
Abstract Conclusions

As we travel in a region from one place to another we start

wondering if there’s an optimal travel path. To figure this out,

normally, we would seek for details of some of the possible ways

of finding such optimal path. However, during our analysis we

then start to see things that are subjective such as “steep uphills

followed by steep downhills” and we wonder if a path with those

characteristics would indeed be the optimal path from point A to

B. Through this project we attempt to create a cost function that

can help us answer such question. This cost function would take

terrain data such as latitude, longitude, elevation, to compute a

cost based on constraints subject to the user’s interest. With this

information we intend to produce a node graph to model a region

of interest in a map that shows the optimal path from point A to B.

References

Methodology Results and Discussion

The results that we obtained as part of this work seem to be really

promising when thinking about creating a cost function that can

accurately model our way of determining optimal travel paths.

With the progress that was made as part of this project alone, we

can now model optimal travel paths for simple maps such as a

town map.

I believe that keeping the uphill and downhill constants as part of

the cost function are key computing cost because users may have

different limitations, apart from the different cases in which this

cost function could be used to model.

Many times, as we travel in a region we wonder what’s the best,

optimal path to use to get from a source to a destination. In order

to figure this out we need to get some information about the

region of interest. Finally, when we have the region information

we now start to wonder whether it’s best to take a steep uphill and

coast downhill across a large distance or just go around the

mountainous terrain. Through this project we look forward to

model a terrain with latitude, longitude, and elevation in a 3D

coordinate system by using a directed node graph, and finally use

the Bellman-Ford[1] algorithm to compute a shortest path.

Introduction

Background

The main problem, and challenge, for this project was to figure

out a way to model map data in a way that would allow us to

compute and visualize a shortest path. In addition to this,

designing the cost function to determine a cost from going from

one place to another, while also determining which factors will

impact the most the travel cost, proved to be a challenge.

Problem

The main reason why this topic was selected to be a project idea,

mainly was because there is not much work done in this area.

Usually when we search for research topics such as Encryption,

Steganography, we find that there a very active academic

community contributing to that area. For areas involving

“Shortest path”, as we attempt to find any existing work we start

to see that there are little to no contributions.

In addition to this, the US Department of Energy (DOE) has also

conducted some research regarding the fuel efficiency of heavy

vehicles [2] based on terrain conditions such as: road grade, travel

speed, vehicle weight, among others. A complimentary research

to the previous research was conducted by the National

Laboratory of Renewable Energy (NREL), as part of the DOE,

which consisted of studying the consumption of energy of modern

automobiles [3]. For that research, different types of vehicles (i.e.

gasoline, electric, High Efficiency Vehicles) were put through

simulation of a different series of trips with varying road grades

and terrain conditions to determine how these conditions could

affect the energy consumption of similar or comparable vehicles.

Implementation of a Cost Function to Model Travel Cost for Shortest Path Routing

Author: Carlos Rivera López

Advisor: Dr. Jeffrey Duffany

Computer Engineering & Computer Science

First off, we tested this cost function with different scenarios with

two algorithms for single source shortest path, namely, Bellman-

Ford and Dijkstra’s[7] algorithms. The maps that were used to test

the cost functions were similar to the map presented in Figure 2;

five nodes with one of these placed at a higher elevation to the

other four nodes, and six edges to connect the vertices.

Figure 2: Node Graph with Edge Weights modeled after the

Cost Function.

To output the shortest path modeled by the cost function, we then

represented the node graph as a 2D plot by having the X axis

represent latitudes, and the Y axis represent the longitudes in a 2D

coordinate system. The elevation was represented through a Color

Map. When a shortest path is computed the edges of the graph are

painted in green color to highlight such path, the rest of the paths

are plotted in black color; with all edges having their respective

weights. This visualization can be observed in Figure 2.

All tests produced results that were consistent to the design of the

cost function, and as early as in Figure 2 we can see the some of

the results of modeling the edge weights with the cost function.

We can see that the cost to travel from node A to node E is nearly

the same as travelling from node A to node C, considering that the

only difference between these two scenarios is the change in

elevation; the former is an uphill scenario while the latter is a plain

terrain scenario (i.e. no change in elevation).

As we tested the cost function with different maps we obtained

interesting results. Therefore, another scenario that was tested

introduced two nodes and three edges to the map; this new map

can be observed in Figure 3. The main purpose of testing this map

was to show that our cost function can favor different paths as

shown in Figure 3. In this map, we can see that all of the nodes in

the left side of the graph have the same elevation, allowing us to

find a newer, cost-efficient (i.e. energy-efficient) path by travelling

around the mountainous path, as presented in Figure 2, through a

relatively flat surface.

Figure 3: Shortest Path by going through a flat path.

Future Work

As part of future work, we could see this project be expanded to

take into account more complex elements such as road conditions,

maximum speed allowed, physics to observe how the cost could

vary depending on the weight of the object that will be travelling

through the node graph. Also, because the cost function is may

still be “immature”, applying this to real world data could still be a

challenging milestone.

Another area in which this project can have additional work

incorporated is when attempting to discover what are the

appropriate values for uphill penalties and downhill bonuses for

cases in which the user: rides a bicycle, motorcycle, or an electric

vehicle. In the case of electric vehicles, downhills could very well

yield significant downhill bonuses since most of these vehicles are

designed to recharge their batteries when going downhills..

[1] Bang-Jensen, Jørgen; Gutin, Gregory. "Section 2.3.4: The

Bellman-Ford-Moore algorithm", Digraphs: Theory, Algorithms

and Applications (First ed.), 2000, ISBN 978-1-84800-997-4.

[2] Oscar Franzese, Diane Davidson, “Effect of Weight and

Roadway Grade on the Fuel Economy of Class-8 Freight Trucks”,

2011, ORNL/TM-2011/471 Available:

https://info.ornl.gov/sites/publications/files/Pub33386.pdf

[3] Eric Wood, Evan Burton, Adam Duran, and Jeff Gonder,

“Contribution of Road Grade to the Energy Use of Modern

Automobiles Across Large Datasets of Real-World Drive Cycles”,

2014. SAE World Congress 2014 Detroit, Michigan. Available:

https://www.nrel.gov/docs/fy14osti/ 61108.pdf

[4] Python Software Foundation [Computer Software], 2019.

Retrieved from: https://www.python.org

[5] John D. Hunter, “Matplotlib: A 2D Graphics Environment”,

2007. 21-9615/07/$25.00 © 2007 IEE.

[6] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, Gäel

Varoquaux, Travis Vaught, and Jarrod Millmam, “Exploring

network structure, dynamics, and function using NetworkX”,

Proceedings of the 7th Python in Science Conference (SciPy2008)

(Pasadena, CA USA), 2008, pp. 11–15, Aug 2008

[7] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald

L.; Stein, Clifford, "Section 24.3: Dijkstra's algorithm",

Introduction to Algorithms, 2001, (Second ed.). MIT Press and

McGraw–Hill. pp. 595–601. ISBN 0-262-03293-7

To solve this we then modeled locations as a 3D coordinate

composed of latitude, longitude, and elevation. Since this

information is, mostly, publicly available through many sources

such as the United States Geological Survey (USGS) or Google

we could choose a local region to create, test, and tune our cost

function.

Any region that we would choose for our project could be

modeled properly by using a directed graph whose vertices would

contain: latitude, longitude, elevation, and neighbors; and edges

would contain: source, destination, and cost. The cost function

would take a source and a destination as inputs and output the

computed cost of traveling through that path.

𝑐𝑜𝑠𝑡𝑈𝑝 𝑎, 𝑏 = 𝑖 + 𝑑 1 +
𝑝 ∗ 𝑠

𝑚
(1)

𝑐𝑜𝑠𝑡𝐷𝑜𝑤𝑛 𝑎, 𝑏 = 𝑖 + 𝑑 1 −
𝑏 ∗ 𝑠

𝑚
(2)

Because we look forward to make this project scalable for many

applications we left some variables in the cost equations for uphill

and downhill scenarios. In both equations (1) and (2) we have

some terms that are being used to compute a travel cost from point

A to point B, among these terms we have some variables:

• d to represent a distance cost. For this project we computed

the Euclidean distance between a, and b.

• p to represent an uphill penalty (e.g. 0.70 for 70%) – used

only for uphill cases.

• b to represent a downhill bonus (e.g. 0.25 for 25%) – used

only for downhill cases.

• s to represent the slope between two points.

• m to indicate a maximum allowed slope.

With these variables we expect to leave some room for different

scenarios such as high-slope or low-slope scenarios where a

certain threshold of inclination is possible. To compute the slope

between two coordinates in a 3D space we can use vector math to

build a right triangle. Since we have coordinates from point A to

point B we only need to compute a coordinate point C for the

triangle base, as shown in Figure 1. At this point we can obtain

the vector 𝐴𝐵 and vector 𝐴𝐶, normalize them, and obtain the

angle between these two vectors by computing cos−1(𝐴𝐵 • 𝐴𝐶).
For downhill scenarios, the angle would be computed by

performing the same operation but with vectors 𝐵𝐴 and 𝐵𝐶.

Figure 1: Right triangle made with the start and end

coordinates

With the cost function now at hand we can then compute the cost

of all the edges in the node graph. After all the edge weights have

been computed we can use Bellman-Ford single source shortest

path algorithm to determine what is the optimal path from point A

to B. In order to visualize the data, along with the computed

shortest path based on our cost functions from equations (1) and

(2) we used a Python[4] package that could help us plot data and

visualize graphs: Matplotlib[5], and NetworkX[6], respectively.

https://info.ornl.gov/sites/publications/files/Pub33386.pdf

