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Abstract  This research proposes a system that 
uses an open speech command and translates it into 
a Positive, Negative, or Neutral decision. An 
ordinary voice command targeted to an object is 
generally composed of two parts: the object 
identification, and the desired instruction to execute 
from it. Using this structure, several voice features 
could be analyzed such as pitch, intensity, 
formants, among other statistical characteristics to 
recognize if a pattern exists. For this research, the 
“object” segment was ideally converted to text 
using existing speech-to-text tools; on the other 
hand, the “instruction” segment was ideally 
processed by applying a Naïve Bayes Classifier to 
classify instructions as Positive, Negative, or 
Neutral with up to 72% accuracy. This idea could 
be used in external systems for people with special-
needs, among other yet unimagined applications. 
The system will enable improved natural 
interaction between humans and computers by 
using a basic but effective open communication.  

Key Terms  Command, Decision, Language, 
Translator 

INTRODUCTION 

The objective of this research is to design and 
propose a system that uses a flexible and open 
speech command as input, analyze its emotions and 
characteristics, and execute an output of a desired 
signal for the use of other existing external systems, 
based on the research results published in [1]. The 
criteria or parameter to decide what type of output 
to execute is determined on the emotion prosodic 
and acoustic features of the instruction signal 
segment. The extracted characteristics will ideally 
indicate if the instruction of an input command is 
naturally classified as a positive, negative, or 

neutral instruction. With this information, the 
system will declare and select a predefined output 
according to the decision made. 

There are several theoretical emotion classifier 
systems that exist, however their operation with 
natural speech commands has always been a 
challenge since individual emotion classification is 
not yet a concrete science, even for humans [2]. 
This article will explain what techniques could be 
implemented, according to the research performed, 
in the design of the Open Speech Command 
Translator (OSCT) System, and will also explain 
and decide, what set of features can affect and may 
be determinant, in a Positive, Negative, or Neutral 
decision using a simple Naïve Bayes Classifier. Of 
course, the accuracy of the system will be 
dependable on the effectiveness of the features, 
projection techniques, and training data selected for 
this classifying method. Therefore, the conclusion 
of this investigation will give light to what set of 
features and components should help in the creation 
of an Open Speech Command Translator system. 

BACKGROUND 

The concept of a human communicating a 
command to a living being, which in turn, receives 
an uncertain but yet understandable instruction, and 
using its past experiences, executes an action, is 
something that many pet-owners encounter every 
day. For example, if a dog is on top of the owner’s 
bed and the owner wants to order him out, a speech 
command like “<pet-name>, get down” should 
work on the dog, but also, there are many simple 
derivatives of this command that would work as 
well, like “<pet-name>, please get down now”. 
This is possible since the dog is not literally 
interpreting what the owner is saying but (In a very 



simplistic way) basing its decision on its experience 
using peculiar acoustic characteristics of the 
owner’s voice. This relatively simple processing 
behavior, however, executes the desired action in 
an instant. This same behavior could be used to an 
advantage in scenarios where a basic action is 
required to be executed by a flexible speech 
command, but the processing resources are a 
constraint.  

There are very sophisticated systems that 
convert all the spoken words to text, such as [3], 
records several important characteristics including 
the word’s multiple relationships with other words, 
analyzes connections, and possible sentence 
context, using at the same time complex data 
structures and data mining algorithms, among other 
things, to then finally, make a decision. Clearly, 
this seems like an overshot in scenarios where, for 
example, you just need to make a special device 
active or not depending on a flexible speech 
command input. Other similar systems don’t rely in 
using speech-to-text technology, but in turn rely in 
voice signal characteristics, statistic features, and 
algorithms [4]; a concept which is similar to the 
OSCT, with the exception that these systems have 
multiple emotional classes as output and require 
more training resources. This type of emotion 
classifier is probably more thorough on its speech 
analysis since it needs to provide multiple emotion 
classes as output. However, in many cases this 
amount of computational resources is not an option 
for the special scenarios previously discussed. 

INITIAL RESEARCH 

There are certain systems that are by default 
designed for very specific uses: Lifts, alarms, 
sensors, triggers, doors, lights, etc.; which come 
with a limited number of actions, in this case, 3 
possible actions (“Do something”, “Do the 
opposite”, “Do nothing”). For this research, these 
will be the target applications for designing the 
OSCT system.  

 

As the basis for my investigation, there are 
several sources that provide different experimented 
strategies to recognize patterns and use special 
features for describing basic emotions on a speech 
signal [1][4][5][6]. With the techniques described 
by Mohammed E. Hoque, et al. [1] in their 
research, and the high accuracy rates reached by 
these techniques, an efficient and accurate OSCT 
system can be built for “Translating” specific 
speech command signals to positive, negative, and 
neutral output decisions.  The specific features that 
the OSCT system will incorporate will be described 
later on this article.  

As part of the initial preparation to begin this 
research, multiple test-case speech commands were 
recorded from an external and unbiased person 
(Gender: female). This was done in order to build a 
corpus to calculate features from, which could feed 
a training data matrix for the classifier. These 
recordings were performed with Spanish commands 
in a relaxed environment with relative low-noise 
conditions. The commands were each recorded into 
a “.wav” file using a single channel input, a 
sampling rate of 8000Hz, and a sample format of 
16-bit per sample PCM (Pulse Code Modulation) 
[7][8].  

After analyzing the exact time interval that 
took each of the voice commands to complete, the 
commands were observed to be completed naturally 
in approximately 3 seconds or less (See Figure 1 to 
Figure 4). Using this observation, the time length 
for the input commands will be established to 4 
seconds, as part of one of the OSCT system’s rule. 
The voice command clips will be programmatically 
trimmed at the end of the 4 seconds to safely record 
the wanted voice command and limit the ending 
silences on the signal. Given this time length and 
sampling rate (8000Hz), the input discrete signals 
will have an exact total of 32,000 samples 
describing the signal. This duration (4 seconds) will 
be selected as a standard length for the input 
command signal.  

As for the content in the input voice command 
simulations, the examined user was only informed 
to execute speech commands directed to several 



particular objects, and devices that could 
theoretically listen to these commands, and no 
further detail of the investigation or its goal was 
explained to the test subject. This was done to 
create natural unbiased samples of different speech 
commands targeted to particular objects. A 
“Positive” command was recorded to stimulate an 
active reaction on objects such as windows, doors, 
gates, bathroom, house, alarms, and also possible 
domestic appliances like coffee-maker, refrigerator, 
stove, lights, and among several others. Also, a 
variety of opposite commands aimed to execute an 
off/deactivate related action were recorded to 
simulate what the output of the “Negative” decision 
could be. 

After visually analyzing the different signal 
plots, two prominent characteristics were observed 
among all speech command tests. The speech 
commands were composed generally by two 
segments, the “object’s identification” segment and 
a variable “instruction” segment. Also, the pause 
between the <object name> and the <instruction> 
segment was the longest pause found in the signal. 
This was a predicted behavior which can also be 
observed for a speech command targeted, for 
example, to the dog previously mentioned. A 
person tends to call the pet’s name and pauses 
naturally for a very brief instant (To get his 
attention) before emitting the command. The plots 
in Figure 1, Figure 2, Figure 3, and Figure 4 
illustrate a few speech command examples and 
confirm how this same behavior existed when the 
commands were directed to “listening” objects, and 
devices: 

 

 
Figure 1 

“Ventanas, abran” (Windows, open up) 

 

 
Figure 2 

“Ventanas, cierren” (Windows, close) 
 

 
Figure 3 

“Noticias, actualízame” (News, update me) 
 



 
Figure 4 

“Cafetera, cuélame café” (Coffee-maker, make me some 
coffee) 

 
As can be observed on these plots, a significant 

pause separates the <object name> from the 
<instruction>. This important pause will help to 
determine how to “cut” the signal in the right places 
in order to send the <object name> segment to the 
speech-to-text system, and the <instruction> 
segment to the “Positive, Negative, or Neutral” 
classifier.  In order to detect this special pause and 
distinguish it from the rest, a special Pause Detector 
was designed just for this purpose.  

To implement this special Pause Detector, first, 
the input signal must be segmented into equal-
length time-frames across the signal. Then, the 
average power will be calculated for each frame, 
resulting in a pre-determined number of points 
representing the average power plot of the signal. 
Since the signal is really a discrete signal composed 
of 32,000 samples, to obtain the average power of 
each frame, the following steps were performed; 
For each frame, the squared magnitude of each of 
its samples needed to be obtained (1), to obtain the 
sample’s energy value. These values were then 
added to obtain the frame’s energy sum, ܧ௡ (2), 
where ݇ is the sample instance inside the frame, ݊, 
and ܭ௡ is the total instances in the frame. After 
obtaining ܧ௡, it’s then divided by the time-frame, 
 in order to finally obtain the average power ,ݐ∆
value ܲܽ ೙݃ݒ

 of the frame (3).  

 

The total time for the time-frame is an input 
parameter for the detector and it will define how 
much definition is used for calculating the power 
averages. Located at Figure 5, is a power signal of 
the input signal illustrated in Figure 2. Specifically, 
Figure 5 is using 40ms time-frames, which in 4sec. 
equals to 100 frames or 100 average power data 
points. The plot at Figure 6, displays the physical 
difference of the same signal when the length of the 
time-frame is changed to 10ms, equaling 400 total 
average-power data points. 
 
௞ܧ = 	ܵ௞ଶ	                                                               (1) 
 

௡ܧ =	∑ ௞ܧ
௄೙	
௞ୀଵ                                                        (2) 

 

௔ܲ௩௚೙ =	 ா೙
∆௧

                                                            (3) 

 

 
Figure 5 

40ms Frames, 100 Points Average-Power Data 
 

 
Figure 6 

10ms Frames, 400 Points Average-Power Data 



According to several research sources, such as 
[9], a commonly used time-frame to execute these 
calculations is between 10ms and 20ms, however 
this may vary depending on the application. After 
making several performance tests and 
experimenting with different values, I validated that 
the 10ms time-frame is indeed adequate, and 
therefore selected this time-frame for this research. 
These 10ms time-frames (Or 400 average-power 
data points) will be selected as a standard for all 
tests.  Using these average-power data points we 
can establish a basic, but effective, threshold by 
calculating the straight-average value, ݃ݒܣே೙, from 
this dataset (4) (Where ܰ௡ is the total data points, 
400). After applying this threshold to all the test 
signals, this value was observed to be an excellent 
approximation of the ideal threshold. This is mainly 
due to the fact that the total number of power data 
points of silent noisy frames is significantly greater 
than the total number of data points of actual voiced 
frames; therefore, this straight-average calculation 
is more influenced by these low power values, 
making the threshold nearly ideal for classifying 
pauses.  

 

ே೙݃ݒܣ =	 ଵ
ே೙
∑ ௔ܲ௩௚೙
ே೙
௡ୀଵ                                        (4) 

 
This simple straight-average value was selected 

as a standard threshold for our pause detector 
design. The method selected satisfies the scope for 
this research, however, different threshold selection 
methods can be used to provide even better quality 
to the pause detection. In Figure 7’s illustration, the 
threshold established is plotted over the power 
signal from Figure 6. After selecting the threshold, 
the data points were evaluated in order to determine 
which ones were below this threshold. In order for 
a set of data points to be considered a true pause, 
the pause is required to have a beginning transition, 
where data points crossed the threshold from above, 
and an ending transition, where data points crossed 
the threshold from below. After visually examining 
all significant pause durations on the test signals, 
these were observed to be well below 1 second on 

all instances. This observation was applied into the 
design in order to filter out the significant-pause 
candidates. To be a pause candidate, the maximum 
duration of a true pause must not be more than 1. 
This is done to discard extremely long pauses that 
will, most likely, be unwanted silences or 
accidental noisy data points located at the near end 
of the command (See Figure 1). The longest pause 
among these gathered candidates is the one selected 
officially as the “Significant Pause”. 

 

 
Figure 7 

Threshold Marked over the Average Power Plot of Figure 6 

 
As you can carefully observe in Figure 7, there 

are noise data points located barely above the 
threshold, between the seconds ~2.23 and ~3.19. 
These types of pauses meet all the previously 
mentioned requirements; however, they are, of 
course, not a valid pause. This problem repeated 
itself in some of the test signals, causing the pause 
detector to select incorrectly the significant pause in 
5 out of 20 instances. However, after analyzing the 
real-time frequency spectrum of the original signals 
(Using [10]), it was observed that these silent/noisy 
power values were more concentrated in the low 
frequencies (Figure 8). Due to this observation, a 
Two-point Difference Filter (A high-pass filter) 
[11] was applied (5) to the original discrete signal, 
 in order to obtain the signal with low ,[݇]ݏ
frequency components damped, ݕ[݇], with the 
purpose of improving the pause detection quality. 
 
[݇]ݕ = [݇]ݏ) − ݇]ݏ − 1])/2                                (5) 



 
Figure 8 

Frequency Spectrum without Differential Filter 
 
After running our pause detector, the 

improvement was significant. The previous success 
rate of the Pause Detector before using the filter 
was 75% (5 misdetections out of 20 signals), but 
after applying the high-pass filter (See Figure 9 and 
Figure 10), the success rate of the Pause Detector 
was ~100% (20/20). An example of one of the 
successful detections of the “Significant pause” can 
be observed throughout Figure 11, Figure 12, 
Figure 13, and Figure 14. The filter selected so far 
has proven to provide accurate results; however, 
different filters can be used to provide even better 
quality to the pause detection. For the scope of this 
research, this filter will be the standard choice for 
cleaning these sudden peaks of noise from the input 
signal. With this component, the pause detector has 
been able to handle so far any input command in 
normal room noise conditions and identify the two 
segments being extracted, the object segment 
(Figure 14) and the instruction segment (Figure 15), 
provided that the command has this structure.  

 

 
Figure 9 

Frequency Spectrum after Applying Differential Filter 

 
Figure 10 

Avg. Power vs. Time Plot of Filtered Signal  
 

 
Figure 11 

Significant Pause Detected and Marked in Time by the Pause 
Detector 

 

 
Figure 12 

Significant Pause Detected in Original Input Speech 
Command 

 



 
Figure 13 

“Object Segment” of Input Command in Figure 2 
 

 
Figure 14 

“Instruction Segment” of Input Command in Figure 2 

PROCESSING SEGMENT-STRUCTURE 

The diagram below, at Figure 15, shows how 
the proposed OSCT system’s input structure should 
be processed. This concept diagram defines only 
the most important elements expected in order to 
achieve the system’s basic functioning.  Of course, 
alternative components can be substituted in the 
design depending on the application. As the 
diagram illustrates, the process flow initiates with 
the recording of the input speech command. If a 
corpus of speech commands is already prepared, it 
can also be input into the system. As part of the 
parameters of the initiation, the “Type” of input 
will be required to be specified in order for the 
system to either use the input to train the system or 
perform a real-case execution.   

 

 
Figure 15 

System’s Preparation and Input Parameters 
 
After the command(s) is/are introduced to the 

system, each individual input is then directed to a 
“4 second trimmer”. This element will trim the 
signal time length to 4 seconds, in case the input is 
longer than expected. This trimmed signal will then 
pass through the “Pause Detector” for detecting the 
“Significant Pause” among the signal. The 
information about the location of the significant-
pause will then be sent to the “Segment splitter, 
trimmer, and labeler” who will locate, cut, and 
identify the signal segments; object segment and 
instruction segment. After splitting these segments, 
the process-flow directs these signals towards their 
corresponding processing components (See Figure 
16 and Figure 17). These will begin by analyzing, 
first, the object segment by using special speech 
recognition software which will provide the 
object’s specific textual identification for the 
OSCT. The procedures taking place in the 
following components will be described further. 

 

 
Figure 16 

Object and Instruction Segments are Identified before 
Processing 



 
Figure 17 

Object and Instruction Segments OSCT Components and 
Procedures  

OBJECT TEXTUAL IDENTIFICATION 

Once the “Object” signal segment is set apart, 
the segment is then sent to a Speech-to-Text 
application. This is done obtain a clear textual word 
that will directly identify the corresponding object 
in the system’s registered “Object List”. The 
system’s list will be required to have all the names, 
labels, or nicknames assigned and connected to all 
the entities or devices that receive as input an 
“Activate”, or “Deactivate” type of command. This 
means that any connected object should have a 
unique identifiable name assigned in the system 
before using its operations. Ideally, this 
identification process should take place before the 
“Instruction” segment analysis, in this way the 
analysis operation can take advantage of the 
identity of the object and adapt to this information 
in order to improve the accuracy of the instruction 
classification. 

There are multiple open-source as well as 
proprietary applications that can convert any 
spoken word to text with high accuracy and 
efficiency, such as [3], [12], [13], and [14]. After 
investigating trustworthy, efficient, and commonly 
used open-source applications, CMU Sphinx 
Toolkit [14] was found to be a reliable candidate 
for speech-to-text conversions for the proposed 
system in this research. The CMU Sphinx Toolkit is 

actively used in speech recognition research as 
demonstrated by this list of research publications 
[15]. This toolkit has a variety of packages for 
different tasks and applications, such as the 
“Pocketsphinx” which is written in C, making it 
very useful for implementing on devices [16]. The 
object signal segment can be sent to this speech 
recognition engine which will provide the correct 
textual identification of the object for the OSCT 
system. Once the object is properly identified, the 
instruction signal segment will be analyzed. After 
this process is complete, the system will contact the 
selected object and execute the corresponding 
action depending on the classification of the input 
“Instruction”.  

INSTRUCTION CLASSIFICATION 

There are multiple features that can be 
extracted from a speech signal. After researching 
for the most commonly used features among speech 
analysis publications, the following list of features 
were selected after studying the results obtained 
from [1], which, after implementing and comparing 
different classification techniques, achieved up to 
~83% of accuracy in positive and negative emotion 
classification. These features were also voted as 
reliable in several other emotion classification and 
speech processing publications, including [4], [5], 
[6], [7], [17], [18], and [19]. Following the results 
of [1], the features elected for the system are: 
 Pitch: Minimum, maximum, mean, standard 

deviation, absolute value, quantile, ratio of 
voiced and unvoiced frames 

 Duration: Pause time between two disjoint 
segments of F0 (Or Pitch), and the vertical 
distance between the F0 segments which 
symbolizes voice breaks 

 Intensity: Minimum, maximum, mean, 
standard deviation, quantile 

 Formant: First formant, second formant, third 
formant, fourth formant, fifth formant, 
second/first formant, third/first formant 

 Rhythm: Speaking rate 



In order to maximize the Naïve Bayes 
classification accuracy up to 72.2%, the projection 
techniques, Principal Component Analysis (PCA) 
[20] and Linear Discriminant Analysis (LDA) [21], 
had to be applied. With the combination of these 
techniques we can de-correlate the data redundant 
feature space, and also project them into lower 
dimension. These are then used by the classifier for 
achieving even better classification results. It’s by 
extracting these features and applying these 
techniques that the OSCT system’s instruction 
classifier is expected to achieve an average 
classification accuracy of 72%.  

CONCLUSION 

Today, human-computer interaction is growing 
fast, and many technology experts agree that in the 
near future it will grow faster since past 
technologies are used to create new ones. Due to 
this reality, technology follows a never ending 
exponential trend. Speech command recognition 
systems, such as Smart-Phones voice dial services, 
Nuance’s “Dragon Naturally Speaking”, automated 
Call Centers, among many other ASR’s (Automatic 
Speech Recognition) applications, are nearly a 
glimpse of what awaits for us in human-computer 
“relationship”. It’s toward a more natural direction 
that speech recognition research should be directed, 
and it’s why I am proposing this idea. The idea 
which involves using the OSCT system for 
responding to commands or messages, just as you 
would expect from a primitive intelligence being. 
To reach natural intelligence by simulating, at least, 
its instinct’s listening behaviors, is the goal for the 
ideal OSCT system. The initial proposed design of 
the components is relatively simple in order to 
simulate appropriately the primitive learning 
mechanism of nature. The essence of this idea is to 
follow a natural direction for speech recognition 
evolution, and also establish an essential primitive 
basis for this direction. I believe the correct order 
towards adapting computers into human behavior 
should be adapting computer-into-animal-into-

human, rather than converting computer-to-human 
directly.  

The proposed OSCT system could ideally 
reach an accuracy of up to 72% by using a Naïve 
Bayes Classifier for classifying the instruction 
segment. However, this accuracy could reach 
approximately 80% by choosing other classifying 
methods according to the published investigation.  
Depending on the computational resources and 
constraints, this could make the system even more 
reliable for common every day interactions.  
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