
Revlsta de la

ÎwwewAiclcwl 0ô UeorUca
de Puerto Rico

Publicado semeslratmente por la Universidad Polit^cnica de Puerto Rico para difundir
'os hallazgos de la investigaci6n cientffica que en ella se hace.

I
VOL. 4 Junio 1994 NUM. i.

A utility for Netware: REMOTE

Steven Garcia
Jorge L. Quintero

Candidatos a graduation

Abstract

We used the C language code to develop a utility that allows two or
more workstations connected to the same physical network running the
network operating system Netware to communicate and perform remote
operations. The utility is based on the client-server theory.

1

Garcia y Quintero/A utility for Netware: REMOTE

Sinopsis

Usamos el codigo del lenguaje C para desarrollar un sistema que le
permite a dos estaciones en la misma red fisica que corre el sistema
operativo Netware comunicarse y liacer operaciones remotas. EI sistema se
basa en el concepto de cliente-servidor.

Introduction

In 1982, Superset Software (now known as Novell) developed an
operating system that would give a new meaning to networking,as it was
known at the time, and set a standard that would be imitated by other
companies. Today, that network operating system carries the name Netware,
and has aproximately between 70 and 85% of the market share. Its
popularity is highly based on the fact that it was the first network operating
system to offer true file sharing from a storage unit, protection against
equipment failure (fault tolerance) and against data loss (transaction
tracking). Besides the support that the program offers to network
administrators and users, Netware can to be improved and expanded by
hardware and software developers who want to create their own applications
using tools provided by the Netware software package.

Included in the Netware package is a program that provides the link
between the local operating system and the network operating system. This
program, IPX. COM, provides die IPX (Internetwork Packet Exchange)
protocol. IPX sets the rules and regulations involved in exchanging data
and breaks a message into packets as indicated by the protocol and uses low
level drivers to route the packet to its destination.

IPX is a datagram type protocol, which means that IPX docs not
require stations to establish a connection and allows messages to be
broadcasted and picked up by any station that is listening. This
c laractenstic opens a new field in network communications where two
stations are able to swap files, share peripherals and send screen messages

2

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

to each other. This type of communication, where two workstations are able
to establish a direct communication, is known as peer-to-peer networking.

The REMOTE utility

Traditional networking is known as server-client communication, where
one terminal (the server) services the needs of all the workstations attached
to it (clients). This means that a dedicated workstation is needed to
overlook all network operations. For example, appendix 1 includes the
listing for a sample program called REMOTE. This program will run "as
is" with no need for modifications, but it has no frills. We also included
some suggestions to give the user an idea on how to make the program
more powerful and useful.

REMOTE permits two or more workstations connected to the same
physical network to communicate and perform remote operations. In order
to achieve these communication and remote operations we need first to
designate one station to work as a server and a second station to act as the
client. The server station will receive ail commands and execute them. To
setup the server station, type the following command:

REMOTE server

at the DOS command prompt. This command will cause the station to go
into an infinite loop that will check for incoming messages. To setup the
client station the user must enter the following instruction:

REMOTE command

where command is any executable file with an. EXE,. COM or BAT
extension or any other DOS command. Once the user hits the <RETURN>
key, the command is sent through the network transmission lines and the
station acting as a server listens, picks up the message and then executes the
command.

3

Garc/a y Quintcro/A utility for Netware: REMOTE

Ho»v REMOTE ivories

DFvin-JZ '! eaS'er thC rCader 10 understaild code of die program
REMOTE we have identified sonic sections of this article with reference
numbers within a box that are associated with some portion of the program
code, identified in the same way. We suggest tiiat the reader examine the
program listing in appendix 1 to understand each section.

n — First the program parses the command line checking for an
argument that will either send the station into a constant loop listening for
messages on the transmission lines or cause the program to send a
command onto the network. Once the station is setup, the actual sending
or receiving can take place.

There are three steps involved in the transmission of information from
one station to the next:

Open a socket.

Fill in the necessary fields in the ECB, IPX and message structures.
Initiate die desired listen or send command.

T

Sockets are lines that the programmer chooses to open to send and
to receive messages. To open a socket we have to assign certain values to
die internal registers of the computer and then make a call to the IPX
interrupt entry point (Int 7A) so as to cause the protocol to start the ofien
operation. Into the BX register we assign the value of die desired function
(in this case OPEN, which corresponds to 00H). The AL register will hold
either 00, signaling IPX to maintain the socket open while the program is
running and to automatically close it once the program ends or is canceled,
or FFH, which will hold die socket open until the CLOSE function of the
IPX program is explicitly called (a value of 01H in the BX register).

4

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

After the socket is opened, an error code is returned to the AL register.
If this code has a non-zero value it signals that some type of failure has
occurred during the OPEN function. In some cases we would trap this value
to check for non-critical errors, but in most cases an error would indicate
that the socket is already in use. It is desirable that the socket we choose
for transmission not be in use in order to avoid data loss due to collisions.

The socket number is assigned to the DL register. This number is
totally arbitrary but must not lie between 0000H and 0BB9H or be greater
than 0x8000. These socket values have been reserved for use by the
network operating system. One point to remember is that IPX uses the
socket number in reverse order to the way the CPU does. So, socket
numbers should be provided with the least significant byte first. An easy
convention is to use socket numbers such as 5050H or 3535H. In this way
the low byte and the high byte can be interchanged without altering the
original number.

T

—I The next step is to prepare the structures to be passed on to IPX
as part of the transmission packet. The first of these structures is the event
control block or ECB. The ECB is not actually transferred along with the
packet, but it does contain important information that IPX will use for its
handling. At the same time, the programmer obtains information of the state
of the current IPX operation. The programmer should compliment the
*ESR, socket, imdt_add, frag count, *frag_address and frag_size fields.
These fields are explained as follows:

*ESR This field holds the address of the event service routine, a
sub-routine that is to be executed once IPX completes the
indicated sen-ice (i.e., send or listen). This field should
contain a null value if it is not to be used.

socket This field stores the number of the line "opened" for listening
or sending. The sending and receiving stations must open the

Garcia y Quintero/A utility for Netware: REMOTE

same sockets for effective transmission of the message.

imdtadd The immediate address corresponds to the address of the
closest bridge the message must cross in order to arrive at its
destination. If there is no bridge, the field will cany the
address of the destination station. This information is
obtained through the IPX GET_TARGET function. IPX uses
this field to redirect the message to its destination.

frag count This field contains the integer number of fragments that
compose the entire message packet.

*frag_address and frag_size

These fields hold the address in memory where the fragment
is located and its respective size. The size is calculated as the
total number of bytes occupied by the IPX header and the
message structure. The following line makes this task simple:

sizeof(struct ipx) + sizeof(struct message).

These fields can be held in an array to include a number of
packets.

ThC f°Il0win8 fields are solel>' manipulated by IPX in the following

This field is used internally by IPX for control.

This field contains a flag to indicate the current state of the
last command issued to IPX. IPX maintains die value of this
field different to zero until the event has been completed,
after which it will change it to zero.

vr ay .

*link

in use

6

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

cmpt_code This field will have a value representing the result of the
current operation. Use it in conjunction with the inuse flag
and the ESR subroutine in order to create error trapping
routines.

IPX_wrk and driver_wrk

These two fields are work spaces reserved by IPX for use as
temporary registers.

The next two structures form the actual message fragment. The first
structure is tire IPX header. It contains information about the fragment
(e.g., the source, tire destination and the length of contents).

The IPX HEADER fields have the following meaning:

chksum Originally this field held a value that represented the sum of
the bytes contained in the packet. It is a holdover from the
original Xerox Network Standard protocol and it is not used
because IPX makes its own internal checking. IPX sets this
field to the value FFFFH.

length This field contains the number of bytes contained in the
message structure.

transport-control

This field is used by IPX to control the number of bridges
that the packet is to cross. It is incremented by one each time
it reaches a bridge. The message will not be delivered when
the count reaches 16.

packetjype
This field must contain a value of four (4) to identify the

7

Garcia y Quintero/A utility for Netware: REMOTE

packet of the Packet Exchange Packet type. The use of this
field permits different protocols to coexist on the same
network, each differentiated by tire value of this field. This
field is a holdover fronj the original Xerox Network
Standard, predecessor of IPX.

dest_num, dest_node, dest_socket
These fields serve as the postal address of the receiving node.
A valid value in both the dest_num and dest_node will direct
the packet to a specific station. A value of OH as the
dest num and a value FFFFFFH as the dest_node will
transmit the packet to every station on the same phvsical
network that is listening in on the specified socket.

sour_num, sour_node, sour_socket
These fields serve as the postal address of tire sending node.
It is not necessary to fill in these fields because IPX will do
so.

n
1500 hv ^ v S^UCtUrC 15 mitGd t0 546 bytes ?er fragment, up
filled the necessary ECB or IPX f,elds have bei

ed, the send or listen command can be issued. If you look at tl

isTo need tonfiiiytT W"'"°.tice,tl,at none °f the fields are used. The
no need to fill these fields; this information will be filled out with ti

amv,ng message. However, it is necessary to complement sol of dm EC

sending" ^ T "le ^ Valae ^
number of fraurne ntessage will never arrive. IPX must also know .1
will start to store tl "-T*8 '° reCe'Ve (fra8--cou«) and where
ini ated *eam™« Ration (frag_address). Once the listen
ecb in use flag unnlnS pl°grain where " can lo°P checking d:
cb.muse flag until die arrival of a message or continue with other function

8

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

Q
I There is more work to be done in order to send a message. It is

necessary to fill more fields of the control structure and header. Besides the
fields filled out to initiate a listen() command, the following IPX HEADER
fields must be complemented:

chksum This field is optionally set to FFFFH because it is not used.
It is good practice to assign this value to avoid random
values to be assigned to this field upon initialization.

packet_type This field is always set to four.

dest_socket & sour_socket
These fields are set to the value of the socket used for
transmission. Make sure that sour_socket and the socket the
program is listening on are the same.

dest_node This field stores the address of the destination node. The
value FFFFFFH means that the packet will be transmitted to
every station, not one in particular.

dest_num This field stores the address of the physical network the
message will be travelling to. The message will not cross
bridges if the value zero is used. It will rather stay within the
same physical network.

Using these last two fields we can obtain the immediate address. Since
we will not cross a bridge, IPX will place a value in this field that will
permit it to reach every node within the network.

To obtain the immediate address we use the IPX
GET_TARGET_FN. This function retrieves the value based on the

9

Garcia y Quintero/A utility for Netware: REMOTE

information provided to it by the destjiode and dest_num. It will return six
bytes (the immediate address) into the area we designate for holding this
value.

C]
I—I With the destination information set in the variables we may issue

the send command (IPX function 03H). One important fact is that sending
the information does not guarantee its arrival. The in_use flag changes state
to indicate that it has successfully transmitted the information onto die line
not that it has been received.

• Finally, once the information arrives, tire receiving node will
process tt using die TURBO C systemO function. This function loads
another copy ofCOMMAND.COM, the PCs main command parser and
executer, and provides a DOS environment were tire command will execute.

10

is f COmment: t0 Providc a way so that control of the serve
IS returned to the user without need of rebooting, we have included ai
interrupt rout,ne which, upon a keyboard interrupt (,e„ even tu .c he us

ke;tdatheCn!om;CkS f0rthVCTRL-C ^
environment ™ " messa8e and returns safely to the DO!

Recommendations

will U,C Pr°gram contained thc essentials so that i,
w.U run. The following suggestions will make the program more versatile

" r?srt*n, proLmsT ̂fUnCti°n 31H t0 Create 'cnn.nate and stay
resident programs. For example, keep an event service routine resident

10

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

in memory constantly checking for the arrival of messages, after which
it will interrupt the current PC task to perform the requested operation.

The systemO function is not the most resourceful way to execute
.COM, .BAT and .EXE files because it loads another copy of
COMMAND. COM (necessary to execute DOS commands). Try using
exec() and spawnO functions instead. However, each one has its own
advantages and disadvantages.

REMOTE does not verify that the message is received by the next
station. A second socket could be open where the receiving
workstation could send a reply message back to the transmitting
workstation and another second socket needs to be used to send replies
to prevent the transmitting station from listening in on its own
message.

Try new ideas, experiment a little, modify the source code and try
them out.

11

Garcia y Quintero/A utility for Netware: REMOTE

Appendix 1
Source code of program REMOTE

^include <stdlib.h>
^include <string.h>
#include <dos.h>
^include <stdio.h>
^include <conio.h>
^include <process h>
/*

*/ "

void main (int argc, char *argv[]);
void send (void);
void get_local_conn(void);
void open_sockets(void);
void listen(void);
void check_arg(int argc, char *argv[lV
void quit (char *);

PROTOTYPES

* /

char installed []
dos[] -

MESSAGES'

this program"
- "You need DOS

"Listen is already installed"
OU need DOS version 3.x or higher to run'

networkj]
no_socketl]
he Ip[]

REMOTE SERVERV
REMOTE conimand\n";

12

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

| STRUCTURES
*!

union REGS regs;
struct SREGS sregs;

I struct ECB
{
void far *link;
void far (*ESR)();
char in_use,

cmpt_code;
int socket;
long IPXwrk;
char driver_\vrk[12],

imdt_add[6];
int frag_count;
void far *frag_address;
int frag_size;
};

I struct IPX_HEADER
{
int chksum,

length;
char transport_control,

packet_type;
long destnuni;
char dest_node[6];
int dest socket;

13

Garcia y Quintero/A utility for Netware: REMOTE

long
char
int
};

sournum;
sour_node[6];

sour socket;

struct MESSAGE_AREA
{
char command[128]:

struct
{
struct
struct
struct

ECB ECB;
IPX_HEADER ipx;
MESSAGE AREA MS2

}LISTEN,SEND;

/*

V
DEFINITIONS

#define
^define
^define
^define
^define
^define
^define
^define

int i;
char *p-
/*

CONNJNUM
IPXVECT
MULTMNT
OPENFN
CLOSE_FN
SEND_FN
LISTEN_FN
GET_TARGET

Oxdc
0x7a
0x2f

0x00
0x01

0x03
0x04

.FN 0X07

14

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

* /

9

void execute()
{
svstem(LISTEN.msg.command):
}*

I*

LISTEN FOR PACKET

void listen(void)
{

/* Prepare event control block for receiving information */

LISTEN.ecb.inuse = 1;
LISTEN.ecb.socket = 0x4545;
LISTEN.ecb.frag_count = 1;
LISTEN.ecb.frag_address = (char far *) &LISTEN.ipx;
LISTEN.ecb.frag_size=(sizeof(LISTEN.ipx)+sizcof(LISTEN.msg));

/* Listen for incomming commands */

regs.x.bx = LISTEN_FN;
regs.x.si = (unsigned int) &LISTEN;
sregs.es = FP_SEG(&LIST£N);
int86x(IPX_VECT,®s,®s,&sregs);
}
I*

| SEND COMMANDS TO OTHER TERMINALS
V

15

Garcia y Quintero/A utility for Netware: REMOTE

6

void send__command(void)

/* Fill in event control block */
SEND. ecb. socket = 0x4545;
SEND. ecb .fragcount = I ; — « M^ VVUllI. I

SEND ^hfrag-addreSS = (Char ftr *} &SEND.ipv
SEND.ecb.fragsize = s.zeof(SEND,px-)+siZeof(SEND.msg);

/*Fdl in ipx packet header */
SEND.ipx.chksum = Oxffff;
SEND.ipx.packet_type=4;

f Sen<1 commands to even listeni„g telminal V

memset(SEND.ip\.dest node Oxff sizeoffSFwn •
SEND.ipx.dest socket r Qrx n ' Zeof(SEND 'P^des^node

_ ocKet ~ SEND.ipx.sour socket -0x4545;

I* Get address of receiving tenninal */

7

— regs.x.bx - GET_TARGET_FN-

regs'x d! - ̂ nsi.8ned)&SEND.ipx.dest num;
regs.x.di - (unsigned)SEND.ecb.imdt add
sregs.es = EP_SEG(&SENDV ~ '
in(86x(IPX_VECT,®s,&re'gs,&sregs);

/* Send commands */

printf("sending\n")-

regs.x.bx = SEND^FN;

16

L.

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

sregs.es = FP_SEG(&SEND.ecb);
regs.x.si = FP_OFF(&SEND.ecb):
int86(IPX_VECT,®s.®s);

}

/*

GET THIS STATION'S LOGIN INFORMATION
*/

void get_locaI_conn(void)
{
I* Verify that the station is connected to the network */

regs.h.ah = CONNJSfUM;
intdos(®s,®s);
if (Iregs.h.al)

quit(network):
}
/*

* /
OPEN SOCKET FOR LISTENING

Void open socket(void)
{
/* Open socket for listening */

regs.x.bx = OPEN_FN;

/* Open short-lived socket */

regs.h.al = 0;
regs.x.dx = 0x4545;
int86(IPX_VECT,®s.®s);

17

Garcia y Quintero/A utility for Netware: REMOTE

if (regs.h.al)
quit(no_socket);

J*

*, e»'VE ERROR AN11 EX1I Ronnvr

void quit (char *msg)

printf(msg);
exit (1);
}
I*

*/
FT

[MAIN

j Void main(int argc, char *argv[])

geMocaJ_conn();
open__socket();
Iisten();
check_arg(argc,argv);

/*

void check_arg(int argc, char *argy[])

if (argc<2)
quit(help);

if C!strcmp(argVfi],"server"))

18

Rev. Univ. Politec. P.R., Vol. 4, Num. 1

printffThis terminal is acting as a SERVERW);
while(l)

{
if (! LISTEN.ecb.in_use)

{
execute();
listen();
printf("Tliis terminal is acting as a SERVER\n")-
}

}
else

{
/* Organize all arguments into one line */

for (i = 1; i < argc: i++)
{

/* Eliminate blank spaces between arguments
and make new string */

if (strchr(argv[i]. ' '))
{
p = niaIloc(strlen(argv[i]) + 3);
sprintf(p; "\"%s\'"\ argv[i]);
argv[i] - p;

i
/* place 1 space between arguments and make

one string */
if (i != 1)

strcat(SEND.msg.command.. " ");
strcat(SEND.msg.command, argv[i]);

19

Garcia v Quintero/A utility for Nchv; arc:

>

send_coinmand()'
}

}
/*

n . '—'void interrupt far cb (void)

printf("quitting REMOTE");
return(O);
}

CONTROL-C HANDLER

20

