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Abstract  Spring isolators systems are commonly 

used in a variety of ways in today’s construction 

industry.  They are an essential part of the design of 

many mechanical systems that are in need of 

absorbing and dissipating unwanted vibrations.  In 

the construction industry, vibration isolation 

systems have been installed without completely 

understanding how these systems are selected.  The 

goal of this paper is to create a tool that will make 

the selection process easier for designers and 

installers.  A Matlab© [1, 4] computer program 

will be created to give graphical models of the 

steady state vibrating motion of an Air Handling 

Unit (AHU) with a selected vibration isolation 

system.  The program will be able to simulate any 

model with the phenomena of a vibrating rigid body 

on a resilient supported element which will be 

caused by a vibratory force, or moment, that is 

generated within the body, creating unbalance. 

This program will also be able to calculate the 

natural frequencies of the mode in order to make 

sure that it will not cause the model to fall under 

the unwanted effect of resonance that will 

eventually cause our model and its supports to fail. 

Key Terms  Isolators, Natural Frequency, 

Resonance, Vibration Isolation. 

VIBRATION AND FREE RESPONSE 

The physical explanation of the phenomena of 

vibration concerns with the interplay between 

potential energy and kinetic energy [2].  The degree 

of freedom of a system is the minimum number of 

displacement coordinates needed to represent the 

position of the system’s mass at any instant of time 

[2].  Since we are dealing with a 3D system, our 

model contains 6 degrees of freedom. Free response 

refers to analyzing the vibration of a system 

resulting from a nonzero initial displacement and/or 

velocity of the system with no external force or 

moment applied [2]. 

For a mass and spring combination the 

equation of the force that is applied to the spring 

( ) in order to move the mass is lineally related to 

the compressed distance.  For displacement in the x 

direction, 

                                                                 (1) 

where  is the spring stiffness and  is the 

displacement of the mass in the  direction.  A 

spring of stiffness  will store the amount  

as potential energy.  

In the case of a mass and spring combination 

moving on a frictionless surface in a horizontal 

orientation and considering all the forces acting 

along the x-direction yields to, 

          (2) 

where is the second derivative of the 

displacement with respect to time. 

The solution this periodic motion based on 

physical observation and experience from watching 

this mass and spring system is, 

                                       (3) 

where  is the amplitude of the displacement,  is 

the angular natural frequency which determines the 

interval in time during which the function repeats 

itself, and  is the phase which determines the 

initial value of the sine function [2].  Referring to 

this paper, time  will be measured in seconds (s), 

the phase in radians (rad) and the angular 

frequency, , in radians per seconds (rad/s) which 

is calculated with the physical properties of the of 

the mass ( ) and spring stiffness ( ), 



                                   (4) 

The frequency measures in hertz (Hz) or cycles 

per seconds (cycles/s) is calculated by, 

                                                                  (5) 

By differentiating the equation (3) yields to the 

velocity which is given by, 

                                   (6) 

differentiating once again yields to the acceleration 

that is given by, 

                              (7) 

The constants of integration, A and , need to 

be evaluated with the initial state of motion of 

system.  At time equal to zero (t = 0), , the mass 

is displaced a distance  and the initial velocity is 

.  Substituting the initial conditions into the 

equations of motion yields to, 

         (8) 

   

(9) 

VISCOUS DAMPING 

Real tests and observations do suggest that the 

spring-and-mass model equations have to be 

modified in order to account for the decaying 

motion that occurs in real life.  By adding a term to 

the equation of motion in the form of, 

                                                          (11) 

where  is called the damping coefficient with units 

of force per velocity.  

By making a force balance on the mass, the 

equation of motion in the x-direction  yields to, 

                             (11) 

In order to solve Equation (11) a particular 

solution in the form of  is chosen.  

Substituting this solution into the equation of 

motion gives, 

                                  (12) 

since  cannot be equal to zero, then, 

                                             (13) 

To solve this second order differential 

equation, the quadratic equation is used in which it 

yields to two solutions, 

                            (14) 

Examination of this expression indicates that 

the root  will be real or complex depending on the 

value of the discriminant,  [2].  As long 

as , , and  are positive real numbers,  and 

will be distinct negative real numbers 

if  [2].  If the discriminant is 

negative, the roots will be a complex conjugate pair 

with negative real parts [2].  If the discriminant is 

zero, the two roots  and  are equal negative real 

numbers [2].  For these three cases, the critical 

damping coefficient, , is defined as, 

                                       (15) 

The non-dimensional number  is called the 

damping ratio and is defined as, 

                                      (16) 

ROTATING UNBALANCE 

Common sources of harmful vibrations are 

created by rotating machinery.  Many machines and 

devices have rotating components, usually driven 

by electric components [2].  Some irregularities in 

the distribution of mass in the rotating component 

can cause substantial vibration [2].  This is called 

rotating unbalance [2].  

Pictured on Figure (1), the frequency of 

rotation of the machine is denoted by the , the 

unbalance mass as , and the distance from the 

center of rotation as .  By making a force balance 

in the vertical direction, the free body diagram yield 

to, 



                                            (17) 

and summing the forces, in the vertical direction, 

from the free body diagram of the machine yield to, 

                             (18) 

 Figure 1 

Model of a Machine Causing Support Motion [2] 

 

Combining this two Equations (17) and (18) 

yields to the equation of motion, 

                              (19) 

By setting  and assuming that 

the machine is rotating at a constant frequency, , 

then, 

                                         (20) 

Substituting Equation (20) into Equation (19) 

the equation of motion yields to, 

                (21) 

Using the particular solution in the form of, 

                                   (22) 

where  is the frequency ratio denoted by, 

                                                                 (23) 

the amplitude of the steady state displacement, , 

and the phase angle, , are given by, 

                                     (24) 

                                               (25) 

VIBRATION OF A RESILIENTLY 

SUPPORTED RIGID BODY 

The following sets of equations define the 

motion of a rigid body on linear massless resilient 

supporting elements for various degrees of freedom 

and dynamic excitations.  These six equations are 

solved simultaneously with numerous terms. 

System of Coordinates 

In this paper, will be discussing the phenomena 

of a vibrating rigid body on a resilient supported 

element which is caused by a vibratory force or 

moment that is generated within the body.  The 

motion of the rigid body is referred to a fixed 

“inertial” frame of reference represented by a 

Cartesian coordinate system  [3].  A similar 

system of coordinate  fixed in the body has 

its origin at the center of mass [3].  The 

translational displacements of the center of mass of 

the body are  in the  direction, 

respectively and the rotational displacements of the 

center of mass of the body are characterized by the 

angles of rotation  of the body axes about the 

in the  axes respectively [3].  Therefore, the 

displacement of a point  in the body (with 

coordinated  in the  directions, 

respectively) are the sums of the components of the 

center of mass displacements in the direction of 

 axes plus the tangential components of the 

rotational displacements of the body [3], 

                                       (26) 

                                        (27) 

                                        (28) 

Equations of Small Motion of a Rigid Body 

The equations of motion for the translation of a 

rigid body are given as, 

                                                            (29) 

                                                         (30) 



                                                            (31) 

where  is the mass of the the body, , ,  are 

the sumation of all the forces acting on the body, 

and , ,  are the accelerations of the center of 

mass in the  direction, respectively [3].  The 

equations of motion for the rotation of a rigid body 

are, 

                                  (32) 

                               (33) 

                                (34) 

where  are the rotational accelerations about 

the  axes , ,  are the summation of 

torques acting on a rigid body about the  

axes, respectively, and 

 are the 

moments and products of inertia of the rigid body 

[3].  

Internal Properties of a Rigid Body 

The properties of a rigid body that are 

significant in dynamics and vibration are the mass 

(or center of gravity), the moments of inertia, and 

the direction of the principal inertial axis [3]. 

Mass 

The mass of a body is calculated by integrating 

the product of mass density  and elemental 

volume  over the body [3], 

                                                  (35) 

Center of Mass 

The center of mass (or the center of gravity) is 

the point located by the vector, 

                                             (36) 

where  is the radius vector of the element of 

mass  [3].  The center of mass of the body in a 

Cartesian coordinate system  is located, 

                                    (37) 

                                     (38) 

                                    (39) 

where , ,  are the  coordinates 

of the element volume and  is the mass of the 

body [3]. 

Moment and Product of Inertia 

The moments of inertia and products of inertia 

of a rigid body with respect to the orthogonal axes 

 fixed to the body are, 

                                       (40) 

                                      (41) 

                                       (42) 

                                                  (43) 

                                                   (44) 

                                                   (45) 

where  is the infinitesimal element of mass 

located at the coordinates , and the 

integration is taken over the mass of the body [3].  

Properties of Resilient Supports 

A resilient support is considered to be a three 

dimensional element having two terminals or end 

connections [3].  When the end connections are 

moved one relative to the other in any direction, the 

element resists such motion [3].  Here, the element 

is considered massless, the force that resists relative 

motion across the element is considered to consist 

of a spring force that is directly proportional to the 

relative displacement (deflection across the 

element) and a damping force that is directly 

proportional to the relative velocity (velocity across 

the element) [3].  Such element is defined as a 

resilient support [3].  The principal elastic axes of 

the resilient element are those axes that for which 

the element, when unconstrained, experiences a 



deflection collinear with the direction of the applied 

forces [3]. 

In dynamics, the rigid body sometimes vibrates 

in modes that are coupled by the properties of the 

resilient elements well as their location [3].  If a 

rigid body experiences a static displacement in the 

 direction, of the  axis only, a resilient element 

opposes this motion by exerting a force  on the 

body in the direction of the  axis, where one 

subscript of the spring constant indicates the 

direction of the force exerted by the element and 

the other subscript indicates the direction of the 

deflection [3].  If the  direction is not a principal 

elastic direction of the element and the body 

experiences a static displacement  in the  

direction, the body is acted upon by a force  in 

the  direction if no displacement  is permitted 

[3].  The stiffness has reciprocal properties; 

 [3].  Therefore, the stiffness of a 

resilient element can be represented pictorially by 

the combination of three mutually perpendicular, 

idealized springs oriented along the principal elastic 

directions of the resilient element [3].  Each spring 

has stiffness equal to the principal stiffness 

represented [3]. 

A resilient element is assumed to have 

damping properties such that each spring 

representing a value of principal stiffness is 

paralleled by an idealized viscous damper, each 

damper representing a value of principal damping 

[3].  Hence, coupling through damping exists in a 

manner similar to coupling through stiffness [3].  

Consequently, the viscous damping coefficient  is 

analogous to the spring coefficient ; i.e., the force 

exerted by the damping of the resilient element in 

response to a velocity  is  the direction of the 

 axis and  in the direction of the  axis if  is 

zero [3]. Reciprocity exists; i.e., =  [3]. 

The point of intersection of the principal elastic 

axes of a resilient element is designated as the 

elastic center of the resilient element [3].  The 

elastic center is important since it defines the 

theoretical point location of the resilient element for 

use in the equations of motion of a resiliently 

supported rigid body [3].  For example, the torque 

on the rigid body about the  axis due to a force 

 transmitted by a resilient element in the  

direction is , where  is the  coordinate of 

the elastic center of the resilient element [3]. 

Equations of Motion for a Resiliently Supported 

Rigid Body 

The differential equations of motion for the 

rigid body are given, 

                                                            (46) 

                                                         (47) 

                                                            (48) 

                                  (49) 

                               (50) 

                                (51) 

where the ’s and ’s represent the forces and 

moments acting on the body, either directly or 

through the resilient supporting elements [3].  A 

rigid body at rest with an inertial set of axes  

and a coincident set of axes fixed in the rigid body 

can have both sets of axes passing through the 

center-of-mass [3].  A typical resilient element is 

represented by parallel spring and viscous damper 

combinations arranged respectively parallel with 

  axes [3].  Resilient element can also with its 

principal axes not parallel with  [3]. 

The displacement of the center-of-gravity of 

the body in the  directions is indicated 

by , respectively; and rotation of the rigid 

body about these axes is indicated by , 

respectively [3].  Each resilient element is 

represented by three mutually perpendicular spring-

damper combinations [3].  One end of each such 

combination is attached to the rigid body; the other 

end is considered to be attached to a foundation 

whose corresponding translational displacement is 

defined by  in the  directions, 



respectively, and whose rotational displacement 

about these axes is defined by , respectively 

[3].  The point of attachment of each of the 

idealized resilient elements is located at the 

coordinate distances  of the elastic center 

of the resilient element [3]. 

Consider the rigid body to experience a 

translational displacement  of its center-of-

gravity and no other displacement, and neglect the 

effects of the viscous dampers [3].  The force 

developed by a resilient element has the effect of a 

force  in the  direction, a moment 

 in the  coordinate (about the  

axis), and a moment  in the  

coordinate (about the  axis) [3].  Furthermore, the 

coupling stiffness causes a force   in 

the  direction and a force   in the  

direction [3].  These forces have the moments 

  in the  coordinate; 

 in the  coordinate; 

 in the  coordinate; and 

 in the  coordinate [3].  By 

considering in a similar manner the forces and 

moments developed by a resilient element for 

successive displacements of the rigid body in the 

three translational and three rotational coordinates, 

and summing over the number of resilient elements, 

the equations of motion are written as follows [3]. 
 

 

(52) 

 

(53) 

 

(54) 



 

(55) 

 

(56) 

 

(57) 

where the moment and product of inertia are 

defined by,  

                                       (58) 

                                      (59) 

                                       (60) 

                                                  (61) 

                                                  (62) 

                                                  (63) 

the damping coefficient are defined by, 

                       (64) 

                       (65) 

                        (66) 

           (67) 

                

(68) 

            (69) 

the stiffness coefficient are defined by, 

                     (70) 

                     (71) 

                      (72) 



           

    (73) 

          (74) 

          (75) 

where  is the cosine angle between the principal 

elastic axes of the resilient supporting elements and 

the coordinate’s axes [3]. 

MODAL ANALYSIS OF THE FORCED 

RESPONSE RESULTS 

The force response of a multiple degree of 

freedom system can be calculated by using modal 

analysis.  The equation of motion takes the form, 

   

(76) 

where  is the mass matrix,  is the damping 

matrix and  is the stiffness matrix,  is identity 

matrix.  The modal analysis uses transformation to 

reduce the equation of motion to decoupled modal 

equations then they are solves for the individual 

force response in the modal coordinate system, and 

then they are transformed back to the physical 

coordinates system. 

In order to solve these equations the modal 

analysis method was used.  First the matrix of 

eigenvectors  was calculated to decouple the 

equations of vibrations into six separate equations. 

The matrices  and  are used to transformed 

the vibration problem between two different 

coordinate systems.  These procedures is called 

modal analysis, because the transformation 

, is called the matrix of mode shapes 

where each column is a mode shape vector, often 

called the modal matrix is related to the mode 

shapes of the vibrating systems.  The matrix 

 is called the mass-normalized 

stiffness, and  mass-normalized 

damping matrix.  

By letting , and multiplying 

the  term of Equation (76) by  yields to, 

   (77) 

Then, let , where  is the matrix 

of eigenvectors of .  By multiplying this equation 

by   yields to, 

 

(78) 

The decoupled modal equation takes the form 

of, 

                     (79) 

The solution is then calculated by 

multiplying .  The same procedure is 

performed with , , , ,  for our 

6 degree-of-freedom system. 

SIMULATION PROGRAM AND RESULTS 

As previously mentioned, the purpose of this 

project was to create a Matlab© [4] program that 

could generate the vibration motion and properties 

of any AHU that is to be design before it is 

installed.  A Matlab© [4] program was created and 

its results were validated with a more sophisticates 

simulation program.  For this project, ANSYS 

Workbench© R15 [5] was selected for such a task. 

Two sets of springs were selected for in order 

to validate the program results.  For the first 

simulation run, a set of four (4) Blue springs  with a 

stiffness constant of 46 lb/in. where installed and 

for the second run a set of four (4) Brown springs 

with a stiffness constant of 133 lb/in were installed 

in the model in order to compare their results.  A 

sample of both sets of springs is showed on Figure 

(2).  Both of these springs have a height of 2.75 

inches and an outside diameter of 2.0 inches. 



For the Blue spring simulation, a motor speed 

of 600 RPM was selected.  The displacement versus 

time response for the Blue springs using the 

Matlab© [4] program is shown in Figure (3a) which 

generated a displacement amplitude of 0.04546 

inches.  The moments generated on the simulated 

model obtained in the Matlab© [4] program are 

shown on Figure (3b).  The amplitude versus 

frequency response using the ANSYS Workbench© 

[5] program is shown in Figure (4), which 

generated a displacement amplitude of 0.0476 

inches. Their results are compared on Table (1).   

 

Figure 2 

Blue springs and Brown springs used in the Model. [6] 

Comparing the Matlab© and ANSYS 

Workbench© results with the theoretical results, the 

magnitudes of the displacement distance are very 

similar. The error percentage for ANSYS 

Workbench© is very small compared to the 

Matlab© simulation, although the Matlab© 

simulation errors can be accredited to the decimal 

approximation within the program.  

 
(a) 

 

(b) 

Figure 3 

Displacement versus Time (a) and Moments versus 

Time (b) for the Blue Springs at a Speed of 600 rpm. 

The natural frequency on the Matlab© program 

gave the same result as the theoretical formula.  

With the ANSYS Workbench© program, the error 

is very small which could be attributed to the 

weight approximation of the simulated AHU 

model. 
 

Figure 4 

Frequency Response in the z-Axis for the Blue Springs 

RPM Wr (rad/s) r K (lb/in) DR

600.00 62.83 1.78 46 0.0573

Theory ANSYS %Error MATLAB %Error

Max Amplitude (in) 0.0479 0.0476 0.64 0.04546 5.04

Natural Frequency (rad/s) 35.27 35.08 0.54 35.27 0.00

Blue Springs Results

 
Table 1 

Blue Springs Results. 

For the case of the Brown spring simulation, a 

motor speed of 900 RPM was selected.  The 

displacement versus time response using the 

Matlab© [4] program is shown in Figure (5a) which 

generated a displacement amplitude of 0.04975 



inches.  The moments generated on the simulated 

model obtained in the Matlab© [4] program using 

the Brown springs are shown on Figure (5b).  The 

amplitude versus frequency response using the 

ANSYS Workbench© program is shown in Figure 

(6), which generated a displacement amplitude of 

0.046898 inches. Their results are compared on 

Table (2). 

Once again, comparing the Matlab© [4] and 

ANSYS Workbench© [5] results with the 

theoretical results retrieve very similar results.  The 

error percentage for ANSYS Workbench© [5] and 

the Matlab© [4] program simulation are very 

similar.  The error percentage can be credited to 

decimal approximation in the program.  

(a) 

(b) 

Figure 5 

Displacement versus Time (a) and Moments versus Time (b) 

for the Brown Springs at a Speed of 900 rpm. 

 

Figure 6 

Frequency response in the z-axis for the Brown springs. 

The natural frequency results from the 

Matlab© [4] program gave the same result as the 

theoretical formula once again.  The ANSYS 

Workbench© [5] program results gave a very small 

error when compared with the theoretical formula 

which can be attributed to the weight 

approximation of the simulated AHU model once 

again.  Nevertheless, the Matlab© [4] program gave 

excellent results. 

RPM Wr (rad/s) r K (lb/in) DR

900.00 94.25 1.57 133 0.0890

Theory ANSYS %Error MATLAB %Error

Max Amplitude (in) 0.0473 0.0469 0.83 0.0498 5.20

Natural Frequency (rad/s) 59.97 59.84 0.23 59.97 0.00

Brown Springs Results

 

Table 2 

Brown sSprings Results. 

CONCLUSIONS 

By simulating both, the Blue and Brown spring 

systems using the Matlab© [4] computer program 

and validating their results using the ANSYS 

Workbench© [5] program, we can conclude that the 

Blue springs, at a motor speed of 600 RPM, absorbs 

about the same vibrating energy as does the Brown 

springs at a motor speed of 900 RPM.  By 

simulating the same mass with different spring 

constants, different damping ratios and different 

motor speeds we can conclude that the Matlab© [4] 

program is a useful tool for designers and installers 

to use in the selection of vibration isolators for 

AHU. 

For future work, this program can be expanded 

to simulate more complex models.  It can also be 



used to incorporate industrial size chillers, pumps, 

fans, enthalpy wheels, etc. and any number of 

combination of system that are used in today’s 

HVAC industry. 

ANSYS Workbench© [4] was a great tool to 

use in order to validate the results of the Matlab© 

[4] program. Although, the ANSYS Workbench© 

[5] program is a very useful and expensive tool, the 

same results can be obtained using a least 

expensive computer program such as Matlab© [4] 

which can give very similar results to the end user.  

This program can be used to predict the behavior 

and properties of any designed model before the 

actual and final AHU is built and installed saving 

time, energy, and most important, money.  
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