
Automatic Documentation Generation Tool for Software Integration Phase in NGPF

Program Engines

Marycarmen Torres Martínez

Master of Engineering in Computer Engineering

Othoniel Rodríguez, Ph.D.

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  The actual process of Hardware-

Software Integration [1] takes too much time for

completion due to the required documentation, and

that is costly for the customer. Creating this tool

help us to reduce significantly the amount the time

is taken for the Integration Phase and the delivery

to the customer after the start of the Verification

Phase, thus lowering the cost of integration. The

automatic documentation tool creates documents

analyzing the deliverables from the Integration

phase after compiling the source code. This tool

provides documentation at design level by

generating documentation from deliverables and is

a way of integration with hand-written

documentation. Hand-written documentation is not

effective as it raises errors and takes more time.

This approach works by reading keywords from a

series of templates replacing them with the

corresponding data in each document. This

approach has been shown to be effective for the

customer and reduces the time to deliver new

engine software documentation to the informal

verification phase.

Key Terms  Documentation, Integration,

NGPF, Templates.

INTRODUCTION

A series of studies of program comprehension

show that programmers rely on good software

documentation [2]. Unfortunately, manually-written

documentation is notorious for being incorrect or

incomplete, and either way is very time consuming

to create. The idea to create the documentation tool

was to reduce the time to deliver engine software

documentation. Document generator is a

programming tool that creates documentation from

pre-programmed templates with keywords already

identified in the code and replacing them with the

corresponding data. This data can be memory

addresses, software version, document or repository

revision and so on. The advantage of creating a

document programming tool is that it offers a

valuable opportunity to improve and standardize

the quality of the software documentation.

Currently, the software integration phase

document is manually generated. The cycle of

compiling generation, manual document

generation, integration review, quality review and

delivery to the client takes a minimum of two and a

maximum of three days. The scope of this new tool

is to automate the generation of the build software

documentation reducing the time significantly and

deliver to the client in a minimum of one day and a

maximum of two days. Currently, generating

manual-written documentation is taking eight hours

of time.

This tool process is not expected to affect any

other steps of the Integration process. The tool will

start generating documents only after the code is

frozen, and other deliverables and engine checkout

is available.

This proposal is divided into multiple sections,

each one explains the purpose of the project.

Definition of Concepts

 Documentation – are the documents results

that the tool will generate. The Documentation

contains Software Build Checklist, Software

Build Request part B, Pre-delivery Verification

Form and Delivery Order.

 Integration – Is part of the Software

Development Cycle that compiles the code and

generates deliverables.

 NGPF – Is a commercial engine produced by

Pratt and Whitney named Next Generation

Program Family

 Templates – Is a series of documents that were

created based on the documentation that has a

series of “keywords”. These keywords will be

replaced by the data produced by the tool.

SUPPORTING THEORY

To generate documentation from a system that

has executables, memory addresses, code and so

on, we need to establish how to extract the data

required from the system to a document. In this

section we will discuss these approach in detail [3].

In later sections we discuss how we have user this

approach.

Figure 1

Project Overview

To generate the documentation using the tool,

we need to identify which inputs are needed to

generate the documentation for the integration

phase. In figure 1, four inputs are identified:

 Software Build Request part A (SBR-A) – The

SBR-A is a document supplied by the client

that have the version to be compiled, the

Application Software URL and Revisions,

Application Software Interface URL and

Revisions, Change Request for the version,

reference documents and revisions, OS

recommended version, deliverables and plan

for testing

 SVN Repositories – The repositories needed to

generate the documentation are the variant

repository that will have the deliverables, the

common repository, documentation repository

that will have the SBR-A and metric file.

 Checkout Folder – This folder will have the

integration testing after compiling the code

with an engine simulation. The memory results

are needed to fill the documentation.

 Inputs from User – User needs to provide the

following information to start running the tool.

 SVN credentials:

 SBRA URL – the URL needs to be in .docx

format.

 SVN URL Common repository.

 SVN URL Variant Repository.

 System Stack file – Location of Checkout

folder.

 ASI Build Compilation CR – The Change

Request performed to check in the deliverables.

 ASA Common SVN Revision – Last design

revision in the common repository.

 ASA Variant SVN Revision – Last design

revision in the variant repository.

There are four documents needs to be

automatically generated using a series of

documents, repositories and revisions. These

documents will become the tool outputs. The

documents to be generated are:

 Software Build Checklist – have the content of

memory data of compilation.

 Pre-delivery Verification Form – Checklist to

make sure every step of the integration was not

missed.

 Delivery Order – is the final document, have

the repositories, revision and client signatures

 Software Build Request part B (SBR-B) – have

the change requests, checkout results and any

deviation needed in the compilation.

PROBLEM

Due to the necessity of improvement for the

Build Hardware-Software Integration Phase for

Next Program Generation Family Engines, this

project will be developed. This tool will prevent

errors, reduce client cost and deliver all the

software releases in less time. The tool will

generate the following documents: Software Build

Checklist, Pre-delivery Documentation Form,

Software Build Request part B and Delivery Order.

Project Goal

The goal of this project is to complete the

Automated Documentation Tool successfully and

have client agree on incorporating this tool into the

development process. This tool should count as a

development process improvement, which increases

the product quality and the process robustness for

the customer and the company.

METHODOLOGY

Automatic Document Generation Tool is a C#

[4] [5] application that will be installed in any local

employee computer that will require to do the

compiling of code and generate documentation. The

tool should be able to work in the employee

computer or from a local network drive. It will be

installed in a computer with a successfully pre-

installed Windows 7 as Operating System,

Microsoft Office 2010 and Tortoise SVN 1.8.7

version or higher. The system will help to manage

and create documentation of the Integration Build

Phase.

The easiest way to create this kind of tool

specifically for this engine program is to create

templates. Four templates were created with a

series of “keywords”. The keywords will be what

the tool will read. All the keywords have words

with “#_ at the beginning and “_#_ at the end.

For example: In the code the variable is “Date”

and the template is “#_DATE_#.

The reason of creating the keyword was

because is the easiest way to replace a data value

and will be as simple as read and replace in the

code. The code will read the keywords and replace

it with the corresponding data already identified.

The tool search in repositories, read from

documents and SVN revisions.

The system will have the three following roles.

The first is validate user credentials. The

system will be able to read Tortoise SVN

credentials, using the class Tortoise SVN. The

system will validate user credentials and return the

results if user has or not access. Using SVN

credentials will validate builder name using builder

employee number. For example: SVN Credential:

mtorres, Builder: xip0419 that is the employee

number and the system with this method will

validate my name that is Marycarmen Torres. The

system will save and remember the credentials if

the user clicks on the credentials checkmark.

 The second role is read SBR-A to validate

which software version and engine will be worked.

The system will be able to export SBR-A to a

folder. The SBR-A URL should be a user input.

The SBR-A is one of the documents with more

information needed to fill the templates. Note that

system will read the other information needed from

the repositories, SVN revisions and documents

already download.

 The third role is replacing keywords with the

corresponding data to the templates. The tool, after

reading keywords and validating information will

replace them with the corresponding data. For

example: Tool will read “#_DATE_#” and as

variable name associated is “DATE” the tool will

replace “#_DATE_#” for “May 5, 2016”. Tool

automatically will fill the templates and place them

in a folder.

This system is intended to be a quick solution

to reduce time. The project scope is to provide

automation to the process of creating documents

providing to employees a Graphical User Interface

to work with the input file to be processed and

performing data validations at the final delivery file

to ensure that the human errors are detected and

disallowed.

Relevance and Significance

This kind of tool was never implemented for

any of Next Program Generation Family engine

programs. At least once a month there is a software

release for each engine. Sometimes, the Integration

team have 10 to 12 compilation requests each

month.

The organization will have some benefits. One

of them is less time of Documentation process. The

actual process consists of hand-written documents,

review, quality review and delivery to the customer.

The new process will have automated document

generation, review, quality review and delivery to

the customer. Instead of eight hours creating hand-

written documents the process will consist of ten

minutes or less of automated document generation.

This process will be a great improvement, less cost

and better quality.

The security of the tool is the best advantage.

The program credentials are encrypted in the code

not to be shared for security reasons. To access to

the tool you must have access to developer or

builder of any of the Next Program Generation

Family (NPGF) programs. No person outside of

Pratt and Whitney or Infotech Aerospace Services

can enter the systems.

Assumptions and Dependencies

The system is based on the following

assumptions:

 The system is a tool that can be used at any

time as required.

 The system is a tool to facilitate and improve

the Integration process of the job.

 Users must have computer literacy (expected to

know how to use a computer, compile code,

and experience generating Build

Documentation).

 Users must have a basic Microsoft Office

Word 2010 literacy (some experience

managing MS Office Word files).

 The only people allowed to use the tool are the

one allowed to work in the administrative part

of the project.

Development Methods

This tool in essence is a single application that

is looking to improve a process that can be

automated, because under human standards will

take more time that the desire for something that

can be worked in less time. This tool basically can

be composed by three roles mentioned above,

which cover the validation and generation of

documents.

For that reason the following method were

selected:

 Feature-Oriented design, this method is a type

of functional decomposition that assigns

features to modules.

 Object-Oriented design, this method assign an

object to modules.

From a point of view, with the Feature-

Oriented design approach we can put together all

the functions related to a feature, which in this case

can be the stages of the workflow and with the

Object-Oriented design we can start to narrow the

near future implementation into a concept of an

object to module design.

Architectural Strategies

C sharp as programming language:

This was chosen due to the available of many

libraries to this language that will facilitate the

composition of the programming, also with the

visual studio functionality, the tool can be created

in less time due the automatic code generated for

UI. Also, with low experience and expertise in this

language is easy to work in a short time and

generate a product and a prototype as quickly as

possible, since with this language we can generate

the code necessary for the user interface and the

programming to do the expected results.

System Architecture

Automatic Documentation Generation tool is

an application that will work a set of keywords pre-

determinate. [6] This set is worked by a sequence

of task, for that reason the “Distributed”

architecture is the best approach. In “Distributed”

system [7] computing and storage are in separate

system blocks orchestrated separately and

connected through networks. The system upgrade is

through replacing component blocks. System

growth is through adding blocks. The architecture

is designed to enable growth and scale out of

multiple workloads.

The Automatic Documentation Generation is

based on a Feature-Oriented design, with the idea to

keep features and function in separated modules.

This was selected this way in to keep the system

components in an easy way to maintenance or

future enhance the development team.

The implementation of the tool was started

following the three main roles. In figure 2 and 3,

the class diagram was divided by Presentation

Layer, Business layer and Data Layer. The Data

Layer have the final results.

Figure 2

Class Diagram

Figure 3

Conceptual Diagram

RESULTS AND DISCUSSION

The tool was generated successfully and is can

generate the four documents filled. The tool

resolved a real problem in the Integration Phase of

the Software for the NGPF program. In figure 4, we

can find the final Automatic Documentation tool.

After the user writes the username and password,

the credentials are validated, and the inputs are

written, the user clicks on “Generate

Documentation” bottom and the process will start

creating the documentation. The display screen will

show the process and where the documentation will

be created.

Figure 4

Automatic Documentation Tool User Interface

CONCLUSION

This project was presented for automatically

generating documentation for a Next Generation

Program Family. Our approach was to look at the

easier way to automatic generate documentation

and reduce cost.

The tool is simple and straight forward for

users. It covers an actual and real problem in the

company and it was solved. A better quality of the

product will be presented to the client and lower

cost for them.

After project conclusion, will going to present

the project to the clients for approval and

implement the project in other engines.

FUTURE WORK

Plans for enhancing the software application:

The future plan is to improve the process of

automation of documents, for that reason the tool is

simple, future enhance to the tool will be based in

other parts of the engine that are compiled different

like Prognostic Health Management Unit (PHMU)

and military programs. New improvements will be

created after employee/user feedback of the

performance of the tool. Also, after client’s

feedback and suggestions will be determined future

enhances to the tool.

ACKNOWLEDGMENT

This material is based upon work supported by,

or in part by, the Infotech Aerospace Services. This

document export is restricted by the Export

Administration Act of 1979, as amended. You may

not possess, use, copy or disclose this document or

any information in it, for any purpose including

without limitation to design, manufacture, or repair

parts or obtain FAA or other government approval

to do so.

REFERENCES

[1] D. Akka. (2014, May). 6 tips for a successful system

integration project [Online]. Available:

http://thenextweb.com/dd/2014/02/09/6-tips-successful-

system-integration-project/%23gref/.

[2] P. McBurnel and C. McMillan. (2014, March). Automatic

Documentation Generation via Source Code

Summarization of Method [Online]. Available:

https://www3.nd.edu/~cmc/papers/mcburney_icpc_2014.p

df.

[3] H. Halvorsen. (March, 12, 2014). Introduction to Visual

Studio and C sharp [Online]. Available:

http://home.hit.no/~hansha/documents/microsoft.net/tutoria

ls/introduction%20to%20visual%20studio/Introduction%2

0to%20Visual%20Studio%20and%20CSharp.pdf.

[4] P. Lamas (April 6, 2016) Sandcastle Help File Builder

[Online]. Available: https://github.com/EWSoftware/

SHFB.

[5] C. S. Horstmann, Object-Oriented Design & Patterns, 2nd

ed., John Wiley and Sons, Inc., Hoboken, NJ. USA, 2006.

[6] S. Apel and C. Kastner. (2007, July). An Overview of

Feature-Oriented Software Development Available:

http://www.jot.fm/issues/issue_2009_07/column5.pdf.

[7] P. Bilderbeek. (2013, January 15). Four types of System

Architectures [Online]. Available:

http://www.themetisfiles.com/2013/01/the-four-types-of-

system-architectures/.

