

Strength Comparison of Flat Roof Solar Mounting Systems

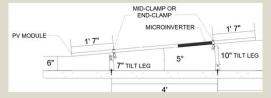
Carlos A. Rivera Pagan Advisor: Héctor J. Cruzado, PhD Master of Engineering in Civil Engineering

Abstract

The trend of installing solar panels in residential buildings has been primarily driven by efforts to lower energy costs, signifying a notable shift towards embracing solar energy solutions. The market offers a wide range of structural mounting systems for solar panels. This paper concentrated on analyzed the most utilized mounting system for flat roots and determining the strength capacity usage in a 160-mph wind speed hurricane event and compare the different installation patterns flat ond in the existing installed mount systems in residential building around the island of Puerto Rico. The study underscores the overall reliability of the structural integrity while acknowledging deficiencies in one of the mounting systems employing the NEL installation patterns.

Introduction

The rising installation of photovoltaic solar systems in buildings is due to high energy costs and the need for more reliable energy sources. The market offers various electrical and structural components for solar integration, especially focusing an off tor of mounting systems. This study examines three specific flat roof mounting system dissignated B_i U, and H through structural analysis using the Allowable Strength Design (ASD) method to evolute their strength against which loads and comparing the most used legs installation patterns, based on a comparative study within an existing photovoltaic project (PV). The legs in the mounting system role a considerable determination of the strength capacity to resist wind loads. In this study the quantity of legs installed in the mounting system were designated with equations N+1=L and N=L, where N is the numbers of loalar panels and L are the numbers of legs in a solar panels mount result.


Project Background

This evaluation examines an existing residential photovoltaic system located in Guaynabo.

Mounting systems consist of support columns (legs), longitudinal support (rail), and clamps.
The existing mounting system in the residential is the mounting system B with the installation

3D Scanning of the residential Building showing the PV system (Source: Verdifica PSC)

Side View of Mounting System B from selected PV Project with Dimensions

Image Illustration of Mounting System B

Image Illustration of Mounting System U

Image Illustration of Mounting System H

Illustration Example of N+1=L Installation Pattern

Illustration Example of N=L Installation Pattern

Illustration Example of N-1=L Installation Pattern (5 Solar Panels With 4 Legs)

Methodology

Wind Load Parameters

The velocity pressure calculated was q. = 35.5 psf.

elocity pressure calculated was q₂ = 55.5 psi.

Wind Loads Forces The load analysis for rootop structures and equipment in this study follows Section 29.4.1 Rootop Structures and Equipment for Buildings, focusing on calculating lateral and vertical forces. These forces are determined using:

 $\overrightarrow{F} = q_z GCA_y$ where: q_z = velocity pressure evaluated at height z G = gust effect factor C_z = force coefficient A_z = projected area normal to the wind

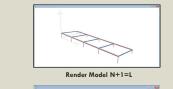
Wind Load Combination

These mounting systems are particularly susceptible to high uplift wind loads and less to seismic loads. For analyzing uplift wind load conditions, the most critical scenario for this structure is determined by ASD load combination 7, as follows:

where: D = Dead Load W = Wind Load

Material Specification

According to the manufacturers cutsheet details for the three mounting systems, the aluminum alloy utilized is designated as 6005A-T61, with its material properties specified as follows:


F_{ty} = tensile yield strength = 35 ksi

F_{tu} = tensile ultimate strength = 38 ksi
F = modulus of elasticity = 10.100 ksi

E = modulus of elasticity = 10,100 ksi

Modeling

STAAD.pro, software for structural analysis and design, was utilized to model the mounting system, facilitating the determination of reactions and results from the applied loads. Two model scenarios were modeled for each three mount systems using installation pattern N+1=L and N=L as shown.

Render Model N=L

Strength Criteria

The available strength for each structural component calculated using the Aluminum Design Manual 2020, Rn/Q, must meet the requirements of the chosen ASD load combination 0.6D+0.6W expressed as the required strength, Ra, for uplift scenarios and the structural analysis shall satisfy:

 $R_a < R_n / \Omega$

Strength Capacity Usages

The subsequent tables provides a detailed comparison of the reaction forces versus the available strength capacity of structural components in the three different mounting systems selected in this study.

Mounting System B Strength Capacity Usage						
N+1=L			N=L			
Element	Component	Ra/(Rn/Ω)	Element	Component	Ra(Rn/Ω)	
Clamp	Universal Fastener Clamp	35%	Clamp	Universal Fastener Clamp	35%	
Long Leg	Bolts	26%	Beam	Rail	63%	
	Axial Tension	3%		Bolts	27%	
	Slot Bearing Strength	14%	Long Leg	Axial Tension	3%	
		1 20200		Slot Bearing Strength	20%	
	U-Foot Tension	3%	2010/12/13	U-Foot Tension	4%	
	U-Foot Bearing Strength	11%		U-Foot Bearing Strength	13%	
Short Leg	Axial Tension	5%	Short Leg	Axial Tension	5%	
Anchor Bolt	Expansion Bolt	24%	Anchor Bolt	Expansion Bolt	25%	

Mounting System U Strength Capacity Usage

	IN+1=L			IN-L	
Element	Component	Ra/(Rn/Ω)	Element	Component	Ra/(Rn/Ω)
Clamp	Rail Mid Clamp	40%	Clamp	Rail Mid Clamp	40%
	Rail End Clamp	33%	Clamp	Rail End Clamp	33%
Long Leg	Assembled Tilt Back Leg	42%	Beam	Rail	309%
Short Leg	Assembled Tilt Front Leg	41%	Long Log	Assembled Tilt Back Leg	47%
Anchor Bolt	Expansion Bolt	23%	Short Leg	Assembled Tilt Front Leg	44%
Anenor Bolt	Expansion Boit	2379	Anchor Bolt	Expansion Bolt	25%

Mounting System H Strength Capacity Usage

N+1=L			N=L		
Element	Component	Ra/(Rn/Q)	Element	Component	Ra/(Rn/Ω)
Clamp	Rail Clamp	35%	Clamp	Rail Clamp	35%
	Bolt Leg	25%	Beam	Rail	46%
Legs	Slot Bearing Strength	11%	Legs	Bolt Leg	26%
	Axial Tension	6%		Slot Bearing Strength	12%
Anchor Bolt	Expansion Bolt	23%	0.52	Axial Tension	7%
ribiliter pen	Capatinen Den		Anchor Bolt	Expansion Bolt	2.4%

Conclusions

In installations using the N+1=L leg pattern, all three mounting systems successfully met the strength criteria set forth in the aluminum manual, following the ASCE 7-16 load analysis from Section 29.4.1 for Rooftop Structure and Equipment for Buildings, specifically for wind speeds of 160 mph. In contrast, with the N=L pattern installation, Mounting System U failed to meet these strength criteria, whereas Mounting System B and H showed to meet strength criteria. Particularly, for installations using either N=L or N=L patterns, reinforcing the mounting systems by adding necessary legs near the damps is a reliable solution. For systems with a small number of solar panets arrays, the N+1=L installation pattern is reliable for residential solar mounts. However, the participation and consulting of a structural engineer is crucial for any photovoltaic system installation to ensure compliance with contemporary engineering strated ands and codes.

Future Work

With the increasing variety and demand for mounting systems, it is beneficial for future research to explore various options for commercial and industrial buildings under different scenario cases. While this current research does not focus on the maximum wind speed resistance of solar mounts, it is a highly recommended topic for future studies. Additionally, in the unfortunate event of another hurricane, it would be suggested to analyze an existing project that failed due to hurricane winds as a case study for further evaluation and improvement. This approach would provide valuable insights into enhancing the resilience of mounting systems against extreme weather conditions.

Acknowledgements

Special thanks to Gabriel Arturo, PE and Verdifica, PSC, for providing an existing PV project and drawings that greatly contributed to this work. Further appreciation is extended to Nelson Sotelo and the collective efforts of many friends whose guidance and support during visits to various residential PV installations that have complemented this study. I am grateful to Professor Hector Cruzado for a cocepting my design project proposal and providing direction throughout its development. A heartfelt acknowledgment to my father, Carlos F. Rivera Burgos, PE, for his life guidance, unconditional support and encouragement throughout my professional career.