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Abstract — Constraint satisfaction problems are 

the subject of intense research in both artificial 

intelligence and operations research. They 

are mathematical problems defined as a set of 

objects whose state must satisfy a number 

of constraints or limitations. Often, they exhibit 

high complexity, requiring a combination 

of heuristics and combinatorial search methods to 

be solved in a reasonable time. Most optimal 

solutions for a constraint satisfaction problem are 

found by a standard substitution and elimination 

technique, similar to the procedure used to solve 

systems of equations, with the decision function 

f(A)=max(A2). However, this method involves 

squaring the A matrix after each substitution, 

making it time consuming for larger matrices. This 

can be remedied using a different method that only 

requires A to be squared once, and subsequently 

updated thereafter. 

Key Terms  Algorithm, Complexity, 

Constraint, Matrix. 

INTRODUCTION 

Constraint satisfaction problems represent the 

entities in a problem as a homogeneous collection 

of finite constraints over variables, which are 

solved by constraint satisfaction methods. Their 

regularity in their formulation provides a common 

basis to analyze and solve problems of many 

unrelated families. Examples of problems that can 

be modeled as a constraint satisfaction problem: 

 Eight queens puzzle 

 Map coloring problem 

 Boolean satisfiability 

Graph coloring will be used to demonstrate the 

effectiveness of the proposed method. In graph 

theory, graph coloring is a special case of graph 

labeling; it is an assignment of labels traditionally 

called "colors" to elements of a graph subject to 

certain constraints. In its simplest form, it is a way 

of coloring the vertices of a graph such that no two 

adjacent vertices share the same color; this is called 

a vertex coloring. Similarly, an edge 

coloring assigns a color to each edge so that no two 

adjacent edges share the same color, and a face 

coloring of a planar graph assigns a color to each 

face or region so that no two faces that share a 

boundary have the same color.  

Vertex coloring is the starting point of the 

subject, and other coloring problems can be 

transformed into a vertex version. For example, an 

edge coloring of a graph is just a vertex coloring of 

its line graph, and a face coloring of a planar 

graph is just a vertex coloring of its planar dual. 

However, non-vertex coloring problems are often 

stated and studied as is. That is partly for 

perspective, and partly because some problems are 

best studied in non-vertex form, as for instance is 

edge coloring. Graph coloring enjoys many 

practical applications as well as theoretical 

challenges. Beside the classical types of problems, 

different limitations can also be set on the graph, or 

on the way a color is assigned, or even on the color 

itself. It has even reached popularity with the 

general public in the form of the popular number 

puzzle Sudoku. Graph coloring is still a very active 

field of research. 

CONSTRAINT SATISFACTION 

Constraint satisfaction problems (CSP)s are 

mathematical problems defined as a set of objects 

whose state must satisfy a number of constraints or 

limitations. CSPs represent the entities in a problem 

as a homogeneous collection of finite constraints 

over variables, which is solved by constraint 



satisfaction methods. CSPs are the subject of 

intense research in both artificial intelligence and 

operations research, since the regularity in their 

formulation provides a common basis to analyze 

and solve problems of many unrelated families. 

CSPs often exhibit high complexity, requiring a 

combination of heuristics and combinatorial search 

methods to be solved in a reasonable time[1]. 

Examples of problems that can be modeled as a 

constraint satisfaction problem: 

 Eight queens puzzle 

 Map coloring problem 

 Sudoku 

 Boolean satisfiability 

Constraint satisfaction problems on finite 

domains are typically solved using a form of 

search. The most used techniques are variants of 

backtracking, constraint propagation, and local 

search. 

Backtracking is a recursive algorithm. It 

maintains a partial assignment of the variables. 

Initially, all variables are unassigned. At each step, 

a variable is chosen, and all possible values are 

assigned to it in turn. For each value, the 

consistency of the partial assignment with the 

constraints is checked; in case of consistency, a 

recursive call is performed. When all values have 

been tried, the algorithm backtracks. In this basic 

backtracking algorithm, consistency is defined as 

the satisfaction of all constraints whose variables 

are all assigned. Several variants of backtracking 

exists. Backmarking improves the efficiency of 

checking consistency. Backjumping allows saving 

part of the search by backtracking "more than one 

variable" in some cases[2]. Constraint learning 

infers and saves new constraints that can be later 

used to avoid part of the search. Look-ahead is also 

often used in backtracking to attempt to foresee the 

effects of choosing a variable or a value, thus 

sometimes determining in advance when a 

subproblem is satisfiable or unsatisfiable. 

Constraint propagation techniques are methods 

used to modify a constraint satisfaction problem. 

More precisely, they are methods that enforce a 

form of local consistency, which are conditions 

related to the consistency of a group of variables 

and/or constraints. Constraints propagation has 

various uses. First, they turn a problem into one that 

is equivalent but is usually simpler to solve. 

Second, they may prove satisfiability or 

unsatisfiability of problems. This is not guaranteed 

to happen in general; however, it always happens 

for some forms of constraint propagation and/or for 

some certain kinds of problems. The most known 

and used form of local consistency are arc 

consistency, hyper-arc consistency, and path 

consistency. The most popular constraint 

propagation method is the AC-3 algorithm[2], 

which enforces arc consistency. Local search 

methods are incomplete satisfiability algorithms. 

They may find a solution of a problem, but they 

may fail even if the problem is satisfiable. They 

work by iteratively improving a complete 

assignment over the variables. At each step, a small 

number of variables are changed value[1], with the 

overall aim of increasing the number of constraints 

satisfied by this assignment. The min-conflicts 

algorithm is a local search algorithm specific for 

CSPs and based in that principle. In practice, local 

search appears to work well when these changes are 

also affected by random choices. Integration of 

search with local search have been developed, 

leading to hybrid algorithms. 

GRAPH COLORING 

In the field of distributed algorithms, graph 

coloring is closely related to the problem 

of symmetry breaking. The current state-of-the-art 

randomized algorithms are faster for sufficiently 

large maximum degree Δ than deterministic 

algorithms. A deterministic distributed algorithm 

cannot find a proper vertex coloring in a symmetric 

graph. Some auxiliary information is needed in 

order to break symmetry. A standard assumption is 

that initially each node has a unique identifier, for 

example, from the set {1, 2, ..., n}. Put otherwise, 

we assume that we are given an n-coloring. The 

challenge is to reduce the number of colors 

from n to, e.g., Δ + 1. The more colors are 

employed, e.g. O(Δ) instead of Δ + 1, the fewer 

communication rounds are required[3]. 



A straightforward distributed version of the 

greedy algorithm for (Δ + 1)-coloring requires Θ(n) 

communication rounds in the worst case[4] − 

information may need to be propagated from one 

side of the network to another side. The simplest 

interesting case is an n-cycle. By iterating the same 

procedure, it is possible to obtain a 3-coloring of 

an n-cycle in O(log* n) communication steps 

(assuming that we have unique node identifiers). 

Graph coloring is computationally hard. It 

is NP-complete to decide if a given graph admits 

a k-coloring for a given k except for the cases k = 1 

and k = 2. It is especially NP-hard to compute the 

chromatic number[4]. The 3-coloring problem 

remains NP-complete even on planar graphs of 

degree. The best known approximation 

algorithm computes a coloring of size at most 

within a factor O(n(log n)−3(log n)2) of the 

chromatic number. For all ε > 0, approximating the 

chromatic number within n1−ε is NP-hard. It is also 

NP-hard to color a 3-colorable graph with 4 

colors and a k-colorable graph 

with k(log k ) / 25 colors[3] for sufficiently large 

constant k. 

COMPUTATIONAL COMPLEXITY 

In computational complexity theory, 

the complexity class NP-complete (abbreviated NP-

C or NPC) is a class of decision problems. A 

decision problem “L” is NP-complete if it is in the 

set of NP problems so that any given solution to the 

decision problem can be verified in polynomial 

time, and also in the set of NP-hard problems so 

that any NP problem can be converted into L by a 

transformation of the inputs in polynomial time.  

Although any given solution to such a problem can 

be verified quickly, there is no known efficient way 

to locate a solution in the first place; indeed, the 

most notable characteristic of NP-complete 

problems is that no fast solution to them is known. 

That is, the time required to solve the problem 

using any currently known algorithm increases very 

quickly as the size of the problem grows. As a 

result, the time required to solve even moderately 

large versions of many of these problems easily 

reaches into the billions or trillions of years, using 

any amount of computing power available today. 

As a consequence, determining whether or not 

it is possible to solve these problems quickly, called 

the P versus NP problem, is one of the 

principal unsolved problems in computer science 

today. While a method for computing the solutions 

to NP-complete problems using a reasonable 

amount of time remains undiscovered, computer 

scientists and programmers still frequently 

encounter NP-complete problems. NP-complete 

problems are often addressed by 

using approximation algorithms. NP-complete is 

a subset of NP, the set of all decision 

problems whose solutions can be verified in 

polynomial time; NP may be equivalently defined 

as the set of decision problems that can be solved in 

polynomial time on a nondeterministic Turing 

machine[5]. NP-complete problems are studied 

because the ability to quickly verify solutions to a 

problem (NP) seems to correlate with the ability to 

quickly solve that problem (P). It is not known 

whether every problem in NP can be quickly 

solved—this is called the P = NP problem. But 

if any single problem in NP-complete can be solved 

quickly, then every problem in NP can also be 

quickly solved, because the definition of an NP-

complete problem states that every problem in NP 

must be quickly reducible to every problem in NP-

complete[4] (that is, it can be reduced in 

polynomial time).  

Because of this, it is often said that the NP-

complete problems are harder or more difficult than 

NP problems in general.  A decision problem C is 

NP-complete if C is in NP, and every problem in 

NP is reducible to C in polynomial time[4]. C can 

be shown to be in NP by demonstrating that a 

candidate solution to C can be verified in 

polynomial time. A problem K is reducible to C if 

there is a polynomial-time many-one reduction, 

a deterministic algorithm which transforms any 

instance kЄK into an instance cЄC[5], such that the 

answer to c is yes if and only if the answer 

to k is yes. To prove that an NP problem C is in fact 

an NP-complete problem it is sufficient to show 

that an already known NP-complete problem 



reduces to C. Note that a problem satisfying 

condition 2 is said to be NP-hard, whether or not it 

satisfies condition 1. A consequence of this 

definition is that if we had a polynomial time 

algorithm (on a UTM, or any other Turing-

equivalent abstract machine) for C, we could solve 

all problems in NP in polynomial time. At present, 

all known algorithms for NP-complete problems 

require time that is super-polynomial in the input 

size, and it is unknown whether there are any faster 

algorithms. 

The following techniques can be applied to 

solve computational problems in general, and they 

often give rise to substantially faster algorithms: 

 Approximation: Instead of searching for an 

optimal solution, search for an "almost" 

optimal one. 

 Randomization: Use randomness to get a faster 

average running time, and allow the algorithm 

to fail with some small probability. See Monte 

Carlo method. 

 Restriction: By restricting the structure of the 

input (e.g., to planar graphs), faster algorithms 

are usually possible. 

 Parameterization: Often there are fast 

algorithms if certain parameters of the input are 

fixed. 

 Heuristic: An algorithm that works "reasonably 

well" in many cases, but for which there is no 

proof that it is both always fast and produces 

good results. Meta-heuristic approaches are 

often used.  

A substitution method also offers a 

significantly more efficient method for finding an 

optimal solution for computational problems. We 

can demonstrate this by simply incrementally 

updating the matrix. 

BIG-O 

In mathematics, computer science, and related 

fields, big-O notation describes the limiting 

behavior of the function when the argument tends 

towards a particular value or infinity, usually in 

terms of simpler functions. Big O notation 

characterizes functions according to their growth 

rates: different functions with the same growth rate 

may be represented using the same O notation. 

Although developed as a part of pure 

mathematics, this notation is now frequently also 

used in the analysis of algorithms to describe an 

algorithm's usage of computational resources: the 

worst case or average case running time or memory 

usage of an algorithm is often expressed as a 

function of the length of its input using big O 

notation. This allows algorithm designers to predict 

the behavior of their algorithms and to determine 

which of multiple algorithms to use, in a way that is 

independent of computer architecture or clock rate.  

Because big O notation discards multiplicative 

constants on the running time, and ignores 

efficiency for low input sizes, it does not always 

reveal the fastest algorithm in practice or for 

practically-sized data sets[6], but the approach is 

still very effective for comparing the scalability of 

various algorithms as input sizes become large. A 

description of a function in terms of big O notation 

usually only provides an upper bound on the 

growth rate of the function. Associated with big O 

notation are several related notations, using the 

symbols o, Ω, ω, and Θ, to describe other kinds of 

bounds on asymptotic growth rates[6]. Big O 

notation is also used in many other fields to provide 

similar estimates. 

In typical usage, the formal definition of O 

notation is not used directly; rather, the O notation 

for a function f(x) is derived by the following 

simplification rules: 

 If f(x) is a sum of several terms, the one with 

the largest growth rate is kept, and all others 

omitted. 

 If f(x) is a product of several factors, any 

constants (terms in the product that do not 

depend on x) are omitted. 

PROPOSED METHOD 

 Using a pre-defined graph coloring R type 

language package, we will develop a more 

optimized way of returning a solution vector for a 

system of inequations. As explained by Duffany[1],  



“The ineq algorithm starts with a solution vector s 

which has an initial value of s = (1,2,3,...n). The 

algorithm squares the adjacency matrix A and finds 

the maximum value of A2 [i,j] for pairs of variables 

that can be combined (i.e., A[i,j]=0). It then 

combines variables xi and xj by taking the 

constraints that are in xj but not in xi and adding 

them to xi (xi=xi|xj) where | = logical OR. Then it 

updates the solution vector s[j]=s[i] and eliminates 

variable xj (i.e., remove row and column j from A 

as represented by the line A=A[-j,-j]). The matrix A 

is reduced by one in dimension each time a variable 

is eliminated.” 

We know that squaring the adjacency matrix is 

O(n
3
). Having to do this on each iteration is (O(n)). 

This means that the entire algorithm has a notation 

of O(n
4
). This is not very efficient and can become 

time consuming with large matrices. Furthermore, 

each elimination only adds relatively few 

constraints to another variable, and in turn, 

becomes a very small change for the A matrix. We 

propose a different solution, one that, in theory, 

would make the ineq algorithm be O(n
3
)[7].  

Instead of calculating A
2
, we can simply update it. 

That is, we calculate A
2
 once, and then add it to an 

incremental matrix. With this method, we see some 

aspects of parameterization. The equation for the 

proposed method is as follows: 

A
2
 + A*ΔA + ΔA*A + (ΔA)

2
          (1) 

 The logic for (1) comes from the original 

equation itself: 

A’
2
 = (A + ΔA)

2
             (2) 

 From (1) and (2), we see that each of these 

operations can be calculated in O(n
2
), thus making 

this entire equation O(n
2
), O(n

3
) at worst.  

R LANGUAGE 

We used the RGUI environment (freely 

distributed online) to run the standard operations 

for calculating a solution vector for a system of 

inequations, along with our updated algorithm, and 

to perform runtime tests on both algorithms to 

determine if our proposed method is faster. R is a 

programming language and software environment 

for statistical computing and graphics. The R 

language has become a standard among statisticians 

for developing statistical software, and is widely 

used for statistical software development and data 

analysis. R is an implementation of the S 

programming language combined with lexical 

scoping semantics inspired by Scheme. R is part of 

the GNU project. Its source code is freely available 

under the GNU General Public License[8], and pre-

compiled binary versions are provided for various 

operating systems. R uses a command line 

interface; however, several graphical user interfaces 

are available for use with R. 

R provides a wide variety of statistical and 

graphical techniques, including linear and nonlinear 

modeling, classical statistical tests, time-series 

analysis, classification, clustering, and others. R is 

easily extensible through functions and extensions, 

and the R community is noted for its active 

contributions in terms of packages. There are some 

important differences, but much code written for S 

runs unaltered. Many of R's standard functions are 

written in R itself, which makes it easy for users to 

follow the algorithmic choices made. For 

computationally intensive tasks, C, C++, and 

Fortran code can be linked and called at run time. 

Advanced users can write C or Java code to 

manipulate R objects directly. 

R is highly extensible through the use of user-

submitted packages for specific functions or 

specific areas of study. Due to its S heritage, R has 

stronger object-oriented programming facilities 

than most statistical computing languages. 

Extending R is also eased by its permissive lexical 

scoping rules. Another strength of R is static 

graphics, which can produce publication-quality 

graphs, including mathematical symbols. Dynamic 

and interactive graphics are available through 

additional packages such as RGL. R has its own 

LaTeX-like documentation format[8], which is 

used to supply comprehensive documentation, both 

on-line in a number of formats and in hard copy. 

As a programming language, R is a command 

line interpreter similar to BASIC or Python. If one 

types "2+2" at the command prompt and presses 

enter, the computer replies with "4". This example 



is deceptively simple because, like APL, R 

implements matrices, so from the command line R 

can add or even invert matrices without explicit 

loops[8]. R's data structures include scalars, 

vectors, matrices, data frames (similar to tables in a 

relational database) and lists. The R object system 

has been extended by package authors to define 

objects for regression models, time-series and geo-

spatial coordinates. The capabilities of R are 

extended through user-created packages, which 

allow specialized statistical techniques, graphical 

devices, import/export capabilities, reporting tools, 

etc. These packages are developed primarily in R, 

and sometimes in Java, C and Fortran. 

Reproducible research and automated report 

generation can be accomplished with packages that 

support execution of R code embedded within 

LaTeX, OpenDocument, format and other markups. 

R supports procedural programming with 

functions and object-oriented programming with 

generic functions. A generic function acts 

differently depending on the type of arguments it is 

passed. In other words, the generic function 

recognizes the type of object and selects 

(dispatches) the function (method) specific to that 

type of object. For example, R has a generic print() 

function that can print almost every type of object 

in R with a simple "print(objectname)" syntax.  

Although R is mostly used by statisticians and 

other practitioners requiring an environment for 

statistical computation and software development, 

it can also be used as a general matrix calculation 

toolbox with performance benchmarks comparable 

to GNU Octave or MATLAB.  

COMPUTATIONS 

 For these calculations, we used a variety of 

sample sizes. In this case, “N” refers to the size of a 

matrix NxN. For example, a N=500 chart would 

refer to a 500x500 matrix. We used three different 

sample sizes, each with a great difference in size, in 

order to have a clear picture of the differences 

between the methods. We also ran each sample ten 

times for the sake of certainty, using a different 

randomly generated matrix for each attempt (Note: 

the matrix varied across attempts, not methods. For 

instance, the matrix used in the first attempt in the 

first sample size is the same matrix used in the first 

attempt for the second method). Accuracy is also 

important, meaning we also verified that the 

resulting vectors were the same. In Figure 1, we see 

the results from using a 1000x1000 matrix: 

 
Figure 1 

1000x1000 Matrix 

 The first method (represented in blue), in each 

attempt, is about one second slower than the second 

(represented in red), with the second method 

yielding almost instant results. Even with such a 

small sample, this already shows a considerable 

difference between the speeds of each method.  

Figure 2, using a matrix of 2500x2500, further 

demonstrates the power of our proposed method.  

 



Figure 2 

2500x2500 Matrix 

Whereas the first method increases 

exponentially in time taken to complete the 

calculations, taking around half a minute to 

complete, the second method remains significantly 

low, barely breaking the one second mark. 

Noticeably, the first attempt using the second 

method was faster than the rest of the attempts. It is 

unknown what the reasoning behind this may be. A 

possibility may have been the randomly generated 

matrix that was used, or simply human error.  In 

Figure 3, we see a fairly large matrix size and what 

is, arguably, the real demonstration of the 

substitution method’s efficiency.   

 
Figure 3 

5000x5000 Matrix 

Once again, we see an exponential increase in 

the time taken to calculate the solution vector with 

the multiplication method, and a very miniscule 

increase with the substitution method. In fact, the 

time to calculate increases by almost five times the 

amount. It is safe to assume that this pattern will 

continue with larger matrices. Thus, no further 

testing is required. We must note that, after each 

attempt, we verified to make sure that the solution 

matrices given for both methods were, in fact, 

correct and equal to each other. 

 

CONCLUSION 

From the results, we can see that a viable 

solution for a number of constraint satisfaction 

problems can be found using substitution and 

elimination of variables in place of the standard 

multiplication technique. The simplicity and 

effectiveness of the algorithm is incredible, as it is 

able to find an optimal solution with little effort. 

Ideally, we would be able to see the algorithm 

perform at a much larger sample size, but the tests 

were limited to the technology that was readily 

available. Even so, it is easy to see that even for a 

massive matrix, this method would perform 

exceptionally well.  

The substitution and elimination method 

trumps the original equation, being that the original 

needs to square the updated A matrix after each 

variable elimination. This is significantly different 

from our proposed method, in that the matrix A in 

the decision function only needs to be squared once 

at the beginning of the algorithm. Afterwards, for 

all subsequent steps, it only needs to be 

incrementally updated, which, as we’ve clearly 

seen, results in significant improvements, and 

reduces the overall algorithm complexity to O(n
3
). 

Needless to say, this idea of transforming these 

types of problems in a system of inequations is a 

substantial change, and may provide a different 

viewpoint on other mathematical problems.   
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