascript code: <script> alert (“you've 

been XSS”); </script> (this code was executed in 

order to show a visual message to let us know what 

is happening when a script is entered) an output as 

figure 2 will be shown [4] [1]. 

 
Figure 2 

Executing a XSS Attack 

Let's see what information can we get using 

this type of attack if we use the following scripting 

code: <script> alert("Cookie: " + document.cookie 

+ ' URL: ' + document.location ); </script>. When 

executed, figure 3 will show us what will happen. 

 

 

 

 

 

Figure 3 

Cookie Shown after a XSS Attack 

Figure 3 shows the information displayed on 

the alert message box which is the cookie 

information from the session, security and the URL 

of the website. The cookie information is as 

follows:Cookie:security=low;BEEFHOOK=rTSHf

K9FVXHM6pojHkqaThzTdvX22Gx84xQqiCH9sd

LCvQK4MJOO0816ceF47GIVwhCJ6r9AU1rylD:J

;PHPSESSID=u77d2gqlr1c9jees5pv7ai0933URL:h

ttp://127.0.0.1/dvwa/vulnerabilities/xss_r/?name=%

3Cscript%3E+alert%28%22Cookie%3A+%22+%2

B+document.cookie+%2B+%27+URL%3A+%27+

%2B+document.location+%29%3B+%3C%2Fscrip

t%3E#. As you can see, after the submission of the 

scripting code in the text-box; at the URL we can 

see the javascript code shown after the original 

URL where “name= (javascript code)” entered 

recently. This means that we can enter the scripting 

code after “name=” and still get the script executed 

in the website [1].  In a real world situation in 

which a user would have to log on to a website with 

their credentials, one of the severe consequences or 

dangers with the information showed on the alert 

box is that we could have entered the URL and 

used the cookie to enter a session from an already 



logged on user [1]. Now, we will need to go to the 

xss stored tab on the left menu to proceed to the 

next step shown on the following screenshot. We 

will be presented with two text-box asking us to 

enter our name and a message. Figure 4 displays 

information from the first and the second user after 

signing in respectively. 

 

 

 

 

 

 

 

 

Figure 4 

First and Second User Signs at Guestbook Respectively 

In this situation, the information gets stored on 

the website and every time a user visits this 

website, will be presented with figure 4. In the next 

step, we will enter a javascript code and it will get 

stored in the website by the attacker on the message 

text-box. The injected script will be: <script>alert(1 

+ “st stored XSS”);</script>. 

 
Figure 5 

Stored XSS Executing 

After navigating the menu and coming back to 

the XSS stored tab again; we found that a victim 

entered a message and the stored XSS has executed 

again and this time it has taken a victim by surprise. 

 

 

 

 

 

 

Figure 6 

Stored XSS Executing before Last User 

In this step, the script executed before the 

victim #1 message appeared. This kind of XSS 

(stored xss) gets more victims more easily, since a 

lot of people enters the website. Stored XSS is 

more dangerous because it affects more clients 

every time the website is visited or reloaded; 

specially when it is a famous one like facebook, 

google+, etc where anyone can submit a public 

message for everyone to read. 

Preventive Measures or Security Measures 

(Defenses) 

Browsing on the internet can have its 

advantages, but can also bring disadvantages (from 

a security's viewpoint). Security measures in order 

to avoid the execution of scripts from websites you 

don't trust can be the use of the Noscript plugin, an 

extension from Firefox or Ice weasel, both from 

mozilla. Noscript can set permanent, temporal or 

partially permissions of a certain website in order to 

block or allow scripts to execute on your browser 

only if you are in a trusted website [5]. Filtering 

inputs can also be used to prevent XSS, but they 

have to be set only at programming level. This 

means that the programmer needs to be cautious in 

the way he/she codes the website. For example, the 

use of the htmlspecialchars(), htmlentities() or 

httponly() functions are a good practice that can 

help prevent most of the scripts by sanitizing every 

input. Figure 7, shows the code from the xss 

reflected at low security. Here we can see at code 

level that the text-box accepts any kind of input 

without sanitizing it; which allows javascript code 

to be executed. 

 

 

 

 

 

 

 
 

Figure 7 

Php Low Level Security XSS Source Code 



In figure 8, we can observe the code at medium 

security. The difference is that it replaces the 

“<script>” word by an empty string, but the 

problem is that if we use a “URL encoding 

calculator” [6] for filter evasion at 

“http://ha.ckers.org/xsscalc.html” we can evade 

filtering and execute the scripts effectively. 

Although, if we use 

“<ScRipT>alert(“xss”);</script> we have already 

evade the medium security level. 

 

 

 

 

 

 

Figure 8 

Php Medium Level Security XSS Source Code 

At high security level is a little difficult to 

execute the script, since the htmlspecialchars() 

function changes every special character needed to 

perform the script like: <, >, &, ', “; to another 

value, preventing scripting code to execute [5]. 

Also, a cross site scripting calculator was used to 

try to avoid the filtering function of 

htmlspecialchars(), resulting in a failed attempt, 

hence sanitizing the input. Escaping these special 

characters allowed input sanitation [7]. 

 

 

 

 

 

 

Figure 9 

Php High Level Security XSS Source Code 

TYPE OF ATTACK: SQL INJECTION 

(SQLI) 

What is SQLi?  SQL (Structured Query 

Language) is a standard language for accessing 

databases [3]; it is used to access and manipulate 

data in databases. A database is where detailed 

information is stored in the forms of a table as 

records. Stored information is usually users data 

like: peoples name, social security number, credit 

cards, addresses, phone number, etc. furthermore, 

information can also be for example: auto parts 

details, patients information, store inventory 

records, game records, etc. SQL normally executes 

commands like update, insert, delete. SQLi (SQL 

Injection) is one of the most common 

vulnerabilities in the world today, having its place 

in the top ten network vulnerabilities as stated by 

OWASP. SQLi happens when SQL commands are 

executed in order to modify the normal processes or 

behaviors affecting the way the database works [5]. 

These injections are normally made through an 

input textbox from a web page, web application or 

other input method where the commands are 

accepted and executed changing the expressions 

sent to the database, thus compromising the 

security of the web application [1] [8]. This way, an 

attacker has the ability to bypass the security 

settings and obtain unauthorized information from 

the SQL server. As from this, the attacker can 

obtain information from accounts for example: 

usernames and passwords, credit card information, 

etc. thus, impersonating somebody else. The 

attacker can also delete data, update data, and even 

insert new data to the database changing it without 

administrator knowledge. In this project, I will 

demonstrate a real world scenario on the SQLi 

attack demonstrating some techniques used by 

attackers. “Two general types of SQL injection are 

standard (also called error-based) and blind. Error-

based SQL injection is exploited based on error 

messages returned from the application when 

invalid information is input into the system. Blind 

SQL injection happens when error messages are 

disabled, requiring the hacker or automated tool to 

guess what the database is returning and how it’s 

responding to injection attacks” [4]. 

Tools Needed 

Instruments needed on this scenario are: 

1. Damn Vulnerable Web App (DVWA) [3] 

2. Can include one of the followings: sqlmap 

(from kali), Burp Suite (from kali with GUI), 



sqlninja (from kali), Acunetix (GUI) and/or 

SQL knowledge, bbqsql (from kali), sqlsus 

(from kali), jsql (from kali with GUI), OWASP 

ZAP (from kali with GUI), also known as 

ZED, Tamper data (with GUI), WebInspect 

from HP [5]. 

Setting Up the Lab 

Framework: Damn Vulnerable Web App 

(DVWA) Damn Vulnerable Web App is a safe 

framework used for learning purposes. This 

program will be used to practice SQLi 

vulnerabilities. I will be using this program on the 

project to test SQLi vulnerabilities in a safe 

environment [3]. We begin by downloading and 

installing the DVWA from www.dvwa.co.uk/ 

follow instructions on the website for installation. 

After setting up DVWA, we will need to start the 

apache and mysql service in order to be able to 

connect to DVWA at 

http://127.0.0.1/dvwa/login.php and proceed to the 

SQLi lab. After setting up the DVWA, we begin by 

starting the apache service. Open the terminal in 

kali and enter the following command: “service 

apache2 start” and press enter. Then, enter the 

following command: “service mysql start” and 

press enter. Figure 10 shows these commands 

executed. 

 

 

 

 

 

 

Figure 10 
Starting the Apache Service and Mysql Service 

After, starting the services we are now able to 

use the DVWA framework to begin executing SQL 

injections attack scenarios. 

Attack Scenario 

During this scenario we will be presented with 

the DVWA home page. In order to start, we will 

need to change the security settings on the DVWA 

security tab on the left menu to low security and 

submit. Now, we will need to go to the SQL 

Injection tab on the left menu to proceed to the next 

step shown on figure 11, which asks for an ID 

number. We will enter an ID as a normal user 

would do in order to see the normal operation of the 

web application. A normal user will enter the 

number 1 and click submit. 

 

 

 

 

Figure 11 

User with Number ID 1 

We can observe the normal behavior of the 

web application by submitting ID numbers into the 

text box; the program works normally. The 

program receives the ID number as an input and it 

returns the ID entered, the first name and surname 

of the user with that ID number as an output, as 

shown on the images above. The web application 

clearly verifies if the database server has such ID in 

the system. If such ID exists in the database, two 

outputs will be showed, the first name and surname 

for that particular ID. Now, instead of entering only 

a number, I will enter a single quote after a number 

to see what happens. Single quotes are used in the 

SQL programming language. The following code: 

1' will be introduced which will try to change the 

normal behavior and cause an error. I will take 

advantage of the errors in order to inject SQL 

queries. The error shown was: “You have an error 

in your SQL syntax; check the manual that 

corresponds to your MYSQL server version for the 

right syntax to use near ‘’5’’at line 1”. From this 

error, we can find out what type of database server 

it is running [1]. We notice that it is running a 

“mysql” database server. We can also notice that 

the error is telling us that it is a programming error, 

which means, the attacker can fix the error adding 

some malicious code in order to satisfy the use of 

the correct syntax on the mysql database server and 

therefore causing unwanted behaviors [4] [1]. This 

information is very important because an attacker 

can access information on the database through that 



error and find out what sentence structure or syntax 

to use when trying to communicate to a “mysql” 

database server. Knowing that an error was found, I 

will take advantage of this to add code in order to 

get more information from the database. The next 

code will be added: 5’ UNION SELECT 1, 2#. 

 

 

 

Figure 12 

Attack Showing Two Separate Outputs 

First, two SELECT statements were made, 

since the result is only showing two output 

statements: the first name and the surname. We can 

test this by entering the code: 5' ORDER BY 2#. In 

this way we can learn how many columns there are. 

For example, if we enter the code: 5' ORDER BY 

2# and the web application accepts the code 

(meaning that no errors were given), we now know 

that it accepts two columns. By adding one to the 

code: ORDER BY n+1 and executing it we will 

know the number of columns (meaning the number 

of parameters the SELECT statement needs in order 

to execute the commands). Everything after the 

pound symbol will be commented to execute our 

code successfully. This will depend on how the 

database is programmed and what type of database 

is used. To prove the number of columns the 

SELECT statement will accept, I will now test the 

following code: 5' ORDER BY 2#. 

 

 

 

 

Figure 13 

Determining the Number of Columns 

We proved that there are at least two columns. 

The code: 5' ORDER BY 1# was also tested and the 

same result was obtained.  Now I will test the 

following code: 5' ORDER BY 3#. 

 

Figure 14 

Order Clause Error 

At this moment, we can see that there are only 

two columns. The SELECT statement will only 

accept two parameters in order to proceed. 

However, the code: 5' ORDER BY 1# didn't 

returned any errors at all, but the SELECT 

statement shows an error only if one parameter is 

used at once. For example the code: 5' UNION 

SELECT 1# will not work. To make it work, we 

can instead use the following code: 5' UNION 

SELECT 1, NULL#. Having entered two 

parameters in the SELECT statement the code will 

now work. Notice that in this situation, the 

SELECT statement needs two parameters. 

Remember that earlier we entered the following 

code: 5' UNION SELECT 1, 2# and as a result we 

observed that our code was executed last (in the 

second output). This means, the web application is 

executing first the part of the code that ends with 

the single quote which is: 5' and then it executes the 

part of the code that is after the single quote as we 

saw earlier in the picture “attack showing two 

separate outputs”. This means that it is not 

necessary to enter a number before the single quote 

to get our code executed. To test this, I will enter 

the following code: ' UNION SELECT 1, 2#. 

 
Figure 15 

Displays Only the Wanted Output 

At this moment, we have achieved getting to 

display our desired output only. To continue getting 

more information about our database I will now 

execute the following code: ' UNION SELECT 

database(), version()#. 

 

 

 

 

Figure 16 

Querying Database Name and Version 

With the last code entered we got the database 

name showed in the first name output and the 

version displayed in the surname output. The 



version tells us if the database is up to date. A 

possible question that could probably come into a 

hackers mind can be: what vulnerabilities this 

mysql version has?... The attacker could ask google 

and find some interesting information in order to 

look for weaknesses and therefore, other methods 

of attack. We will now look for the database user 

using the following code: ' UNION SELECT null, 

user()#. 

 

 

 

Figure 17 

Querying the User 

With the code successfully executed, we were 

able to obtain the user logged on the database. In 

the next step, I will try to look for the location of 

the usernames and passwords searching through the 

database tables. The following query will be used to 

look for tables on the database: ' UNION SELECT 

null, table_name from information_schema.tables#. 

This will likely display a long list of tables, since 

the information_schema is a standard that shows 

metadata information from all the tables, 

procedures, and columns from the database [3]; 

sometime will be spent trying to locate the table 

that contains the information that we are looking 

for. We have obtained a long lists of tables. Now 

we proceed to look and inspect for a table that will 

most likely have the information that we are 

looking for. Additionally, we can narrow the list if 

we use the code “where” as a conditional statement 

in order to avoid displaying non important tables. 

The following code will make this possible in this 

situation: ' UNION SELECT null, table_name from 

information_schema.tables where 

table_schema!='mysql' AND table_schema!= 

'information_schema'#.  

 
Figure 18 

Information Schema 

While observing throughout the list we can see 

a table named users, which is probably where the 

usernames and passwords are stored. In the next 

step, I will search the columns from the users table 

to show the contents and look for relevant 

information. The following code will search for the 

columns inside the users table: ' UNION SELECT 

table_name, column_name from 

information_schema.columns where 

table_name='users'#. 
 

 
Figure 19 

Columns from the Users Table 

The last code entered is showing the all the 

columns inside the users table and from here we are 

able to observe the information we seek. At this 

moment, and in this particular situation, we can be 

certain that the users table is the one holding the 

usernames and passwords information. Since, we 

already know the location of the users information 

we will proceed to the last step. Finally, the 

following code will show the usernames and 

passwords from the users of the database: ' UNION 



SELECT user, password from users#. In order to 

illustrate more information and be able to organize 

it, we will use the following code instead: ' UNION 

SELECT first_name, concat(concat(last_name, 

0x0a, user), 0x0a, password) from users#. 

 
Figure 20 

Usernames and Passwords Shown with a Query 

The information shown in the above picture, 

displays the information from every user in the 

following order: first name, last name, username 

and the password hash obtained from the vulnerable 

database. In this particular case, the password is 

encrypted. We are only able to see the password 

hash. Decryption will be needed in order to 

discover the real password from the user. This 

means that the password is still protected and is not 

visible to the attacker. 

Preventive Measures or Security Measures 

(Defenses) 

For several years SQL injection has been in the 

OWASP (Open Web Application Security Project) 

top ten list like the cross-site scripting, since it is 

considered a highly critical risk of security that 

leads to information leakage mostly from a 

company server that contains sensitive data about 

users. Data from users are usually credit card 

information, social security number, secret 

questions, addresses, phone number, ect. SQL 

injection attacks will exists whenever a user is 

exposed to interact with web application inputs. 

Therefore, whenever there's a text box requesting 

input from a user, instead of inserting the 

computer's requested data, a user enters malicious 

code in which the database can interpret as part of a 

normal parameter and execute the query causing 

side effects and a change in the normal behavior. In 

order to prevent most of the vulnerabilities, input 

sanitation is needed much like the cross site 

scripting vulnerability. Additionally, the developers 

need to have in mind the security when 

programming a web application. Web app firewalls 

can also help prevent most SQL injections, but 

nevertheless, attackers can sometimes find ways 

when changing the queries injected. Figure 21 

shows the code from the SQL injection at low 

security level. Here we can see at code level that 

the text-box accepts any kind of input without 

sanitizing it; which allows SQL injection to be 

executed. 

 
Figure 21 

PHP Code at Low Level Security 

In figure 22, we can visualize the code at 

medium security level. In this part, the difference in 

the code is that it adds the function: 

“mysql_real_escape_string($id);” which prepends 

the backslash (\) symbol into the special characters 

used in SQL. This function has the goal of 

prepending the backslash symbol into these values: 

“\x00, \n, \r, \, ', " and \x1a”. Here the developer is 

trying to sanitize the input, but the problem is that if 

we use a SQL calculator for filter evasion at 

“http://ha.ckers.org/sqlinjection/” we can evade 

filtering and continue executing SQL injection 

effectively. Now, by looking at the code and some 

trial and error we can see that we can execute some 

code without using the SQL calculator. By 

executing the following code: “TRUE UNION 

SELECT first_name, concat(concat(last_name, 



0x0a, user), 0x0a, password) FROM users” I was 

able to obtain the usernames and passwords; so 

once again, we have successfully evaded the 

medium security level. In figure 23, we can observe 

the code is at high level security. This part adds two 

more line of code compared from the medium level 

security code. The difference in the code is that it 

adds the function: stripslashes($id); before the 

function: mysql_real_escape_string($id); and it also 

checks is the value entered is numeric with an “if” 

statement as follows: if(is_numeric($id)){... more 

code …}. At this level of security is a little difficult 

to execute the SQL injection attacks, since the 

added functions: stripslashes($id); and 

“is_numeric($id)” in this particular case has 

sanitized the input by validating that only numeric 

values are entered as it should be. The function: 

is_numeric() works in this particular case, but most 

of the time in real cases, the information needed are 

letters and symbols mixed with values. 

 
Figure 22 

PHP Code at Medium Level Security 

 

Figure 23 

PHP Code at High Level Security 

CONCLUSION 

Learning that SQL injection and cross site 

scripting has been in the top ten malicious attacks 

in the Open Web Application Security Project 

(OWASP) for several years, it is clear that SQL 

injection and cross site scripting are a high level 

security threat being remotely exploitable, very 

popular and easy to employ just like the cross site 

scripting threat [3] [5]. Furthermore, we saw that 

sometimes errors can expose sensitive application 

data and give us a hint, in order to correct errors 

that will allow us to carry on an attack [1] [4]. 

Developers should be very cautious when 

programming, since failure to sanitize inputs, 

whether, it accepts numbers only as seen in this 

project, letters only or a combination of letters, 

numbers and even symbols too, the method for 

sanitizing will vary, since the function used in this 

project for the SQL injection to completely sanitize 

the input was to prevent the use of any character 

different from numbers which is not the case for 

most of the inputs [5]. In the case of using a content 

management system (CMS), updating the CMS and 

databases can help prevent cross site scripting and 

SQL injections [8]; as was the case for Drupal 

content management system for SQL injections 

described in their website: 

“https://www.drupal.org/PSA-2014-003” by their 

security team as “highly critical”. Using the 

OWASP cheat sheet and developers training can 

help programmers to code secure projects and help 

mitigate future attacks, thus securing highly critical 

data. In the end, “the best way to prevent SQL 

injection and other injection attacks is to perform 

input validation and to use parameterized SQL 

queries or parameterized stored procedures. Input 

validation should be performed to ensure that 

usernames do not contain invalid characters. HTML 

tag characters, whitespace, and special characters 

such as !, $, %, and so forth, should be prohibited 

when possible” [1] [5] [9] [10]. 



REFERENCES 

[1] Scambray, J., et al., “Input Injection Attacks”, Hacking 

Exposed Web Applications 3: Web Application Security 

Secrets and Solutions, 3rd Ed., New York: McGraw-Hill, 

2011, pp 233-251, 260-263. 

[2] Dhanjani, N., et al., “Inside-Out Attacks: The Attacker Is 

the Insider”, Hacking: The Next Generation, 1st Ed., 

Beijing: O'Reilly, 2009, pp. 25-48. 

[3] Harper, A., et al., “Web Application Security 

Vulnerabilities”, Gray Hat Hacking the Ethical Hacker's 

Handbook, 3rd Ed., New York: McGraw-Hill, 2011, pp 

361-378. 

[4] Beaver, K., “Websites and Applications”, Hacking for 

Dummies, 4th Ed., Hoboken, New Jersey: John Wiley & 

Sons, 2013, pp 277-294, 300-304. 

[5] McClure, S., et al., “Web Hacking”, Hacking Exposed 6 

Network Security Secrets & Solutions, 6th Ed., New York: 

McGraw-Hill, 2009, pp 558-576. 

[6] XSS Filter Evasion Cheat Sheet [Online], (September 13, 

2014). Available: https://www.owasp.org/index.php/ 

XSS_Filter_Evasion_Cheat_Sheet#Tests. 

[7]  XSS (Cross Site Scripting) Prevention Cheat Sheet 

[Online], (April 12, 2014). Available: 

https://www.owasp.org/index.php/XSS_(Cross_Site_Script

ing) _Prevention_Cheat_Sheet.    

[8] Beaver, K., “Databases and Storage Systems”, Hacking for 

Dummies, 4th Ed., Hoboken, New Jersey: John Wiley & 

Sons, 2013, pp 305-311. 

[9] Scambray, J., et al., “Attacking Web Authentication”, 

Hacking Exposed Web Applications 3: Web Application 

Security Secrets and Solutions, 3rd Ed., New York: 

McGraw-Hill, 2011, pp 137-143. 

[10] SQL Injection Prevention Cheat Sheet (June 7, 2014).  

[Online]. Available: https://www.owasp.org/index.php/ 

SQL_Injection_Prevention_Cheat_Sheet.   

 

 

 

 

https://www.owasp.org/index.php/%20XSS_Filter_Evasion_Cheat_Sheet#Tests
https://www.owasp.org/index.php/%20XSS_Filter_Evasion_Cheat_Sheet#Tests
https://www.owasp.org/index.php/%20SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/%20SQL_Injection_Prevention_Cheat_Sheet

