
Multithreading & Sequence Validation Algorithm:

Solving Cryptarithmetic Problems

Orlando Díaz Muñiz

Computer Engineering

Alfredo Cruz Triana, Ph.D.

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  Cryptarithmetic problems are

mathematical equations of unknown numbers that

are represented by letters. The goal is to identify

the number that represents each letter. There are

algorithms that provide a simple way to solve such

problems which has a big search space even for

quite small problems. We propose a solution to this

problem with sequence validation algorithm in

parallel with optimization using multithreading

technique. We have develop a program to

implement this algorithm using C Sharp, as

programing language, and showed that the

algorithm reaches a solution, applying sequence

validation and multithreading techniques, faster

than using single thread.

Key Terms  Cryptarithmetic, Sequence

Validation, Verbal Arithmetic

INTRODUCTION

Cryptarithmetic problems are puzzles

consisting of a mathematical equation of unknown

numbers that are represented by letters. The goal is

to identify the number that represents each letter.

These mathematical equations are usually

arithmetic operations. This type of problem was

popularized during the 1930s is the Sphinx, a

Belgian journal of recreational mathematics [1].

One of the well known Cryptarithmetic problems

which published in the July 1924 issue of Strand

Magazine by Henry Dudeney [2] is show in Figure

1. The solution to this problem is S = 9, E = 5, N =

6, D = 7, M = 1, O = 0, R = 8, and Y = 2.

Figure 1

Cryptarithmetic Problem Example

Genetic Algorithms (GAs) are search

algorithms inspired by genetics and natural

selection. Parallel Genetic Algorithms (PGAs) are

parallel implementations of GAs which can provide

considerable gains in terms of performance and

scalability [3]. The most important advantage of

PGAs is that in many cases they provide better

performance than single population based

algorithms, even when the parallelism is simulated

on conventional machines [4]. Existing GA and

PGA implementations were compared with the

proposed algorithm results. Constraints of

cryptarithmetic problems are as follow:

 Same number cannot be assigned to different

letters.

 The first letter of each string cannot be

assigned to zero.

 Number assigned to each letter must satisfy the

arithmetic operation.

Solving cryptarithmetic problem by hand

generally involves a combination of deductions and

extensive tests of possibilities. Solving

cryptarithmetic problems programmatically involve

a lot of iterations and a big search space. The

proposed algorithm provides a solution to this

problem by using sequence validation method in

parallel with optimization using multithreading

technique.

FORMULATION OF THE ALGORITHM

The proposed algorithm provides the following

elements:

 Solve problems from 5 to 10 distinct letters in

an acceptable execution time.

 Distribute the work load in 1 to 9 threads.

S E N D
+ M O R E
M O N E Y

 Find all possible solutions to the given

problem.

The following are brief descriptions related to

formulation of the proposed algorithm.

Calculating the Sequence of the Given Problem

To find the sequence is necessary to assign a

number to each different letter of the given

problem. This will generate a sequence of numbers

from 0 to n-1, where n is the total letters of the

given problem.

Determining All Possible Solutions

The total generators required are given by the

total different letters in the problem. Each

generator assigns a single number at a time.

Therefore the generator Gn(x) must assign a number

(x) from 0 to 9 or 1 to 9; in order, before the

generator Gn+1(x) where n is a number between zero

and the total distinct letters of the given problem.

Applying Sequence Validation Method

Each number generated is substituted into the

equation and then the sequence is calculated. The

calculated sequence is compared, from the index 0

to the n index, with the sequence of the given

problem. If it is different, then Gn+1(x) assignment

is cancelled, and proceed with the next assignment

in Gn(x). Otherwise if the sequences are equivalent

then Gn+1(x) assignment proceed and the process is

repeated.

Verification Method

If all numbers generators assign a number and

the current calculated sequence match the sequence

of the given problem then the numbers represented

by the valid sequence are substituted in the given

equation. If it satisfies the equation then a solution

has been found for the given problem.

Applying Multithreading Techniques

This procedure can be separated into 2, 3, 4, 5,

6, 7, 8 or 9 simultaneous tasks to reduce the elapse

or solution time. If it is divided into 2 tasks for

example, then the first task will find all possible

solutions to the problem starting with number 1, 2,

and 3. The second task will find all possible

solutions starting with number 4, 5 or 6. Finally,

the third task will find all possible solutions starting

with number 7, 8 or 9.

ALGORITHM EXECUTION EXAMPLE

The algorithm starts by creating a Default

Sequence (DS) based on the given problem. Let

say that we have the following cryptarithmetic

problem: SEND + MORE = MONEY. Then the

DS is calculated by assigning a number from left to

right to each letter starting at 0. Therefore the DS

for this problem is {0,1,2,3,4,5,6,7,8,9,10,11,12}.

The relation between each letter and the sequence

number is set as shown in Figure 2.

Figure 2

Relation Between Each Letter and Sequence Number

The next step is to assign the same sequence

number for repeated letters. For this step only the

first occurrence of each letter is considered.

Therefore the Default Sequence First Occurrence

(DSFO) will be set as shown in Figure 3.

Figure 3

Relation Between Each Letter and Default Sequence First

Occurrence

The DSFO is used to determine the Calculated

Sequence (CS) by substituting the DSFO numbers

into the cryptarithmetic problem. Figure 4

illustrates the relation between the DSFO and DS

with the resultant CS.

The DSFO sequence is used only to obtain the

CS. The DS is used to obtain the CS but is also

used to populate the index matrix discussed below.

In the iteration process the CS is used to determine

the validity of the possible solution calculated. The

use of CS in the iteration process reduce the total

S E N D M O R E M O N E Y

0 1 2 3 4 5 6 7 8 9 10 11 12
+ =

S E N D M O R Y

0 1 2 3 4 5 6 12

number of iterations required to find a valid

solution to the given problem.

Figure 4

Relation Between Default Sequence First Occurrence and

Calculated Sequence

The CS is determined by substituting all values

found from DSFO into the cryptarithmetic problem

as showed in Figure 4. Therefore, the CS for this

problem is giving by {0, 1, 2, 3 ,4 ,5 ,6 ,1 ,4 ,5 ,2 ,1

,12 }as shown in Figure 5.

Figure 5

Relation Between Each Letter and Calculated Sequence

Obtaining Index Matrix

The total number of occurrences per Variable

is necessary to create and index matrix. An index

matrix is required to store the index or position of

each letter in the equation. The index matrix

dimension is defined by the total distinct letters and

the maximum occurrence of the letters. Table 1

shows the occurrence per each distinct letters.

Table 1

 Index Matrix

The letter E has the maximum number of

occurrences because is repeated more times than

the other letters. The letter E is repeated 3 times,

therefore the dimension of the index matrix is

defined as 8 x 3 where 8 is the total distinct letters

and 3 is maximum occurrence per letter. The

occurrence per variable is defined as shown in

Figure 6.

Figure 6

Relation Between Each Letter and Occurrence per Variable

The DS is used to populate the index matrix.

Figure 7 is a representation of the populated index

matrix. The letters appears in the same order of

position index. Each index represents a unique

position in the problem.

Figure 7

Position Index per Variable

Iteration Process

After determine the index matrix the iteration

process starts by assigning a number to each letter

from 0 to 9 or 1 to 9. Table 2 and 3 illustrates the

first ten iterations followed by the algorithm to

solve the problem using both methods; applying the

sequence validation method and without applying

the sequence validation method. Both methods

were executed separately.

Iterating Without Sequence Validation Method

A single number assignment is performed per

iteration as show in Table 2. When all letters has a

number assigned then those numbers are substituted

into the equation, using the index matrix to obtain a

possible solution. The sequence of the possible

solution is calculated and compared with the

sequence of the given problem previously

calculated. If both sequences are similar then the

mathematical operation is executed. A solution is

S E N D M O R Y

0 1 2 3 4 5 6 12

S 0 0
E 1 1
N 2 2
D 3 3
M 4 4
O 5 5
R 6 6
E 1 1
M 4 4
O 5 5
N 2 2
E 1 1
Y 12 12

P

r

o

b

l

e

m

DSFO CS

S E N D M O R E M O N E Y

0 1 2 3 4 5 6 1 4 5 2 1 12+ =

Distinct Variables Times Repeated

S No repeated

E Repeated 3 times

N Repeated 2 times

D No repeated

M Repeated 2 times

O Repeated 2 times

R No repeated

Y No repeated

S E N D M O R Y

1 3 2 1 2 2 1 1

S 0 - -
E 1 7 11
N 2 10 -
D 3 - -
M 4 8 -
O 5 9 -
R 6 - -
Y 12 - -

found if the given numbers satisfy the equation.

The process ends after all possible solutions are

verified.

Table 2

First 10 Iterations Without Sequence Validation

Iterating With Sequence Validation Method

This process is very similar to the method

mentioned above. The only difference is when

each letters has a number assigned then those

numbers are substituted into the equation using the

index matrix to obtain an incomplete or complete

possible solution.

The sequence of the possible solution is

calculated and compared from the beginning until

the index of the first occurrence related to the

current letter assigned. If the sequence related to

the original problem does not match the current

calculated sequence until the index specified then;

the next number generator iteration is cancelled as

show in Table 3. The next number is subsequently

considered in the same number generator and the

process repeated until an acceptable sequence is

found or after all possible solutions are verified. If

an acceptable sequence exists then it is

subsequently validated by performing the

mathematical operation of the equation. A solution

is found if the given numbers satisfy the equation.

The process ends after all possible solutions are

verified.

The process without sequence validation

involves a lot of iterations, which were reduced by

the sequence validation method. Tables 2 and 3

clearly show the reduction in the search space from

iteration 4 and above. Without sequence validation

the number generator associated with letters D, M,

O, R, Y must complete all iterations and its

respective assignments from 1 to 9 before assign a

number to letter N. On the other hand, the

sequence validation method eliminates all

unnecessary calculations and is capable to assign

number to letter N in just the fourth iteration as

show in Table 3.

Table 3

First 10 Iterations With Sequence Validation

Applying Multithreading Techniques

In simple words a thread is the smallest unit of

processing that can be managed by an operating

system. Therefore, is called multithreading, when

dealing with more than one thread simultaneously.

Generally multithreading is use in methods that

perform intensive calculations. Such methods can

execute faster on a multiprocessor or multicore

computer if the workload is shared among two or

more threads. Multithreading will not always speed

up your application, it can even slow it down if

used excessively or inappropriately [5].

 In order to apply multithreading techniques,

the iteration process is separated into tasks. Each

thread must take charge of a task. The user

determines the number of threads used to solve the

problem. If for example, 3 threads are used to

solve the problem then thread 1 iterates to find

possible solutions where the first digit begins with a

number within 1, 2, and 3. The thread 2 iterates to

find possible solutions where the first digit begins

with a number within 4, 5, and 6. The thread 3

iterates to find possible solutions where the first

digit begins with a number within 7, 8, and 9.

Possible Solution

S E N D M O R Y S,E,N,D,M,O,R,E,M,O,N,E,Y

1 1 1 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

2 1 0 2 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

3 1 0 0 3 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

4 1 0 0 0 4 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

5 1 0 0 0 0 5 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

6 1 0 0 0 0 0 6 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

7 1 0 0 0 0 0 0 7 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

8 1 0 0 0 0 0 0 0 8 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

9 1 0 0 0 0 0 0 1 8 - 1,0,0,0,0,0,0,0,0,0,0,0,1,

10 1 0 0 0 0 0 0 2 8 - 1,0,0,0,0,0,0,0,0,0,0,0,2,

Iteration

#
Number Generators

Execution without applying the sequence validation

Possible Solution

S E N D M O R Y S,E,N,D,M,O,R,E,M,O,N,E,Y

1 1 1 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

2 1 0 2 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

3 1 0 0 3 - 1,0,0,0,0,0,0,0,0,0,0,0,0,

4 1 0 1 3 - 1,0,1,0,0,0,0,0,0,0,1,0,0,

5 1 0 2 3 - 1,0,2,0,0,0,0,0,0,0,2,0,0,

6 1 0 2 0 4 - 1,0,2,0,0,0,0,0,0,0,2,0,0,

7 1 0 2 1 4 - 1,0,2,1,0,0,0,0,0,0,2,0,0,

8 1 0 2 2 4 - 1,0,2,2,0,0,0,0,0,0,2,0,0,

9 1 0 2 3 4 - 1,0,2,3,0,0,0,0,0,0,2,0,0,

10 1 0 2 3 0 5 - 1,0,2,3,0,0,0,0,0,0,2,0,0,

Number Generators

Execution applying the sequence validation
Iteration

#

Assuming no sequence validation is applied

then the first and last iteration for thread 1, 2, and 3

will be from {1,_,_,_,_,_,_,_} to {3,9,9,9,9,9,9,9},

{4,_,_,_,_,_,_,_} to {6,9,9,9,9,9,9,9}, and

{7,_,_,_,_,_,_,_} to {9,9,9,9,9,9,9,9} respectively.

GRAPHIC USER INTERFACE

A graphic user interface (GUI) was developed

to provide the inputs required and display results.

Figure 8 is a screenshot of the application with

results related to SEND + MORE = MONEY using

2 threads. Below figure you can find the

description of each item identified with a number

from 1 to 18.

Figure 8

Graphic User Interface

 1: First set of letters “SEND” representing the

first number in the equation.

 2: Second set of letters “MORE” representing

the second number in the equation.

 3: Third set of letters “MONEY” representing

the result of the equation.

 4: Calculates the total distinct letters in 1, 2,

and 3. The results are displayed at the left side

of the button. It has a number “8”, indicating

that the given problem has 8 distinct letters.

 5: Clear list 10 and 11.

 6: A checkbox to Enable or Disable the

sequence validation method. It is “checked”

therefore, the results showed in list 10 and 11

were found using sequence validation method.

 7: A dropdown list to choose the number of

threads, from 1 to 9, to solve the problem. In

this case “2” threads were selected from the

dropdown list.

 8: A button to initiate the calculation process.

 9: Display the work load distributed by thread.

It depends in the number of threads selected at

7. In this example “2” threads were used

therefore, it shows the work load for each

thread as show below:

 Thread #1: 1 4: 4

 Thread #2: 5 9: 9

 10: Display elapse time and total iterations

related to each thread as show below:

Thread Elapse Time Total Iterations

1 5101 3168404

2 6364 3960505

 11: Display the thread number, solution,

solution time, and total iterations for all

solutions found as show below:

Thread Soln. Time Iterations

2 9567+1085=10652 5912 3671631

 12: Indicates the thread that found the solution.

In this example is the thread number “2”.

 13: Indicates the solution found. In this

example the unique solution found is “9567 +

1085 = 10652”.

 14: Indicates the elapse time (milliseconds) to

find the solution. In this example the solution

was found after “5912” milliseconds.

 15: Indicates the total iterations required to find

the solution. In this example the solution was

found after “3671631” iterations.

 16: Indicates the thread ID. In this example

two threads were used therefore the IDs are 1

and 2.

 17: Indicates the elapse time required to verify

all possible solutions in the range associated

with the thread. In this example thread number

1 and 2 finished after “5101” and “6364”

milliseconds respectively.

 18: Indicates the total iterations required to

verify all possible solutions in the range

associated with the thread. In this example

thread number 1 and 2 finished after

“3168404” and “3960505” iterations

milliseconds respectively.

RESULTS

The algorithm was implemented with C Sharp

language and has been applied on commonly used

cryptarithmetic problems. Each problem was

executed five times. The elapse time, solution time,

total iterations, speed-up, and efficiency metrics

were calculated per each execution to analyze

results. This metrics are defined as follow:

 Total Iterations: Total number of iterations

required to obtain the results or complete the

process.

 Solution Time: Total time it takes to find a

solution. Solution time is defined as shown in

(1).

pp SSE
p

ST
meSolutionTi  (1)

Where the variables are defined as follow:

o p is the number of processors

o Sp is the start time

o SEp is the time where the solution was

found

 Elapse Time: Total time it takes to complete

the whole process. Elapse time is defined as

shown in (2).

pp SEETElapseTime  (2)

Where the variables are defined as follow:

o p is the number of processors

o Sp is the start time

o Ep is the end time

The difference within solution and elapse time

is the moment in where the end time is obtained.

The start time is the same for both. The solution

time is the time it takes to find a solution and the

elapse time is when it finishes the whole process as

shown in Figure 9.

Figure 9

Solution and Elapse Time Pseudo Code

Two important measures of the quality of

parallel algorithms are speedup and efficiency [6].

 Speed-up: Indicates how much a

multithreading algorithm is faster than a

corresponding single thread algorithm. Speed-

up is defined as shown in (3).

p
p

T

T
SSpeedup

1
 (3)

Where the variables are defined as follow:

o p is the number of processors

o T1 is the execution time of the

sequential algorithm

o Tp is the execution time of the parallel

algorithm with p processors

Linear speedup or ideal speedup is obtained

when Sp = p. When running an algorithm with

linear speedup, doubling the number of processors

doubles the speed. As this is ideal, it is considered

very good scalability.

 Efficiency: Estimates how well-utilized the

multithreads are in solving the problem,

compared to how much effort is wasted in

communication and synchronization.

Efficiency is a performance metric defined as

shown in (4).

p

p
p

Tp

T

p

S
EEfficiency




1
 (4)

Where the variables are defined as follow:

o p is the number of processors

o T1 is the execution time of the

sequential algorithm

o Tp is the execution time of the parallel

algorithm with p processors

o Sp is the speed-up

Result for 8 Variable Cryptarithmetic Problem

SEND+MORE=MONEY

The solution time could be reduced from an

average of 11,717 to 1,781 milliseconds when using

5 threads and the elapse time could be reduced from

18,713 to 3,416 milliseconds when using 8 threads

as show in Table 6.

Table 4 and 5 shows the work load distribution

using 1 to 5 and 6 to 9 threads respectively and

Table 5 shows the results using 1 to 9 threads.

Table 4

Work Load Distribution by Range for 8 Distinct Letter

Problems and One to Five Threads.

The thread load in some cases is not properly

balanced. This is because the iterations are

distributed among the threads and the maximum

number of iterations for problems containing 8

distinct letters is 99,999,999. Therefore, the only

way to have a balanced work load is using 3 or 9

threads in which the work load can be distributed in

ranges with a maximum of 33,333,333 or

11,111,111 iterations respectively.

Table 5

Work Load Distribution by Range for 8 Distinct Letter

Problems and Six to Nine Threads.

The reduction of iterations is due to

multithreading and sequence validation methods.

The best results reached for this problem has a

speed-up of 6.6 and an efficiency of 132% using 5

threads as show in Table 6 for

SEND+MORE=MONEY problem.

Table 6

Execution Results for Eight Variables Cryptarithmetic

Problem SEND+MORE=MONEY

The thread that has a range containing

{9,_,_,_,_,_,_,_} is always the thread that find the

solution to the problem. This is because the first

letter “S” of the given problem is equal to 9. Figure

5 shows the relation between total iterations and

solution time. Figure 10 shows the change in

efficiency and speedup. The solution time decrease

Range
Max

Iterations
Range

Max

Iterations
Range

Max

Iterations
Range

Max

Iterations
Range

Max

Iterations

1-9 99,999,999 1-4 44,444,444 1-3 33,333,333 1-2 22,222,222 1-2 22,222,222

5-9 55,555,555 4-6 33,333,333 3-4 22,222,222 3-4 22,222,222

7-9 33,333,333 5-6 22,222,222 5-6 22,222,222

7-9 33,333,333 7-8 22,222,222

9-9 11,111,111

99,999,999 99,999,999 99,999,999 99,999,999 99,999,999

Thread Load by Range for 8 distinct letter problems (threads 1-5)

1 Thread 2 Threads 3 Threads 4 Threads 5 Threads

Range
Max

Iterations
Range

Max

Iterations
Range

Max

Iterations
Range

Max

Iterations

1-1 11,111,111 1-1 11,111,111 1-1 11,111,111 1-1 11,111,111

2-3 22,222,222 2-3 22,222,222 2-2 11,111,111 2-2 11,111,111

4-4 11,111,111 4-4 11,111,111 3-3 11,111,111 3-3 11,111,111

5-6 22,222,222 5-6 22,222,222 4-5 22,222,222 4-4 11,111,111

7-7 11,111,111 7-7 11,111,111 6-6 11,111,111 5-5 11,111,111

8-9 22,222,222 8-8 11,111,111 7-7 11,111,111 6-6 11,111,111

9-9 11,111,111 8-8 11,111,111 7-7 11,111,111

9-9 11,111,111 8-8 11,111,111

9-9 11,111,111

99,999,999 99,999,999 99,999,999 99,999,999

9 Threads

Thread Load by Range for 8 distinct letter problems (threads 6-9)

6 Threads 7 Threads 8 Threads

Metrics

Thread/s

Used

Solution

Thread/s

Total

Solutions

Found

Iterations

Max

Elapse

Time (ms)

Min Max Average Speed-up
Efficiency

%

1 1 1 6,840,035 18,713 10,140 17,933 11,717 1.0 100

2 2 1 3,671,631 6,645 5,975 6,224 6,075 1.9 96

3 3 1 2,087,429 5,398 4,664 4,786 4,726 2.5 83

4 4 1 2,087,429 6,220 5,406 5,434 5,424 2.2 54

5 5 1 503,227 5,529 1,669 1,887 1,781 6.6 132

6 6 1 1,295,328 5,054 4,212 4,383 4,288 2.7 46

7 7 1 503,227 3,610 1,965 2,199 2,046 5.7 82

8 8 1 503,227 3,416 2,039 2,366 2,145 5.5 68

9 9 1 503,227 3,744 2,355 2,456 2,403 4.9 54

Count

SEND+MORE=MONEY

Solution Time (ms)

as increases the number of threads from 1 to 3

threads. This is because the search space decreases

as increase the number of threads as shown in Table

4 when using from 1 to 3 threads. The execution

with 4 threads showed an increment in the solution

time due to the overhead. The overhead in this case

is because the search range has the same numbers

of iterations compared with the execution of 3

threads but one more thread was used. The solution

time decrease when using 5 threads because the

search space is smaller when compared with 1, 2, 3,

and 4 threads ranges as show in Table 4.The

solution time increase when using 6 threads

because the search space is bigger and also more

threads were used, when compared with 1, 2, 3, 4,

and 5 threads ranges as show in Table 4. The

solution time increase when using 7, 8, and 9

threads due to overhead, because the search space is

the same and the number of threads increases.

Therefore, speed-up and efficiency decreases due to

overhead as shown in Figure 11.

Figure 10

Number of Threads vs. Solution Time

Figure 11

Number of Threads Used vs. Speed-up and Efficiency

Comparing Results

We compared the Parallel Genetic Algorithm

(PGA), Efficient Parallel Algorithm (EPA), and

Evolutionary Algorithm (EA) with the proposed

Multithreading and Sequence Validation Algorithm

(MSVA) results. Table 7 is a summary of results

based on commonly used cryptarithmetic problems

and illustrates the comparison between the

proposed algorithm (MSVA) and all other

algorithms mentioned above..

MSVA has better results than all other

algorithms for a 9 distinct variable problem as show

in Table 7 using BASIC+LOGIC=PASCAL

problem. In this problem MSVA reaches a solution

in an average time of 1.36 seconds where it takes

the PGA, EA, and EPA 2.53, 10.52, and 12.58

relatively. In general terms MSVA showed good

results solving 9 and 10 distinct variables problems

in comparison with others algorithms.

Table 7

Execution Results for Eight Variables Cryptarithmetic

Problem SEND+MORE=MONEY

CONCLUSION

This project concentrated on designing and

implementing a multithreading sequence validation

algorithm to solve cryptarithmetic problems.

Advantage of our approach are the algorithm is

simple for implementation, iteration process and

evaluation is parallelized by using multithreading

method, and there is no need for any

communication mechanism. The use of

multithreading techniques combined with sequence

validations showed that it is possible to find the

result of large instances of cryptarithmetic

problems within an acceptable time.

0%

20%

40%

60%

80%

100%

120%

140%

-

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6 7 8 9

E
ff

ic
ie

n
cy

S
p

e
e

d
-u

p

Number of Thread/s Used

Thread/s Used vs. Speed-up and Efficiency
for SEND+MORE=MONEY

Speedup Efficiency

Algorithm Problem Min Time (S) Max Time (s) Ave. Time (s)

PGA 0.43 3.632 2.421

MSVA 3.104 3.603 3.252

EPA 9.67 26.089 18.94

EA 0.288 512 87.279

MSVA 1.138 1.497 1.36

PGA 0.574 3.342 2.533

EA 0.24 379.52 10.521

EPA 8.976 16.178 12.583

PGA 0.18 0.974 0.68

EA 0.24 9.248 1.669

MSVA 1.669 1.887 1.781

EPA 1.356 17.16 1.781

BROWN+YELLOW=PURPLE

BASIC+LOGIC=PASCAL

SEND+MORE=MONEY

FUTURE WORK

The proposed algorithm in this paper has the

number of threads as an initial parameter. While the

implementation of this algorithm is simple; the

iterations process must increase for certain number

of threads due to the fact that some threads may

perform additional iterations if non proportional

work loads are encountered. Assigning the number

of threads is problem oriented and depends on the

problem. Some mechanism can be established to

find an ideal number of threads for each specific

Cryptarithmetic problem in order to get better

results. A good selection in the number of threads

can reduce the calculation time and the possible

overhead of threads.

REFERENCES

[1] Reza, Abbasian, et al., "Solving Cryptarithmetic Problems

Using Parallel Genetic Algorithm", In Proceedings of the

2009 Second International Conference on Computer and

Electrical Engineering, Vol. 01, 2009, pp. 308-312.

[2] Hassan, Kamrul, et al., "An Evolutionary Algorithm to

Solve Cryptarithmetic Problem", In Proc. International

Conference on Computational Intelligence, 2004, pp. 494-

496.

[3] Gholamali, Rahnavard, et al., "An Efficient Parallel

Algorithm for Solving Cryptarithmetic Problems: PGA", In

Proceedings of the 2009 Third UKSim European

Symposium on Computer Modeling and Simulation, 2009,

pp. 102-106.

[4] Naoghare, Manisha, et al., "Comparison of parallel genetic

algorithm with depth first search algorithm for solving

verbal arithmetic problems", In Proceedings of the

International Conference & Workshop on Emerging

Trends in Technology, 2011, pp. 324-329.

[5] Jagger, Jon, et al., "C# Annotated Standard", Morgan

Kaufmann Publishers Inc., 2007, pp. 640

[6] Hurley, Stephen, "Factors That Limit Speedup",

http://www.cs.cf.ac.uk/Parallel/Year2/section7.html,

February 5, 2012.

