
Optimizing the Method for Finding an Optimal Solution of a Constraint Satisfaction

Problem

Andrew Pagan

Computer Engineering

Ph.D. Jeffery Duffany

Computer Engineering Department

Polytechnic University of Puerto Rico

Abstract — Constraint satisfaction problems are

the subject of intense research in both artificial

intelligence and operations research. They

are mathematical problems defined as a set of

objects whose state must satisfy a number

of constraints or limitations. Often, they exhibit

high complexity, requiring a combination

of heuristics and combinatorial search methods to

be solved in a reasonable time. Most optimal

solutions for a constraint satisfaction problem are

found by a standard substitution and elimination

technique, similar to the procedure used to solve

systems of equations, with the decision function

f(A)=max(A2). However, this method involves

squaring the A matrix after each substitution,

making it time consuming for larger matrices. This

can be remedied using a different method that only

requires A to be squared once, and subsequently

updated thereafter.

Key Terms  Algorithm, Complexity,

Constraint, Matrix.

INTRODUCTION

Constraint satisfaction problems represent the

entities in a problem as a homogeneous collection

of finite constraints over variables, which are

solved by constraint satisfaction methods. Their

regularity in their formulation provides a common

basis to analyze and solve problems of many

unrelated families. Examples of problems that can

be modeled as a constraint satisfaction problem:

 Eight queens puzzle

 Map coloring problem

 Boolean satisfiability

Graph coloring will be used to demonstrate the

effectiveness of the proposed method. In graph

theory, graph coloring is a special case of graph

labeling; it is an assignment of labels traditionally

called "colors" to elements of a graph subject to

certain constraints. In its simplest form, it is a way

of coloring the vertices of a graph such that no two

adjacent vertices share the same color; this is called

a vertex coloring. Similarly, an edge

coloring assigns a color to each edge so that no two

adjacent edges share the same color, and a face

coloring of a planar graph assigns a color to each

face or region so that no two faces that share a

boundary have the same color.

Vertex coloring is the starting point of the

subject, and other coloring problems can be

transformed into a vertex version. For example, an

edge coloring of a graph is just a vertex coloring of

its line graph, and a face coloring of a planar

graph is just a vertex coloring of its planar dual.

However, non-vertex coloring problems are often

stated and studied as is. That is partly for

perspective, and partly because some problems are

best studied in non-vertex form, as for instance is

edge coloring. Graph coloring enjoys many

practical applications as well as theoretical

challenges. Beside the classical types of problems,

different limitations can also be set on the graph, or

on the way a color is assigned, or even on the color

itself. It has even reached popularity with the

general public in the form of the popular number

puzzle Sudoku. Graph coloring is still a very active

field of research.

CONSTRAINT SATISFACTION

Constraint satisfaction problems (CSP)s are

mathematical problems defined as a set of objects

whose state must satisfy a number of constraints or

limitations. CSPs represent the entities in a problem

as a homogeneous collection of finite constraints

over variables, which is solved by constraint

satisfaction methods. CSPs are the subject of

intense research in both artificial intelligence and

operations research, since the regularity in their

formulation provides a common basis to analyze

and solve problems of many unrelated families.

CSPs often exhibit high complexity, requiring a

combination of heuristics and combinatorial search

methods to be solved in a reasonable time[1].

Examples of problems that can be modeled as a

constraint satisfaction problem:

 Eight queens puzzle

 Map coloring problem

 Sudoku

 Boolean satisfiability

Constraint satisfaction problems on finite

domains are typically solved using a form of

search. The most used techniques are variants of

backtracking, constraint propagation, and local

search.

Backtracking is a recursive algorithm. It

maintains a partial assignment of the variables.

Initially, all variables are unassigned. At each step,

a variable is chosen, and all possible values are

assigned to it in turn. For each value, the

consistency of the partial assignment with the

constraints is checked; in case of consistency, a

recursive call is performed. When all values have

been tried, the algorithm backtracks. In this basic

backtracking algorithm, consistency is defined as

the satisfaction of all constraints whose variables

are all assigned. Several variants of backtracking

exists. Backmarking improves the efficiency of

checking consistency. Backjumping allows saving

part of the search by backtracking "more than one

variable" in some cases[2]. Constraint learning

infers and saves new constraints that can be later

used to avoid part of the search. Look-ahead is also

often used in backtracking to attempt to foresee the

effects of choosing a variable or a value, thus

sometimes determining in advance when a

subproblem is satisfiable or unsatisfiable.

Constraint propagation techniques are methods

used to modify a constraint satisfaction problem.

More precisely, they are methods that enforce a

form of local consistency, which are conditions

related to the consistency of a group of variables

and/or constraints. Constraints propagation has

various uses. First, they turn a problem into one that

is equivalent but is usually simpler to solve.

Second, they may prove satisfiability or

unsatisfiability of problems. This is not guaranteed

to happen in general; however, it always happens

for some forms of constraint propagation and/or for

some certain kinds of problems. The most known

and used form of local consistency are arc

consistency, hyper-arc consistency, and path

consistency. The most popular constraint

propagation method is the AC-3 algorithm[2],

which enforces arc consistency. Local search

methods are incomplete satisfiability algorithms.

They may find a solution of a problem, but they

may fail even if the problem is satisfiable. They

work by iteratively improving a complete

assignment over the variables. At each step, a small

number of variables are changed value[1], with the

overall aim of increasing the number of constraints

satisfied by this assignment. The min-conflicts

algorithm is a local search algorithm specific for

CSPs and based in that principle. In practice, local

search appears to work well when these changes are

also affected by random choices. Integration of

search with local search have been developed,

leading to hybrid algorithms.

GRAPH COLORING

In the field of distributed algorithms, graph

coloring is closely related to the problem

of symmetry breaking. The current state-of-the-art

randomized algorithms are faster for sufficiently

large maximum degree Δ than deterministic

algorithms. A deterministic distributed algorithm

cannot find a proper vertex coloring in a symmetric

graph. Some auxiliary information is needed in

order to break symmetry. A standard assumption is

that initially each node has a unique identifier, for

example, from the set {1, 2, ..., n}. Put otherwise,

we assume that we are given an n-coloring. The

challenge is to reduce the number of colors

from n to, e.g., Δ + 1. The more colors are

employed, e.g. O(Δ) instead of Δ + 1, the fewer

communication rounds are required[3].

A straightforward distributed version of the

greedy algorithm for (Δ + 1)-coloring requires Θ(n)

communication rounds in the worst case[4] −

information may need to be propagated from one

side of the network to another side. The simplest

interesting case is an n-cycle. By iterating the same

procedure, it is possible to obtain a 3-coloring of

an n-cycle in O(log* n) communication steps

(assuming that we have unique node identifiers).

Graph coloring is computationally hard. It

is NP-complete to decide if a given graph admits

a k-coloring for a given k except for the cases k = 1

and k = 2. It is especially NP-hard to compute the

chromatic number[4]. The 3-coloring problem

remains NP-complete even on planar graphs of

degree. The best known approximation

algorithm computes a coloring of size at most

within a factor O(n(log n)−3(log n)2) of the

chromatic number. For all ε > 0, approximating the

chromatic number within n1−ε is NP-hard. It is also

NP-hard to color a 3-colorable graph with 4

colors and a k-colorable graph

with k(log k) / 25 colors[3] for sufficiently large

constant k.

COMPUTATIONAL COMPLEXITY

In computational complexity theory,

the complexity class NP-complete (abbreviated NP-

C or NPC) is a class of decision problems. A

decision problem “L” is NP-complete if it is in the

set of NP problems so that any given solution to the

decision problem can be verified in polynomial

time, and also in the set of NP-hard problems so

that any NP problem can be converted into L by a

transformation of the inputs in polynomial time.

Although any given solution to such a problem can

be verified quickly, there is no known efficient way

to locate a solution in the first place; indeed, the

most notable characteristic of NP-complete

problems is that no fast solution to them is known.

That is, the time required to solve the problem

using any currently known algorithm increases very

quickly as the size of the problem grows. As a

result, the time required to solve even moderately

large versions of many of these problems easily

reaches into the billions or trillions of years, using

any amount of computing power available today.

As a consequence, determining whether or not

it is possible to solve these problems quickly, called

the P versus NP problem, is one of the

principal unsolved problems in computer science

today. While a method for computing the solutions

to NP-complete problems using a reasonable

amount of time remains undiscovered, computer

scientists and programmers still frequently

encounter NP-complete problems. NP-complete

problems are often addressed by

using approximation algorithms. NP-complete is

a subset of NP, the set of all decision

problems whose solutions can be verified in

polynomial time; NP may be equivalently defined

as the set of decision problems that can be solved in

polynomial time on a nondeterministic Turing

machine[5]. NP-complete problems are studied

because the ability to quickly verify solutions to a

problem (NP) seems to correlate with the ability to

quickly solve that problem (P). It is not known

whether every problem in NP can be quickly

solved—this is called the P = NP problem. But

if any single problem in NP-complete can be solved

quickly, then every problem in NP can also be

quickly solved, because the definition of an NP-

complete problem states that every problem in NP

must be quickly reducible to every problem in NP-

complete[4] (that is, it can be reduced in

polynomial time).

Because of this, it is often said that the NP-

complete problems are harder or more difficult than

NP problems in general. A decision problem C is

NP-complete if C is in NP, and every problem in

NP is reducible to C in polynomial time[4]. C can

be shown to be in NP by demonstrating that a

candidate solution to C can be verified in

polynomial time. A problem K is reducible to C if

there is a polynomial-time many-one reduction,

a deterministic algorithm which transforms any

instance kЄK into an instance cЄC[5], such that the

answer to c is yes if and only if the answer

to k is yes. To prove that an NP problem C is in fact

an NP-complete problem it is sufficient to show

that an already known NP-complete problem

reduces to C. Note that a problem satisfying

condition 2 is said to be NP-hard, whether or not it

satisfies condition 1. A consequence of this

definition is that if we had a polynomial time

algorithm (on a UTM, or any other Turing-

equivalent abstract machine) for C, we could solve

all problems in NP in polynomial time. At present,

all known algorithms for NP-complete problems

require time that is super-polynomial in the input

size, and it is unknown whether there are any faster

algorithms.

The following techniques can be applied to

solve computational problems in general, and they

often give rise to substantially faster algorithms:

 Approximation: Instead of searching for an

optimal solution, search for an "almost"

optimal one.

 Randomization: Use randomness to get a faster

average running time, and allow the algorithm

to fail with some small probability. See Monte

Carlo method.

 Restriction: By restricting the structure of the

input (e.g., to planar graphs), faster algorithms

are usually possible.

 Parameterization: Often there are fast

algorithms if certain parameters of the input are

fixed.

 Heuristic: An algorithm that works "reasonably

well" in many cases, but for which there is no

proof that it is both always fast and produces

good results. Meta-heuristic approaches are

often used.

A substitution method also offers a

significantly more efficient method for finding an

optimal solution for computational problems. We

can demonstrate this by simply incrementally

updating the matrix.

BIG-O

In mathematics, computer science, and related

fields, big-O notation describes the limiting

behavior of the function when the argument tends

towards a particular value or infinity, usually in

terms of simpler functions. Big O notation

characterizes functions according to their growth

rates: different functions with the same growth rate

may be represented using the same O notation.

Although developed as a part of pure

mathematics, this notation is now frequently also

used in the analysis of algorithms to describe an

algorithm's usage of computational resources: the

worst case or average case running time or memory

usage of an algorithm is often expressed as a

function of the length of its input using big O

notation. This allows algorithm designers to predict

the behavior of their algorithms and to determine

which of multiple algorithms to use, in a way that is

independent of computer architecture or clock rate.

Because big O notation discards multiplicative

constants on the running time, and ignores

efficiency for low input sizes, it does not always

reveal the fastest algorithm in practice or for

practically-sized data sets[6], but the approach is

still very effective for comparing the scalability of

various algorithms as input sizes become large. A

description of a function in terms of big O notation

usually only provides an upper bound on the

growth rate of the function. Associated with big O

notation are several related notations, using the

symbols o, Ω, ω, and Θ, to describe other kinds of

bounds on asymptotic growth rates[6]. Big O

notation is also used in many other fields to provide

similar estimates.

In typical usage, the formal definition of O

notation is not used directly; rather, the O notation

for a function f(x) is derived by the following

simplification rules:

 If f(x) is a sum of several terms, the one with

the largest growth rate is kept, and all others

omitted.

 If f(x) is a product of several factors, any

constants (terms in the product that do not

depend on x) are omitted.

PROPOSED METHOD

 Using a pre-defined graph coloring R type

language package, we will develop a more

optimized way of returning a solution vector for a

system of inequations. As explained by Duffany[1],

“The ineq algorithm starts with a solution vector s

which has an initial value of s = (1,2,3,...n). The

algorithm squares the adjacency matrix A and finds

the maximum value of A2 [i,j] for pairs of variables

that can be combined (i.e., A[i,j]=0). It then

combines variables xi and xj by taking the

constraints that are in xj but not in xi and adding

them to xi (xi=xi|xj) where | = logical OR. Then it

updates the solution vector s[j]=s[i] and eliminates

variable xj (i.e., remove row and column j from A

as represented by the line A=A[-j,-j]). The matrix A

is reduced by one in dimension each time a variable

is eliminated.”

We know that squaring the adjacency matrix is

O(n
3
). Having to do this on each iteration is (O(n)).

This means that the entire algorithm has a notation

of O(n
4
). This is not very efficient and can become

time consuming with large matrices. Furthermore,

each elimination only adds relatively few

constraints to another variable, and in turn,

becomes a very small change for the A matrix. We

propose a different solution, one that, in theory,

would make the ineq algorithm be O(n
3
)[7].

Instead of calculating A
2
, we can simply update it.

That is, we calculate A
2
 once, and then add it to an

incremental matrix. With this method, we see some

aspects of parameterization. The equation for the

proposed method is as follows:

A
2
 + A*ΔA + ΔA*A + (ΔA)

2
 (1)

 The logic for (1) comes from the original

equation itself:

A’
2
 = (A + ΔA)

2
 (2)

 From (1) and (2), we see that each of these

operations can be calculated in O(n
2
), thus making

this entire equation O(n
2
), O(n

3
) at worst.

R LANGUAGE

We used the RGUI environment (freely

distributed online) to run the standard operations

for calculating a solution vector for a system of

inequations, along with our updated algorithm, and

to perform runtime tests on both algorithms to

determine if our proposed method is faster. R is a

programming language and software environment

for statistical computing and graphics. The R

language has become a standard among statisticians

for developing statistical software, and is widely

used for statistical software development and data

analysis. R is an implementation of the S

programming language combined with lexical

scoping semantics inspired by Scheme. R is part of

the GNU project. Its source code is freely available

under the GNU General Public License[8], and pre-

compiled binary versions are provided for various

operating systems. R uses a command line

interface; however, several graphical user interfaces

are available for use with R.

R provides a wide variety of statistical and

graphical techniques, including linear and nonlinear

modeling, classical statistical tests, time-series

analysis, classification, clustering, and others. R is

easily extensible through functions and extensions,

and the R community is noted for its active

contributions in terms of packages. There are some

important differences, but much code written for S

runs unaltered. Many of R's standard functions are

written in R itself, which makes it easy for users to

follow the algorithmic choices made. For

computationally intensive tasks, C, C++, and

Fortran code can be linked and called at run time.

Advanced users can write C or Java code to

manipulate R objects directly.

R is highly extensible through the use of user-

submitted packages for specific functions or

specific areas of study. Due to its S heritage, R has

stronger object-oriented programming facilities

than most statistical computing languages.

Extending R is also eased by its permissive lexical

scoping rules. Another strength of R is static

graphics, which can produce publication-quality

graphs, including mathematical symbols. Dynamic

and interactive graphics are available through

additional packages such as RGL. R has its own

LaTeX-like documentation format[8], which is

used to supply comprehensive documentation, both

on-line in a number of formats and in hard copy.

As a programming language, R is a command

line interpreter similar to BASIC or Python. If one

types "2+2" at the command prompt and presses

enter, the computer replies with "4". This example

is deceptively simple because, like APL, R

implements matrices, so from the command line R

can add or even invert matrices without explicit

loops[8]. R's data structures include scalars,

vectors, matrices, data frames (similar to tables in a

relational database) and lists. The R object system

has been extended by package authors to define

objects for regression models, time-series and geo-

spatial coordinates. The capabilities of R are

extended through user-created packages, which

allow specialized statistical techniques, graphical

devices, import/export capabilities, reporting tools,

etc. These packages are developed primarily in R,

and sometimes in Java, C and Fortran.

Reproducible research and automated report

generation can be accomplished with packages that

support execution of R code embedded within

LaTeX, OpenDocument, format and other markups.

R supports procedural programming with

functions and object-oriented programming with

generic functions. A generic function acts

differently depending on the type of arguments it is

passed. In other words, the generic function

recognizes the type of object and selects

(dispatches) the function (method) specific to that

type of object. For example, R has a generic print()

function that can print almost every type of object

in R with a simple "print(objectname)" syntax.

Although R is mostly used by statisticians and

other practitioners requiring an environment for

statistical computation and software development,

it can also be used as a general matrix calculation

toolbox with performance benchmarks comparable

to GNU Octave or MATLAB.

COMPUTATIONS

 For these calculations, we used a variety of

sample sizes. In this case, “N” refers to the size of a

matrix NxN. For example, a N=500 chart would

refer to a 500x500 matrix. We used three different

sample sizes, each with a great difference in size, in

order to have a clear picture of the differences

between the methods. We also ran each sample ten

times for the sake of certainty, using a different

randomly generated matrix for each attempt (Note:

the matrix varied across attempts, not methods. For

instance, the matrix used in the first attempt in the

first sample size is the same matrix used in the first

attempt for the second method). Accuracy is also

important, meaning we also verified that the

resulting vectors were the same. In Figure 1, we see

the results from using a 1000x1000 matrix:

Figure 1

1000x1000 Matrix

 The first method (represented in blue), in each

attempt, is about one second slower than the second

(represented in red), with the second method

yielding almost instant results. Even with such a

small sample, this already shows a considerable

difference between the speeds of each method.

Figure 2, using a matrix of 2500x2500, further

demonstrates the power of our proposed method.

Figure 2

2500x2500 Matrix

Whereas the first method increases

exponentially in time taken to complete the

calculations, taking around half a minute to

complete, the second method remains significantly

low, barely breaking the one second mark.

Noticeably, the first attempt using the second

method was faster than the rest of the attempts. It is

unknown what the reasoning behind this may be. A

possibility may have been the randomly generated

matrix that was used, or simply human error. In

Figure 3, we see a fairly large matrix size and what

is, arguably, the real demonstration of the

substitution method’s efficiency.

Figure 3

5000x5000 Matrix

Once again, we see an exponential increase in

the time taken to calculate the solution vector with

the multiplication method, and a very miniscule

increase with the substitution method. In fact, the

time to calculate increases by almost five times the

amount. It is safe to assume that this pattern will

continue with larger matrices. Thus, no further

testing is required. We must note that, after each

attempt, we verified to make sure that the solution

matrices given for both methods were, in fact,

correct and equal to each other.

CONCLUSION

From the results, we can see that a viable

solution for a number of constraint satisfaction

problems can be found using substitution and

elimination of variables in place of the standard

multiplication technique. The simplicity and

effectiveness of the algorithm is incredible, as it is

able to find an optimal solution with little effort.

Ideally, we would be able to see the algorithm

perform at a much larger sample size, but the tests

were limited to the technology that was readily

available. Even so, it is easy to see that even for a

massive matrix, this method would perform

exceptionally well.

The substitution and elimination method

trumps the original equation, being that the original

needs to square the updated A matrix after each

variable elimination. This is significantly different

from our proposed method, in that the matrix A in

the decision function only needs to be squared once

at the beginning of the algorithm. Afterwards, for

all subsequent steps, it only needs to be

incrementally updated, which, as we’ve clearly

seen, results in significant improvements, and

reduces the overall algorithm complexity to O(n
3
).

Needless to say, this idea of transforming these

types of problems in a system of inequations is a

substantial change, and may provide a different

viewpoint on other mathematical problems.

REFERENCES

[1] Duffany, J.L., “Optimal Solution of Constraint

Satisfaction Problems”, International Conference on

Applied Computer Science, January 2009.

[2] Chen, H. "A Rendezvous of Logic, Complexity, and

Algebra". ACM Computing Surveys (ACM,). 42, December

2009, pp 1–32.

[3] Duffy, K.; O'Connell, N.; Sapozhnikov, A.,

"Complexity analysis of a decentralised graph colouring

algorithm", Information Processing Letters, 107, 2008, pp

60–63.

[4] Duffany, J.L., “Statistical Characterization of NP-

Complete Problems”, Foundations of Computer Science

Conference, July 14 2008.

[5] Hopcroft, J.E., Motwani, R. and Ullman, J.D,

“Introduction to Automata Theory, Languages, and

Computation”, Addison Wesley, 2007, p 368.

[6] Michael, S., “Introduction to the Theory of

Computation”, PWS Publishing, 1997, pp 226–228 of

section 7.1: Measuring complexity.

[7] Duffany, J.L. “Systems of Inequations”, 4th LACCEI

Conference, June 21 2006.

[8] Homik, K., "R FAQ." The R FAQ. 2011, Retrieved

from http://cran.r-project.org/doc/FAQ/R-FAQ.html

