
A Hybrid Deterministic/Genetic Test Generator to Improve Fault
Effectiveness and Reduce CPU Time Run

A(fredo Cruz, PhD
Electrical & Computer Engineering and Coinputei Science Department
Polytechnic University of Puerto Rico
Hato Re)~ Puerto Rico
alcruz @pnpredu

ABSTRACT

This paperfocuses on an evo/utionaiy algorithm
(EA) approach in the development of effective tes’
vector generation •for single and multiple faul!
detection in VLSI circuits. The genetic operators
(selection, crossove,; and mutation) an? applied to
the CNF-satLsfIahility problem fOr the generation q1
test vectois fOr growth friults in Prograniniable Logic
Arrays (PLAs). The C/VP-constraints satisfriction
pi-oblem has several advantages aver other
approaches used for PLA testing. The method
proposed eliminates the possibility of intersecting a
redundant growth term ~i’ith a valid candidate test
vecto;: Deterministic procedures are used to (111011)

the identification of untestable faults anti to improve
the fOult coverage. This hybrid determninistic4genetic
test generator helps improve fault effectiveness and
reduce CPU time run. Experimental results have
confirmed that the number of untestable faults
identified contributed to test generation effectiveness.

SINOPSIS

Este articulo se enfoca en un mdtodo para
clesarrollar pruebas dc fal/as efecti’as para In
detecciOn c/c errores sencillos y mndltip/es en circuitos
de VLSI uti/izando a/goritmnos gendticos. Lo5
operadores geneticos (seleccion, “crossover”,
In utación) son ceplicados al prob/enia de
satisfiabilidad-CNF pama la generaciOn tie pruehas
dc fijI/as crecientes en Arreg/os LOgicos
Pro gramables (PLA ~c). El problemna dc

satisf7ahi/iclad-CNP tiene yenta/as sobre otros
mnétodos uti/izados para Ici generación c/c pruebas a
los Arreglos LOgicos Prograniables (PLA s). El
,ndtado propuesto elimina Ia posibi/idad c/c
in terceptar nit térniin o c/c fctllas crecientes
redundante con una pruebct c/c falla que es una
canc/idata vcilic/a para probar fri/las.
Procec/im ientos detcnn inIsticos son utilizac/os pa iv
permitir Ia iclentificaciOn para permitir In
ic/entificacidn c/c fOlios que no pnec/en ser c/etectadcts

v pot-ct mnejorar Ia cubierta total c/c fOlios. Este
generac/or c/c pruehas hIbric/o que es cleterminIstico/
genético avuc/a ci mnejorcir Ia efectivic/acl c/c Ia
c/eteccidn c/c fOllas y reduce el tiempo c/c usa c/el
CPU en /ci ejecucion dcl nmis,no. Resultac/os
experimemitales han confirnictclo que el nthnero cTh
fO/Icis no—c/etectab/es identificceclas por este mndroclo
cant rihnve a Ia efCctivic/ac/ en /ct gencraciOn dc Icis
pruebcis.

I- INTRODUCTION

With the increasing use of PLAs in systems
design at the Very Large Scale Irtegration (VLSI) level,
PLA testing has become very important. There is a
need to keep pace with the increase in PLA size by
enhancing the efficiency of PLA test generation.
However, the PLA simplified structure does not ease
the inherent difficulty for test pattern generation and
fault simulation in PLAs. Several algorithms have been
proposed for PLA testing using the T operation, but
they tend to be computationally expensive (Wei &
Sangiovanni-Vicentelli, 1986; Robinson & Rajski,
1988). A major disadvantage of this operator is that
backtracking is necessary when a test cannot be found.
The computational overheads required by
backtracking can be prohibitive. This can affect test
size and test application time. Clearly, present DFT
methods have not addressed the problem adequately
(Hua, iou, and Abraham, 1984; Xu & Breuer, 1988;
Thompson, 1996; Miranda, 1997; Carbine & Feltham,
1998; Needham, 1999; Kapur, Hay, and Williams, 2000;
Rajsuman, 2001).

In this paper, we present otir approach to the
problem of PLA testing using an evolutionary
algorithm based solution aimed to address the
shortcoming of existing methods.

II- FA ULTMODELSAND DEFINITIONS

The most commonly considered fault model when
testing digital circuits is known as the stuck-at fault
(i.e.,s-~~-0ors-a-l) (Abramovici, Breuer, and Friedman,

/ I ~ 33

1990). As a consequence of the PLAs array structure,
the stuck-at fault alone cannot adequately model all
physical defects. Therefore, a new fault class model,
known as the crosspoint model is used. The
unintentional presence or absence of a device in the
PLA causes a cross-point fault.

Crosspoint faults can be divided into two classes:
missing crosspoint faults and extra crosspoint faults.
Different types of faults include growth, shrinkage,
appearance, and disappearance faults.

The shrinkage and growth faults derived from
the cross-point fault model also cover other faults
such as the appearance and disappearance of cross-
point in the OR-plane. Fault models also help limit the
number of necessary tests, as opposed to testing for
all possible fault types.

A- BASIcNOTATJ0NAND DEFINITIONS

The PLA consists of inpnt lines
(uncomplemented and complemented) and product
term lines. The intersections between product lines
and input bit lines or between output function lines
and product term lines are called crosspoints. Each
product line is used to realize an implicant (product
term) of the given function by placing appropriate
cross-point devices into what is known as the AND
plane.

Figure 1: A PL4 Schematic test generation
procedures

In this section we shall discuss procedures and
present specific algorithms to derive minimal test
vectors for missing crosspoint faults.

Growth faults occur due to the absence of
~rosspoint devices in the AND plane. These faults
Dorrespond to the removal of a literal from a product
term (implicant) of the function in the AND array. This
oauses the product term (implicant) to grow because
it becomes independent of an additional input variable
and hence, the product term covers more minterms.

The two important requirements for fault detection
are fault sensitization and fault propagation.

A missing device fault in the AND plane can be
sensitized only if the implicant under testing carries a
O when fault-free and a I in the presence of a fault. A
Dropagation path must be established once the fault
has been sensitized, otherwise the fault is masked.
Propagation is done by deselecting all other product
:ines connected to the output except the product term
under testing.

The procedure for deriving the growth test ve~tors
:s explained with the aid of Figure 2. The product term
zs represented by an AND gate of 4 inputs. A dash

in the input lines indicates the absence of a device,
-whereas a circle ‘•‘ in the input lines indicates the
presence of a device.

For example, to detect a missing device at xl of
the implicant under consideration [iXOl], logic 0 must
be applied to the input xl, while the care values (at
input x3 x4) re-main unchanged. Since the value of the
iiteral was changed from Ito 0, a term from this set
could detect a fault in the uncomplemented bit-line.
To detect a fault in the complemented bit-line the literal

(d-f) must be changed from 0 to 1.
We should be able to sensitize the fault (if it exists)

at the output of the AND gate. The implicant being
tested carries a 0 in the absence of a fault at the output

Figure 1 shows a simple schematic of a PLA,
implementing the two switching functions:

L(x,x,,x3,x4)=(xnx,)u(xnx3)

device

x, x3

i:il,nl lines

(x1 n~2 n~3)
This PLA has four inputs (x , x , x , x), four product
terms (m, m, m, m), and t~o o2utpiit fbnctions (f, f).

(g-t)

Jul —

nil, —

oulput
lunciloin

/
a, a2 x~ a4 f fl

....~, .._~, Figure 2: Pmducr Term Under Test

nil3

J?14 /
(s-f)

/
(a-f)

34 Pc/i 7~/~e - Revirta ~ /~ (Jn;vercic/ac/ Po/;tecnica c/c Puerto i?i~ro 2004

of the AND gate, while a value of I denotes a fault.
For the sensitization of growth faults, a 0 must be
generated on the product line. This is done by toggling
the input value connected to the target growth fault
bit-line.

B- GRowTH TEST

A growth term stands for the set of extra minterms
formed by a missing fault. Growth tei-ms may have
terms in the ON—set function (i. e., minterms) and in
the OFF-set function (i.e., maxterms). The terms in the
ON-set function fail to uniquely select the product
line on which the target is located. Since it will also
select the product terms that cover them, the fault
cannot be propagated. This procedure can be carried

out by computing the intersection (denoted by (~))
between the growth terms generated for each proäilct
with the complement function (OFF-set) (Wei &
Sangiovanni-Vicentelli, 1986; Robinson & Rajski,
1988). One of dis-advantages in this approach is
backtracking. This could occur when the test is chosen
and fails to propagate.

PLALestGA uses the conjunctive normal form
(CNF) logical expression (equivalent to the
complement’s function) to derive the test set for
growth faults. An expression of proposition is in
conjunctive normal form (CNF) when it is a sequence
of clauses joined by an AND relation. Each of these
clauses is in the form of disjunction, the OR ofliterals.
Use of the CNF is supported by the Dc Morgan’s
theorem (Mano & Kime, 2000).

The genetic algorithm for the CNF-satisfiability
problem is applied for the generation of test vectors
for growth faults.

Fitiz ess Functions

An evaluation or fitness function is used to
determine the fitness of each candidate solution. A
fitness value is given to individuals in the current
population during each iteration step, called a
generation. The evaluation function is the link between
the problem to be solved and the GA.

The problem is to determine whether there exists
a truth assignment for the variables in the expression,
so that the CNF expression evaluates them to TRUE.
For example, the following CNF logical expression

ux3 unx3 ux4)n

(x1 u~r, ux, ux3)n

(x1 ux3u—uv4)

has several truth assignments (a valid candidate test
vector) for which the whole expression evaluates to
TRUE, e. g., any assignment with x = TRUE and x =

TRUE. The CNF expression of th~ example PLA4is
made up of five clauses that allow us to rank potential
bit pattern solutions in the tange of 0 to 5 (depending
on the number of clauses that patteri: satisfies). When
a pattern has a litness of 5, a maxterm of the function
is evaluated. Thus, test pattern 0101 has a fitness of 1,
0110 has a fitness of2, and 0111 has a fitness of 5 and
is a solution.

Population

All genetic algorithms work on a constant
population size that consists of several alter-native
solutions to the given problem. EacI individual in the
population is called a string or chromosome. in analogy
to chromosomes in natural systems, and is generated
at random. The strings can be composed of characters
or symbols analogically referred to as genes. The
population size determines the amount of information
stored by the GA. The GA population evolves over a
number of generations.

C’- G,≤vimc OPEIi1t TORS

The three basic steps performed during the
generation of the test vectors are selection, crossover,
and mutation.

Selection

Various selection schemes have been used in the
past. We focused on the generational roulette wheel
and steady state selections that are perhaps the best
representatives of non-overlapping and overlapping
populations, respectively. The generational
reproduction or non—overlapping population such as
the roulette wheel replaces the entire population at
once, while overlapping populatzons such as the
steady state replaces only a few members at a time.

Steady state selection or overlapping population
is a technique used to reduce execution time by
reducing fitness computation ii: the population
(Rudnick, et. al, 1994).

C’rosso vet

One-point crossover (I CX), t~ o-point crossover
(2 CX), and the uniform crossover operators were used
in this stLldy for efficiency comparisons. Crossover
rates of 0.75 and I .0 were used, as well as mutation
rates of 0.01 and 0.001. Experiments for the PLA ATPG

fl .-.T’ .7<3.. 1 / :n. /
I— 3.3 / ~ /3. (_./ 3..~-e ‘‘.3 3.3/ /— <3/ .-ter: .‘<3:, 3. .~ :1’ ‘‘3.3.:.

confirm that low mutations approximately equal to
0.001 reduce the CPU time. The mutation rate had a
much greater effect on the results of the three PLA
datasets than the crossover rates used.

In the simplest crossover operator, called one-
point crossover, the parents swap bits from the
crossover point. The first set of bits is taken randomly
from one parent and the remaining bits (starting from
the crossover point) are taken from the other parent.
Figure 3 illustrates one-point crossover with parents
‘lOlOlOll’and’lllllOOl,’andshowsitafterthethird
bit cut point.

101 01011
Head I Tail I

~ 101 11001

crossover
point

parents 11! 11001
Head2 Tail2

111 01011

Figure 3: The Effi?ct of the One-Point Crossover
Operation

Like one point crossover, the second crossover
operator is distinguished by two cut points rather than
one, and is selected at random with chromosome
material swapped between the two cut points. For
example, in two-point crossover operators there are
two cut points (marked with the vertical bars) and the
substrings are swapped between the two points (see
sample below).

Syswerda (1989, 1991) described the third
crossover operator that was used in this study. He
called this operator uniform crossover. According to
Syswerda, two parents are selected which result in
two children being produced. For each bit position on
the two children, we choose randomly (with
probability p) which parent contributes its bits value

to each child using the template. For example, for p =

0.5 (0.5-uniform crossover), the strings

The template contains a series of random numbers
of is and 2s. The value of I in the template leaves the
bit positions of the children the same as their parents.
The value of 2 assigns to Child 1 the corresponding
bit from Parent 2, while Child 2 gets the corresponding
bitfrom Parent I.

iWutation

Mutation is a unary operation involving the
probabilistic alteration of components in a
chromosome. In the circumstances where bit strings
are used to represent chromosomes, mutation engages
in a simple operation of flipping a bit from one (1) to
zero (0) or vice versa. Normally, this is a process
necessary for avoiding stagnation.

Mutation frequency has to be low in order to
avoid the search from generating a random walk.

The routine mutation in C++ is shown below:

void computeMutation(struct sibling siblingArr{])

mt mutantlndx, genelndx;

mutantlndx = rando%MAX POP;
genelndx = randQ%MAX_GEN;
(siblingArr[mutantlndx].genes[genelndx]

? siblingArr[mutantlndxj.genes[genelndx] = 0
siblingArr[mutantlndxj.genes[genelndx] = I);

return;
1/fend computeMutation

111-RESULTS

Tests were generated for three different PLA sizes
(small, medium, and large) using the GA test generator.
The PLA sizes range from 240 to 1920 crosspoints as
follows: the small PLA size is of (l2x20) 240
crosspoints, the medium PLA size is of (14x60) 840
crosspoints, the large PLA size is of (16x120) 1920
crosspoints.

Several simulations are necessary to average the

Parent 1
Parent 2
Template

10101100
01001010
22112112

may produce the following offspring:

Child I
Child 2

01101100
10001010

1.
Head I Tail 2 Head 2 Tail

Parent I
Parent 2
Child I
ChiId2

101 1100110011
0101110111101
1011110110011
0101100111101

36 [o/: 7cAne Pevictade it7 L/niverc/c/aJ P~i eon/co tie Puerto P/00 200/j

results, because GA-based ATPG is inherently a
random process. This multiplies the number of
experiments. In our work, results are based on
averaging five runs each with different random seed
for each set of independent variables.

• The headings of the Tables I and II have the
following meaning:

• The population size is shown in the column under
heading “Pop. Size”.

• The crossover rate is shown in the column under
heading “CX rate”.

• The mutation rate is shown in the column under
heading “Mut. rate”.

• The number of detectable faults calculated is
shown in the column under heading “DF”.

• The number of undetectable faults identified by
the deterministic procedure is shown in the
column under heading “UP”.

• The number of recovered irredundant faults is
shown in the column under heading “RIP”.

• The total number of possible faults including the
redundant faults (same as the growth term list
given for each PLA) is shown in the column under
heading “TNPF”.

• The number of test vectors is shown in the
column under heading “NTV”.

• All execution time is given in milliseconds (ms). It
includes fault simulation time and it is shown in
the column under heading “CPU time”.

• The percentage of fault coverage of the pure
crosspoint faults when not counting redundant
faults is shown in the column under heading
“FC”.

• The percentage of fault effectiveness of the real
crosspoint fault when counting redundant faults
is shown in the column under heading “FE”.

• The number of generations is shown in the column
under heading “NC”.

• The detectable faults (DF), undetectable faults
(UF), recovered irredundant faults (RIP), CPU run
time, fault coverage (PC), fault effectiveness (FE),
and the number of generations (NG) are the
dependent variables observed from the ATPG
result process.

The independent variables are composed of

circuit specific (inputs, product terms) and GA
parameters. The GA parameters are the followings:
population size, crossover and mutation rate.

The parameters or independent variables such
as population size, crossover and mutation rate used
to control GA-based ATPG can greatly affect test size,
fault coverage, and CPU execution time. Knowing a
priori what the optimal settings of the exogenous
parameters or independent variables (mainly the
mutation rate, the crossover probability, and the
population size) are allows efficient testing procedures.
When comparing different algorithms one must look
at the dependent variables such as total execution
time, the overall test size in terms of the number of test
vectors, the fault coverage, and the fault efficiency.

A deterministic fault oriented test is still needed
to identify the redundant faults in the list of
undetectable faults (UP) that remain. This is due to a
limitation of any simulation-based ATPG that makes it
unable to generate tests for targeted faults, and to
identify undetectable faults (UP). Undetectable faults
were not pre-filtered in the PLA datasets used in our
expenments. Good fault coverage (PC) may be achieved
using only a simulation-based approach, but the fault
efficiency (FE) of the test generator will not be better
than the fault coverage (PC). The reason that a PC of
100% cannot be achieved is due to redundant faults.
PLAtestGA is a hybrid deterministic/genetic test
generator that helps improve fault effectiveness and
reduce CPU run time. First, the GA is run until no
more improvement is obtained; then the deterministic
approach is used to target remaining undetectable
faults. The integrated deterministic algorithm with the
simulation-based algorithm can always achieve 100%
efficiency as shown in Tables I and II.

A- ANALYSIS OP ThE DEPENDENT AND INDEPENDENT

VARIABij?s

Previous studies have shown that the steady
state selection is susceptible to stagnation (Rudnick,
et. al, 1994; Syswerda, 1991), when the population size
is small. In this study, the results confirm that small
populations with low mutation frequency make the
steady state selection converge rapidly leaving some
faults untested. Therefore, the fault cover-age (PC)
can be unacceptable in most small population cases.
An acceptable PC should be higher than 80%. Here is
where the deterministic procedures can complement
the simulation-based algorithm. The deterministic
procedures contribute to test effectiveness by finding
all the faults left untested by the simulation-based
algorithm (RIP values) and identifying all the
undetectable faults (UP values).

A A,i 2004 Pc/I ~c/nê - Rev/eta c/a /~ Un/vereidad ~o/Itecniccv c/a Puerto P,co 37

8
a.

~6

a
(1)4

2

0

Table I. Large PM (]6x120) with Roulette Wheel Selection and I ~X

Pop. CX Mut. DF UP RIP TNPF NTV CPU Time PC FE NG
Size rate rate (nix) (%) (%)

1/100 1480.0 16 0.0 1496 347.2 172055.4 98.93 100 22969.4
1.00

1/1000 1479.2 16 0.8 1496 348.2 171921.2 98.93 100 24103.2
16

1/100 1479.2 16 0.8 1496 348.2 184397.2 98.93 100 25079.0
0.75

1/1000 1480.0 16 0.0 1496 347.6 187099.2 98.93 100 26958.0

1/100 1480.0 16 0.0 1496 347.6 191154.8 98.93 100 15376.8
1.00

1/1000 1480.0 16 0.0 1496 347.2 185432.4 98.93 100 15675.6
32

1/100 1480.0 16 0.0 1496 348 210068.0 98.93 100 16748.4
0,75

1/1000 1480.0 16 0.0 1496 347.2 203915.2 98.93 100 17645.6

1/100 1480.0 16 0.0 1496 347.2 199963.6 98.93 100 9319.4
1.00

1/1000 1480.0 16 0.0 1496 347 199527.0 98.93 100 9287.0
64

1/100 1480.0 16 0.0 1496 347 226960.4 98.93 100 10790.2
0.75

1/1000 1480.0 16 0.0 1496 347 226754.2 98.93 100 10808.2

12

10~~

—s-—i cx

—6—2 CX

—A-— UNIFORM

In this study, we present the results between these
two selections using the one-point crossover
operation (1 CX) as a point of reference for the Large
PLA. However, similar results are found for the two-
point operation (2 CX) and the uniform crossover
operation. For brevity and due to the lack of space,
we restrict our discussion only to the large PLA.
Comparison of the results in Tables I and II
demonstrates the advantages of the steady state
selection over the roulette wheel in terms of CPU time
and the number of generations (NO) to achieve the
optimal test vectors. In general, the overhead
associated with the non-overlapping population, as
the with roulette wheel, is the time used for computing
fitness of each new population. As far as speedup is
concerned, the results for (1 CX) when comparing
these two selections is the best for population size 16,
as shown in Figure 4.

The speedup is calculated as follows:

CPU time of Roulette Wheel
Speedup =

CPU time of Steady State

3216 64

Population

Figure 4: Speedup Between the Overlapping vs.
Non—overlapping Population with Mutation Rate
0.00], Crossover Rate 1.0 Using] CX, 2 CX, and

the Unifbrm. OperatorJbr the Large PM

From Table I of the roulette wheel of the Large
PLA we can observe that the column with heading DF
is kept close to 1480. The column with heading UF
shows that there are 16 undetectable faults. This

38 P0/i 7cAne - /~Qev/≤to~ c/e L~ LIniverc:Jari Po/itec,~;~cc~c/e Puerto ~ 2004

demonstrates, once again, that the deterministic
procedure always identifies all the undetectable faults.
A FC of 98.93% is achieved. FE is 100% since the
identification of the undetectable faults is feasible.
TheTNPF is equal to 1496. The result is very consistent
with the sum of columns DF and UF; in this case, the
sum of 1480 and 16 is equal to 1496. The results of the
number of generations (NO) are also consistent, the
higher the population sizes the lower the NO. For
example, the numberof generations falls below 10808.2
for population size 64, while for population size 32 the
NO can be as high as 17645.6. For population 16, the
lowest number of generations (NO) is 21327.8.

Table II shows that the NTV is high when
population size 16 is used with mutation rate 0.001. In
addition, notice that the RIF values is high (over 1262)
when population size 16 and mutation rate 0.001 is
used. The RIF column indicates that over 1262 test
vectors were found using the deterministic procedure.
Notice that the NTV generated by the OA averages
348 for the Large PLA. It can be observed in Table II
when the RFI values are equal to zero. Since the column
of the DF is equal to 1480, the density of the test
vectors is 1486/348=4.25. This means that a test vector
generated by the OA can detect an average of over 4
faults. However, when the deterministic procedures

have an active participation the density of the test
vectors are degraded.

Figure 5 shows the results of the comparison
among the one point crossover operation (I CX), two-
point crossover operation (2 CX), and uniform cross
over for the steady selection for a Large PLA. These
results are compared using both crossover rates of
1.0 and 0.75 with a fixed mutation rate of 0.001.

32
Population

Figure 5: Comparison Among the I CX, 2 CX, and
Uniform Crossover Using a Mutation Rate of 1/

1000 and the Steady State Selection for the Large
PM

Table II: Large PM (16xl20) with Steady State Selection and I CX

Pap. CX Mat LW UF RIF TNPF NTV CPU lime FC FE NG
Size rate rate (ins) (%) (%)

1/100 1441.6 16 38.4 1496 380.4 126317.8 98.93 100 22565.8
1.00

1/1000 140.8 16 1339.2 1496 1372.2 16668.0 98.93 100 596.4
16

1/100 1472.0 16 8.0 1496 360 148237.2 98.93 100 27559.6
0.75

1/1000 120.0 16 1360.0 1496 1387.6 17547.4 98.93 100 907.4

1/100 1476.8 16 3.2 1496 352 149108.6 98.93 100 17400.8
1.00

1/1000 1254.4 16 225.6 1496 527.6 87860.4 98.93 100 10822.2
32

1/100 1480.0 16 0.0 1496 348.6 170255.0 98.93 100 20462.8
0.75

1/1000 1376.8 16 103.2 1496 431.8 130888.2 98.93 100 16922.4

1/100 1479.2 16 0.8 1496 348.2 167757.2 98.93 100 11517.6
1.00

1/1000 1480.0 16 0.0 1496 347.2 186820.8 98.93 100 13764.6
64

1/100 1480.0 16 0.0 1496 347.6 204127.6 98.93 100 14589.4
0.75

1/1000 1480.0 16 0.0 1496 347.2 192038.2 98.93 100 14246.6

po/,• 7chne - Revicta ~ Ia Un;verc;c/ac/ PoI;tecn,ca

250 ~ CXRate 1.00
Q 1 CX Rate 0.75

200 D2CXRatel.00
D2CXRateO.75
• UNIFORM Rate 1.00

.150 0 UNIFORM Rate 0.75
£
1=

100
C)

50

rn r1
16 64

A h~~ti 2004 cle Puereo R;co 39

Figure 6 shows the CPU time for the Large PLA at
population sizes 16, 32, and 64. The crossover rate
0.01 for the one-point crossover operation (I CX) is
used to compare the effects of using mutation rate
0.01 and 0.001. Good results can also be obtained with
different crossover rates for the (2 CX) and uniform
crossover operations using same parameters.

a140
~ 120

100
80

0 60
40
20

0

O NtJTAflON RATE 0.01

o FJJTATION RATE 0.001

32
Population

Figure 6: comparison Between Mutation Rates of
0.01 and 0.001 Using Steady State Selection,

Crossover Rate 1.0 and I CXJ?r the Large PL4

IV- C’ONCLUSIONS

Fault coverage tends to improve with increasing
population size. In this study, there is no need to
increase the population size (which is computationally
expensive) to improve fault coverage. The deterministic
procedure finds all remaining undetected faults, and
identifies all undetectable (redundant) faults,
regardless of the population size. This approach clearly
has advantages that help reduce CPU time, since fault
coverage is independent of the population size.

Deterministic procedures assure a maximum
achievement of FC, and an FE of 100% is guaranteed.
This is an improvement over previous genetic
algorithms in VLSI testing. The use of the GA followed
by the deterministic procedures can achieve the best
balance between run time and fault coverage. Realizing
which algorithms are best suited for solving specific
problems is an important issue to consider.

REFEREtWES

[I] Abramovici, M., Breuer, M. A., and Friedman, A.
D. (1990). Digital Systems Testing and Testable
Design. Computer Science Press.

[2] Carbine, A., and Feltham, D. (1998, September).

Pentium Pro Processor Design for Test and
Debug. IEEE Design & Test of Computers, 15(3),
77-82.

[31 Hua, K. B., iou, JingYang, Abraham, J. A. (1984,
June). Built-In Tests for VLSI Finite State
Machines. Dig. of Papers 14” International
Conference on Fault Tolerant Computing, 292-
297.

[41 Kapur, R., Hay, and Williams, T. (2000, September).
The Mutation Metric for Benchmarking. IEEE
Design & Test for Computer, 18 21.

[5] Miranda, J. M. (1997, September). A 81ST and
Boundary-Scan Economics Framework. IEEE
Design & Test of Computers, 14(3), 17-23.

[6] Neeclham, W. (1999, November). Nanometer
Technology Challenges for Test and Test
Equipment. IEEEcomputer, 32(11), 52-57.

[7] Rajsuman, R. (200!, June). Design and Test for
Large Memories: An Overview. IEEE Design and
TestofComputers, 18i3), 16-27.

(8] Robinson, M. and Rash. (1988). An Algorithm
Branch and Bound Method For PLATest Pattern
Generation. International Test Conference, 66-74.

[9] Rudnick, E. M., Patel, J. I-I., Greenstein, G. S., and
Nierman, T. M. (1994, June). Sequential Circuit
Test Generation in a Genetic Algorithm
Framework. Proc Design Automation Conf., 698-
7~.

[10] Syswerda, G. (1989). Uniform Crossover in
Genetic Algorithms. Third International
Conference on Genetic Algorithms, ed. By
Schaffer, Morgan Kaufman Publishers, San
Mateo, CA, 2-9.

[II] Syswerda, G. (1991). A Study of Reproduction in
Generational and Steady State Genetic
Algorithms. In Foundations of Genetic
Algorithms. ed. G. Rawling, San Francisco:
Morgan Kauffman, 94-101.

[12] Thompson, K. (1996). Intel and the Myths of Test.
IEEE Design & Test of Computers, 79-81.

[13] Wei, R. S., and Sangiovanni-Vicentelli. (1986,
October). PLAtypus: A PLA Test Generation
Tool. Trans. on Computer Aided Design, 5.

[14] Xu, X., and Breuer, M. (1988, August). Analysis
of Testable PLA Designs. IEEE Design & Test of
Computers, 14-28.

200
180
160

16 64

40 00h 7~c,4nê - ,‘Qev,cta c/e Ic, lJn,verc,clacl Do/it ecnicc, c/e puerto Rico A tn! 2004

